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Objective: To evaluate the characteristics of the circulating microRNA

expression profiles in patients with osteoporosis.

Methods: A systematic literature search was performed using the Web of

Science, PubMed, Embase, Cochrane Library, China National Knowledge

Infrastructure (CNKI), VIP, and WANFANG databases from inception until 1

March 2024. The search strategy employed keywords, encompassing

“osteoporosis”, “bone loss”, or “osteopenia” and “miRNA” or “microRNA”. The

Newcastle-Ottawa Scale (NOS) quality assessment scale was used to evaluate

the methodological quality. Heterogeneity tests and statistical analyses of all data

were performed by Stata 16.0. The differences in microRNA levels between

groups were illustrated by the weighted mean difference (WMD) and 95%

confidence interval (95% CI).

Results: A total of 27 studies were included and analyzed in the meta-analysis,

with 2,263 participants. The results showed that miR-21-5p (WMD 0.88, 95% CI:

0.22 to 1.55),miR-125b-5p (WMD 6.63, 95% CI: 0.19 to 13.08),miR-483-5p(WMD

6.43, 95% CI: 3.26 to 9.61),miR-133a (WMD 1.43, 95% CI: 1.39 to 1.47),miR-422a

(WMD 1, 95% CI: 0.28 to 1.72), and miR-214-3p (WMD 2.03, 95% CI: 0.14 to 3.92)

were significantly upregulated, and miR-497-5p (WMD -0.57, 95% CI: -0.98 to

-0.17) was significantly downregulated.

Conclusion: miR-21-5p, miR-125b-5p, miR-483-5p, miR-133a, miR-497-5p,

miR-422a, and miR-214-3p might serve as potential diagnostic biomarkers for

osteoporosis. In the future, integrating these miRNAs to build a diagnostic model

might be a promising diagnosis strategy for osteoporosis.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier CRD42023481209.
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1 Introduction

Osteoporosis (OP), a progressive skeletal disorder characterized

by reduced bone mineral density, compromised bone strength, and

increased risk of fracture, has garnered widespread attention

because it has a significant impact on health-related quality of life

(1). Nearly 200 million people worldwide are diagnosed with

osteoporosis each year, and nearly 9 million osteoporotic

fractures occur each year (2). Hip and vertebrae fractures are

associated with particularly high morbidity and mortality, posing

a high socioeconomic burden on overstretched health systems (3).

Therefore, fracture prevention through early diagnosis is the

primary goal of osteoporosis management. However, the onset of

osteoporosis is usually asymptomatic, which highlights the need for

a strategy that allows a quick and effective diagnosis of osteoporosis

to mitigate further disease progress and subsequent fractures (4).

Currently, bone mineral density (BMD), measured using dual-

energy x-ray absorptiometry (DXA), is employed to diagnose

osteoporosis (5). Higher BMD indicates denser, stronger bones and

lower BMD indicates less dense, weaker bones. Notably, not only bone

mass but also bone quality is a factor in osteoporosis. Unfortunately,

DXA cannot accurately assess bone quality (6). In addition, spinal

deformities, previous compression fractures, and aortic atherosclerosis

can lead to an increase in effective x-ray uptake, resulting in a pseudo-

elevation of the T-Score (7, 8). Overall, DXA scans are not accurate

enough to diagnose osteoporosis. Therefore, an effective diagnostic

indicator to identify osteoporosis is urgently required.

MicroRNAs (miRNAs), which are non-encoded, endogenous,

and single-stranded RNAs of ~22 nucleotides, are important

regulators of numerous biological processes through the

posttranscriptional regulation of gene expression (9, 10). A large

number of in vitro and in vivo studies suggest that miRNAs are

involved in cell differentiation, proliferation, autophagy, and

apoptosis in the bone microenvironment. Differential expression

of miRNAs in different stages of the development of osteoporosis

have shown that they are closely related to the occurrence and

development of osteoporosis (11).

Recently, numerous research studies have focused on circulating

miRNAs as a potential biomarker for the early detection of

osteoporosis (12). Some studies indicated up or downregulation of

diverse miRNAs in osteoporotic postmenopausal women compared

with healthy postmenopausal women (13). Due to different

technological platforms and small sample sizes among various

studies, conflicting results regarding the direction of regulation

have been found for some miRNAs. Furthermore, the characteristic

expression of circulating miRNAs in osteoporosis has not been

accurately evaluated. This meta-analysis was performed to further

clarify the characteristics of the circulating miRNA expression

profiles in osteoporosis, and explore the potential value of

circulating miRNAs for the diagnosis of osteoporosis.
2 Methods

This systematic review and meta-analysis was conducted in line

with the Preferred Reporting Items for Systematic Reviews and
Frontiers in Endocrinology 02
Meta-Analyses (PRISMA) statement. The protocol for this meta-

analysis was prospectively registered in the PROSPERO

database (CRD42023481209).
2.1 Data sources and retrieval strategy

A systematic literature search was performed using the Web of

Science, PubMed, Embase, Cochrane Library, CNKI, VIP, and

WANFANG databases. The literature search included studies

published in English or Chinese from inception until 1 March

2024. The search strategy employed the following keywords:

“osteoporosis”, “bone loss”, or “osteopenia” and “miRNA” or

“microRNA”. For the identification of additional relevant studies,

the reference lists of related reviews and included articles were

screened manually.
2.2 Selection criteria

The inclusion criteria were defined as (1): the study should have the

miRNA expression profiles of patients with osteoporosis (2);

osteoporosis patients were included in the experimental group, and

healthy individuals were included in the control group (3); the relative

miRNA expression must be profiled by RT-qPCR (4); the sample size

was reported (5); the mean and standard deviation of the miRNA

expression profiles could be obtained; and (6) all the patients with

osteoporosis were diagnosed by DXA. The exclusion criteria were as

follows (1): studies on animals (2); simple descriptive literature without

a control group (3); review literature, case report, abstract, and letter;

and (4) literature for which the relevant data could not be obtained.
2.3 Data extraction

The following study data was extracted: first author, year of

publication, country, age, sex, source of samples, miRNA expression

profile, assay type, and sample size. Two investigators independently

extracted the data following the pre-defined inclusion and exclusion

criteria. If different sample sources were provided in the same study,

data extraction and analysis were carried out respectively. Any

discrepancies were resolved through discussions and, if necessary, a

third senior investigator was consulted until a consensus was reached.

The corresponding authors of the original articles were contacted to

obtain relevant data that were not present in the full text and

supplementary information. If data were only shown by graphs,

GetData Graph Digitizer software (version 2.26) was used to extract

numerical values.
2.4 Quality assessment

Two independent investigators used the Newcastle-Ottawa

Scale (NOS) to assess the quality of the included studies. The

scale involved three aspects with a total of 9 points: the selection

of cohorts (0–4 points), the comparability of cohorts (0–2 points),
frontiersin.org
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and the assessment of the outcome (0–3 points). Quality was

classified as high with an NOS score of ≥6 points and low with

an NOS score of <6 points (14). Disagreements were resolved until a

consensus was reached by mutual discussion with a third

senior investigator.
2.5 Statistical analysis

Stata software (version 16.0, Stata Corp LP, College Station, TX,

USA) was used to analyze the data. The weighted mean difference

(WMD) and 95% confidence interval (95% CI) were calculated to

indicate the effect size of the differences in miRNA expression levels

between groups. The heterogeneity of the included studies was

usually tested by Cochrane’s Q test and I2 statistic. For Cochrane’s

Q test, P < 0.1 indicated significant heterogeneity between the

studies. The fixed effect model was selected if I2 was < 50% and the

random effect model was selected if I2 was ≥ 50%. Subgroup and

regression analyses were conducted to explore the possible sources

of heterogeneity. A sensitivity analysis was performed to analyze the

stability and reliability of the effect size using the “remove one

study”method. Finally, Egger’s and Begg’s tests, as well as the visual

inspection of funnel plots, were used to assess any potential

publication bias.
3 Results

3.1 Search results and study characteristics

The selection process of the studies is presented in Figure 1. Our

search returned a total of 603 studies. After the elimination of

duplicates, 270 articles were reviewed. Of these, 171 were excluded

by browsing the title and abstract, leaving 99 full-text studies to be

reviewed. Finally, 27 studies that met the inclusion criteria were

included and analyzed in the meta-analysis, with 2,263 participants.

Details of the included studies are shown in Supplementary Table 1.

All the studies were published between 2014 and 2023, with 19

conducted in Asia, 4 in Europe, 3 in North America, and 1 in Africa.

The average age of all participants ranged from 39.1 to 80 years old,

and most of the participants were female.
3.2 Quality evaluation results

The quality of the included studies was evaluated by applying the

NOS, as shown in Table 1. The NOS scores ranged from 7 to 8, and, as

such, all the included studies were determined to be of high quality.
3.3 Results of the meta-analysis of the
expression of each circulating miRNA in
patients with osteoporosis

Six miRNAs were evidently upregulated and had been screened

out as follows: miR-21-5p (WMD 0.88, 95% CI: 0.22 to 1.55, p =
Frontiers in Endocrinology 03
0.009, I2 = 98.6%, Figure 2A), miR-125b-5p (WMD 6.63, 95% CI:

0.19 to 13.08, p = 0.044, I2 = 99.8%, Figure 2B), miR-483-5p (WMD

6.43, 95% CI: 3.26 to 9.61, p < 0.001, I2 = 92.1%, Figure 2C), miR-

133a (WMD 1.43, 95% CI: 1.39 to 1.47, p < 0.001, I2 = 0%,

Figure 2D), miR-422a (WMD 1, 95% CI: 0.28 to 1.72, p = 0.007,

I2 =87.8%, Figure 2G), andmiR-214-3p (WMD 2.03, 95% CI: 0.14 to

3.92, p = 0.036, I2 =93%, Figure 2H). Only one miRNA,miR-497-5p,

was downregulated with a mean difference of -0.57 (WMD -0.57,

95% CI: -0.98 to -0.17, p = 0.005, I2 =85.6%, Figure 2F). The other

two miRNAs,miR-148a-3p (WMD 7.09, 95% CI: -2.15 to 16.34, p =

0.133, I2 =99.7%, Figure 2E) and miR-122-5p (WMD -7.92, 95% CI:

-21.21 to 5.37, p = 0.243, I2 =99.8%, Figure 2I), were observed to not

have significant differences in expression.
3.4 Subgroup analysis and meta-
regression analysis

In order to explore the source of heterogeneity, a subgroup

analysis should be carried out for miR-21-5p, miR-125b-5p, miR-

483-5p, miR-148a-3p, miR-497-5p, miR-422a, miR-214-3p, and miR-

122-5p. Due to a lack of publications, only miR-21-5p was analyzed

based on the sample sources (Supplementary Figure 1). The result

showed that miR-21-5p was significantly upregulated in serum

samples (WMD 5.66, 95% CI: 2.37 to 8.96, p = 0.001, I2 = 93.5%),

but was observed to have no significant expression differences in

plasma samples (WMD 0.03, 95% CI: -0.92 to 0.98, p = 0.948, I2 =

99.4%). The result of the subgroup analysis, as well as a subsequent

meta-regression analysis (p = 0.058), indicated that the sample source

was not a potential source of heterogeneity for miR-21-5p.
3.5 Sensitivity analysis and publication
bias test

After excluding any individual study, a sensitivity analysis

revealed that the results for the miRNAs in the present study

were stable (Supplementary Figure 2). All the studies included in

the present meta‐analysis were symmetrically distributed in a

funnel plot (Supplementary Figure 3). The p-values of Begg’s and

Egger’s tests are shown in Supplementary Table 2 (p > 0.05 for all),

which indicated the absence of significant publication bias in the

included studies.
4 Discussion

In the present meta-analysis, nine miRNAs were differentially

expressed in more than one study for OP. Among these miRNAs,

miR-21-5p, miR-125b-5p, miR-483-5p, miR-133a, miR-422a, and

miR-214-3p were significantly upregulated, and miR-497-5p was

significantly downregulated.

The dysregulation of miR-21-5p in OP has received a lot of

attention from researchers in recent years. Notably, the direction

of regulation for miR-21-5p was contradictory in the studies

included in the meta-analysis, with seven studies reporting
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upregulation (15–21) and three studies reporting downregulation

(22–24). This could be due to miR-21-5p being closely associated

with both osteogenic and osteoclastic differentiation through a

variety of mechanisms. miR-21-5p has been reported to promote

osteogenesis by targeting the SOX2 (25), PLAP-1 (26), ACVR2B

(27), ERK-MAPK (24, 28), Smad7-Smad1/5/8-Runx2 (29–31),

PI3K/b-catenin (32), and PTEN/PI3K/Akt/HIF-1a pathways (33).

The regulatory effects of miR-21-5p on osteoclasts are complex and

involve multiple mechanisms. Sugatani et al. proposed a new

molecular mechanism for osteoclastogenesis, namely the C-Fos/

miR-21/PDCD4 positive feedback loop. C-Fos upregulated miR-21

expression and inhibited PDCD4 expression, which in turn

promoted osteoclastogenesis (34). Subsequent studies also

confirmed that miR-21 directly regulates osteoclast function by

targeting PDCD4 (35–37). In addition, PTEN (38, 39), SKP2 (40),
Frontiers in Endocrinology 04
OPG (41), and FasL (42) have also been shown to be effective targets

of miR-21-5p in promoting osteoclast differentiation. However, an

inhibitory effect of miR-21-5p on osteoclast differentiation has also

been reported, for instance, Huang et al. found that miR-21-5p was

significantly decreased during osteoclast differentiation and that

miR-21-5p inhibited osteoclast differentiation by acting on its target

gene SKP2 (40). In juvenile idiopathic arthritis, miR-21-5p could

inhibit the production of osteoclasts from rheumatoid arthritis

fibroblast-l ike synovial cel ls induced by M-CSF (43).

Unsatisfactorily, in the aforementioned studies, miR-21-5p

promoted both osteogenic and osteoclastic differentiation, which

is contradictory. This prevented us from accurately describing the

mechanistic role of miR-21-5p in the pathogenesis of osteoporosis,

so further studies are needed. Nevertheless, the results of this meta-

analysis indicated that the level of miR-21-5p was upregulated in
TABLE 1 Quality assessment of the included studies.

Studies Selection Comparability Exposure Scores

Wang 2023 *** ** ** 7

Al-Rawaf 2021 **** ** ** 8

Gu 2020 *** ** ** 7

Cao 2014 **** * ** 7

Alrashed 2022 *** ** ** 7

Li 2018 *** ** ** 7

Li 2020 *** ** ** 7

Li 2014 *** ** ** 7

Suarjana 2019 **** ** ** 8

Mohammadisima 2023 **** ** ** 8

Chen 2017 **** * ** 7

Bedene 2016 **** ** ** 8

Wang 2021 *** ** ** 7

Mandourah 2018 *** ** ** 7

Ma 2020 *** ** ** 7

Nesma2019 *** ** ** 7

Wang 2020 *** ** ** 7

Seeliger 2014 **** * ** 7

Wang 2012 **** * ** 7

Al-Rawaf 2023 **** ** ** 8

Ciuffi 2022 **** ** ** 8

Xu 2021 *** ** ** 7

Cong 2020 *** ** ** 7

Chen 2019 **** ** ** 8

Yang 2013 **** ** ** 8

Zhao 2021 *** ** ** 7

Wang 2018 *** ** ** 7
* scores 1 point; ** scores 2 point; *** scores 3 point; **** scores 4 point.
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patients with osteoporosis, which was consistent with the result of a

previously reported meta-analysis based on the robust rank

aggregation method (13). Based on this finding, it could be

considered that the expression level of miR-21-5p is related to the

occurrence of osteoporosis, suggesting that miR-21-5p might be a

promising biomarker for the diagnosis of osteoporosis. However, it

should be noted that miR-21-5p was also associated with

cardiovascular diseases (44), cancer (45), and other bone diseases

(46), so a differential diagnosis is required in clinical practice.

For the expression level of miR-125b-5p in osteoporosis

patients, four included studies reported upregulation (17, 47–49)

and only one study reported downregulation (21). Wang et al.

discovered that overexpression of miR-125b-5p was responsible for

the development of postmenopausal osteoporosis and promoted its

progression through the TRAF6 gene via the JAK2/STAT3 pathway

(47). Xue et al. found that miR-125b attenuated the osteoblastic

differentiation of periodontal ligament cells by targeting NKIRAS2

and enhancing NF-kB signaling (50). Wang et al. demonstrated that

miR-125b-5p regulated the osteogenic differentiation of human

mesenchymal stem cells by targeting BMPR1b and that inhibiting

miR-125b-5p expression could enhance the capacity of bone defect

repair in vivo (51). Huang et al. observed that the overexpression of

miR-125b-5p inhibited osteoblastic differentiation by directly

targeting Cbfb and indirectly acting on Runx2 at the early stage

of osteoblastic differentiation (52). On the contrary, a study from
Frontiers in Endocrinology 05
Japan showed that miR-125b-5p inhibited osteoclast formation by

targeting Prdm1, encoding a transcriptional repressor of anti-

osteoclastogenesis factors (53). Chen et al. found that irisin can

upregulate the expression level of miR-125b-5p by targeting

SIPA1L2, which regulated the Rap1/PI3K/AKT axis and finally

increased the expression levels of the chondrogenic differentiation

genes COL2A1, ACAN, and SOX9 (54). Overall, the available

fundamental research showed that miR-125b-5p was more

inclined to inhibit osteogenesis differentiation. The level of miR-

125b-5p was consistently upregulated in patients with osteoporosis

in the present meta-analysis. This suggests that miR-125b-5p might

be a potential biomarker for the diagnosis of osteoporosis. However,

it should be noted that miR-125b-5p has also been associated with

stroke (55), Alzheimer’s disease (56), and cancer (57), so a

differential diagnosis is required.

In the present study, miR-483-5p was evaluated in three studies

(20, 58, 59), and all the studies indicated it was upregulated in

osteoporosis. Li et al. revealed that miR-483-5p is involved in the

pathogenesis of osteoporosis by reducing the apoptosis of

osteoclasts (58). Zhao et al. also indicated that miR-483-5p could

inhibit osteogenic differentiation by inhibiting SATB2 and

activating the PI3K/AKT pathway (59). Peng et al. demonstrated

that miR-483-5p regulated the RAS/MEK/ERK signaling pathway

by targeting RPL31 and inhibiting its expression, thereby playing an

inhibitory role in osteogenic differentiation (60). In light of these
FIGURE 1

The flow diagram for study selection.
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findings, miR-483-5p could be used as a diagnostic marker for

osteoporosis. However, a differential diagnosis is necessary based on

the association of miR-483-5p with other diseases (61, 62).

miR-133awas overexpressed in all the included studies (22, 63, 64).

Wang et al. revealed that the overexpression of miR-133a suppressed

osteoblast differentiation of bone marrow mesenchymal stem cells and

silencingmiR-133a resulted in positive effects on glucocorticoid-treated

mesenchymal stem cells and on bone loss in glucocorticoid-induced

osteoporosis animal models through the MAPK/ERK signaling

pathway by targeting FGFR1 (65, 66). Li et al. found that miR-133a

knockdown altered the levels of osteoclastogenesis-related factors in

serum, increased lumbar spine BMD, and changed bone

histomorphology in ovariectomized rats (63). In contrast, Zhou et al.

suggested thatmiR-133a in osteoblasts significantly alleviated bone loss

and microstructural and biomechanical properties in mice with

mechanical unloading, contributing to osteopenia alleviation.

Furthermore, miR-133a could also restrain osteoclastogenesis (67).

However, in the present article, the direction of regulation for miR-

133a in different studies was consistent, which meant that miR-133a

might be a promising biomarker for osteoporosis diagnosis. Of course,

a differential diagnosis is also required (68, 69).

Based on three studies, miR-497-5p was downregulated in

osteoporotic patients with agreement on the direction of change
Frontiers in Endocrinology 06
(70–72). Zhao et al. showed that miR-497-5p enhanced osteogenic

differentiation by repressing HMGA2 and impairing the JNK

signaling pathway based on the MC3T3-E1 cell line (73). Lu et al.

discovered the downregulation of SNHG1 and HIF1AN, in contrast

with an elevation in miR-497-5p levels throughout osteogenic

differentiation. By influencing miR-497-5p, SNHG1 exhibited the

ability to modulate HIF1AN, thereby inhibiting osteogenic

differentiation (74). Gu et al. suggested that miR-497-5p

upregulation promoted osteoblast viability and collagen synthesis

by activating the TGF-b1/Smads signaling pathway (70). Taken

together, the discoveries of the mechanism studies were consistent

with the result of the present meta-analysis, which suggested that

miR-497-5p might be a novel reference for the diagnosis of

osteoporosis. Notably, like other miRNAs, miR-497-5p was also

involved in the development of other diseases (75–77).

For the expression direction of miR-422a, all the studies

reported upregulation (16, 78). Baloun et al. observed that the

serum concentration of miR-422a was positively correlated with

markers of bone remodeling (b-CTX and P1NP), suggesting a role

in the pathogenesis of osteoporosis (79). Cao et al. found significant

upregulation of miR-422a in the low BMD group compared with

the high BMD group using RT-qPCR analysis (P = 0.029).

Furthermore, through bioinformatic target gene and RT-qPCR
FIGURE 2

Forest plot of the expression of each circulating miRNA. (A) miR-21-5p; (B) miR-125b-5p; (C) miR-483-5p; (D) miR-133a; (E) miR-148a-3p; (F) miR-
497-5p; (G) miR-422a; (H) miR-214-3p; (I) miR-122-5p.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1481649
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gao et al. 10.3389/fendo.2024.1481649
analyses, Cao et al. identified several potential target genes (CBL,

CD226, IGF1, PAG1, and TOB2) of miR-422a that inhibit

osteoclastogenesis and the expression of these genes correlated

negatively with miR-422a expression (78). In our meta-analysis,

the expression level of miR-422a was upregulated in osteoporosis

patients. However, there are insufficient studies on the specific

mechanism of miR-422a in the pathogenesis of osteoporosis.

Therefore, further basic and clinical studies were required to

confirm whether miR-422a could be a potential biomarker for

osteoporosis diagnosis.

Consistent results for the direction of regulation were also

found for miR-214-3p, and its expression level was elevated in

patients with osteoporosis (80–82). miR-214-3p had been reported

to suppress osteogenic differentiation by targeting Osterix (83),

ATF4 (84, 85), and FGFR1 (86), and promote osteoclastogenesis by

targeting phosphatase and tensin homolog (PTEN) (87).

Furthermore, downregulation of miR-214-3p by Circ-ITCH (88),

PTENP1 (82), and Nrf2 (89) has been reported to promote

osteogenic differentiation and inhibit osteoclast differentiation,

attenuating osteoporosis. These discoveries revealed that miR-214-

3p has a crucial role in osteoporosis and might be a promising

biomarker for the diagnosis of osteoporosis. Notably, a differential

diagnosis is necessary due to the association of miR-214-3p with

other diseases (90, 91).

In this meta-analysis, no significant expression differences were

found for miR-122-5p (20, 92, 93) and miR-148a-3p (17, 92, 94)

between patients with osteoporosis and healthy individuals. Only

two studies reported an inhibitory effect of miR-122-5p on

osteoblast proliferation/differentiation in osteoporosis (95, 96).

Although miR-148a-3p has been reported to prevent osteoblast

differentiation and bone remodeling in several fundamental studies

(97–100), its expression direction in clinical studies was

contradictory (17, 92, 94). Therefore, further studies are still

required to confirm whether these two miRNAs can be used as

diagnostic biomarkers for osteoporosis.

There were several limitations in our meta-analysis. First,

although we had comprehensively searched enough databases, the

number of studies and sample sizes of the studies available for meta-

analysis were still small due to miRNA not being routinely used for

the diagnosis of osteoporosis in clinical practice, which might

impact the statistical power and generalizability of the results.

Studies with larger sample sizes and deeper data analyses are

needed to validate our findings. Second, data was partially

obtained from bar charts or scatter charts that might not be

accurate. Third, there was evident heterogeneity, reflected in the

wide variation in miRNA expression in the osteoporosis population,

limiting their use as diagnostic biomarkers for osteoporosis.

In conclusion, even with the limitations of the meta-analysis, it

can be argued thatmiR-21-5p,miR-125b-5p,miR-483-5p,miR-133a,

miR-148a-3p, miR-497-5p, miR-422a, miR-214-3p, and miR-122-5p

are associated with osteoporosis and could be potential diagnostic

biomarkers for osteoporosis. In the future, well-designed exhaustive

studies should be conducted to validate the diagnostic value of these

miRNAs for osteoporosis.
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