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Background: Recurrent pregnancy loss (RPL) affects women's reproductive

health seriously, with immune dysfunction playing a key role in its cause, yet

the exact mechanisms remain elusive. We aim to investigate potential

mechanisms and identify biomarkers linked to RPL.

Methods: Immune cytokine testing and metabolomic profiling were conducted

on the serum of 34 RPL patients and 30 healthy individuals. The metabolic

pathways of the differential metabolites were analyzed, and specific metabolites

were validated through targeted profiling. Potential biomarkers were identified,

and the relationships between immune cytokines and differential metabolites

were explored.

Results: In the RPL group, serum interleukin-6 and interleukin-10 levels were

significantly higher, while interleukin-2 and interferon-gwere significantly lower. A

total of 296 differential metabolites were detected by untargeted metabolomic

profiling between the RPL and control groups, with most linked to amino acid

metabolism. Targeted metabolomic profiling of amino acid metabolism revealed

upregulation of indole-3-acetic acid, tyrosine, glycine, isoleucine, tryptophan,

lysine, aspartic acid, arginine, leucine, threonine, glutamic acid, cystine, and

phenylpyruvic acid (PPA) in the RPL group. Moreover, PPA and 5-hydroxy-L-

tryptophan showed great potential in predicting RPL in a diagnostic model. Cystine

and tyrosine were associated with immune cytokines in correlation analysis.

Conclusion: The study highlights the role of amino acid metabolism in RPL

pathogenesis, suggesting that PPA and 5-HTP may be potential predictive

indicators, while cystine and tyrosine may potentially regulate immune
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1476774/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1476774/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1476774/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1476774/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1476774/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1476774&domain=pdf&date_stamp=2024-10-09
mailto:wanglp2019@163.com
mailto:xiezhy@mail.sysu.edu.cn
mailto:hongyj7@mail.sysu.edu.cn
https://doi.org/10.3389/fendo.2024.1476774
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1476774
https://www.frontiersin.org/journals/endocrinology


Ye et al. 10.3389/fendo.2024.1476774

Frontiers in Endocrinology
responses related to RPL. Further investigation into the molecular mechanisms

underlying these findings could potentially result in the creation of novel

diagnostic and therapeutic approaches for RPL.
KEYWORDS

recurrent pregnancy loss, immunometabolism, metabolomics, amino acid metabolism,
immune cytokines, biomarkers, mechanisms
1 Introduction

Recurrent pregnancy loss (RPL) is a serious and complex

complication of pregnancy. The definition of RPL is currently not

standardized globally. Per the recommendations of the European

Society of Human Reproduction and Embryology (ESHRE), RPL is

defined as the occurrence of two or more clinically recognized

pregnancies ending before 24 weeks of gestation, and excluding

ectopic and molar pregnancies (1). RPL affects around 2.5% of

women attempting to conceive (2). Research indicates that women

who have experienced pregnancy loss have a heightened risk, up to

75%, of subsequent losses, significantly impacting their physical and

mental health (3). The causes of RPL include genetics, immune

dysfunction, endocrine issues, infections, coagulation abnormalities,

and anatomical irregularities. Reports suggest that 50% of RPL cases

are linked to immune dysfunction, particularly involving type 1

helper T cell (Th1) and type 2 helper T cell (Th2) dysregulation (4,

5). Currently, the frequency of pregnancy losses is the diagnostic

criterion for RPL, with each loss inflicting significant physical and

psychological harm to women. By the time they meet the diagnostic

criteria for RPL in their country, many women have already given up

on the possibility of a successful pregnancy. Given the significant

impact of RPL, it is imperative to find biomarkers to identify

individuals at risk of RPL before the condition manifests, and fully

investigate its mechanisms to develop effective treatment approaches.

Metabolomics is a promising technique for analyzing all low

molecular weight metabolites in samples qualitatively and

quantitatively. Therefore, metabolomics can be utilized to uncover

mechanisms and identify potential biomarkers (6). Currently, there is

limited research on the metabolomics of individuals with RPL. Li’s

study found elevated lactic acid and reduced 5-methoxytryptamine in

the first trimester of RPL patients compared to controls (7). A survey

of RPL in women with antiphospholipid syndrome identified five

biomarkers associated with various metabolic pathways, including

amino acid, purine, and tyrosine metabolism (8). Additionally, in

Iranian women with RPL, there were notable variances in

hypotaurine and taurine metabolism and tyrosine, phenylalanine,

and tryptophan biosynthesis (9). Another study highlighted oxidative

stress as a crucial pathway in the development of RPL (10). Analysis

of women with RPL during the implantation window suggests that

specific metabolites may affect endometrial receptivity by influencing

reduced inflammatory responses and vascular dysregulation (11).
02
However, previous studies based on untargeted metabolomic analyses

of nonpregnancy RPL patients have limitations in their relative

quantification results. Absolute quantification of specific pathways

in clinical cohort samples is crucial for identifying clinical diagnostic

and therapeutic biomarkers in the future.

In our research, immune cytokines were assessed to monitor the

immune status of Th1 and Th2 in RPL, and distinct metabolomics

were identified through untargeted and targeted metabolomic

profiling in nonpregnancy RPL and healthy participants.

Additionally, we conducted subgroup analyses of serum

metabolites in primary and secondary RPL, as well as in

subgroups based on the number of pregnancy losses. Functional

enrichment analysis of differential metabolites was conducted.

Furthermore, diagnostic models were developed in differential

metabolites, and an association investigation was conducted

between immune cytokines and metabolites. Our study aimed to

pinpoint unique metabolites that may act as innovative markers for

predicting RPL and investigate new mechanisms and pathways

implicated in the development of RPL.
2 Materials and methods

2.1 Study participants

This study received approval from the Shenzhen Second

People’s Hospital Institutional Review Board (2024-194-01PJ).

Each participant provided written informed consent. According

to the ESHRE guideline (2022), patients meeting the following three

conditions were defined as RPL: (a) loss of two or more either urine

or serum b-hCG confirmed pregnancies, encompassing treated

pregnancies of unknown location or biochemical pregnancy loss;

(b) pregnancy loss occurring from conception up to 24 weeks of

gestation; (c) ectopic, molar pregnancies, and implantation failure

were excluded (1). In addition, participants’ ages ranged from 20 to

40 years. Women who had either experienced successful full-term

pregnancies or were healthy individuals with no history of

pregnancy loss were included as controls. Additionally, those

suffering from (a) pregnancy status; (b) chromosome karyotype

abnormalities; (c) anatomical cacogenesis of the uterus, such as

uterine malformation, submucosal myoma, endometrial polyps (>

5mm), and intrauterine adhesions; or those with an intrauterine
frontiersin.org
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device; (d) RPL caused by male factors; (e) women with polycystic

ovary syndrome, hyperprolactinemia, autoimmune diseases, severe

heart, liver, or kidney dysfunction, or a history of cancer were

excluded from the study. Finally, our study involved 64 participants,

with 30 in the control group and 34 in the RPL group recruited from

the Reproductive Medicine Centre, The First Affiliated Hospital of

Shenzhen University, Shenzhen Second People’s Hospital.
2.2 Clinical data collection and
sample collection

Participants were thoroughly interviewed, and their pregnancy

history was documented. Most of the participants underwent blood

tests, including thyroid-stimulating hormone (TSH) and anti-

Müllerian hormone (AMH). Morning fasting blood samples (a

minimum of 3 mL per person) were collected from participants

using gel separator tubes. The samples were then centrifuged at

1500 × g for 15 minutes at room temperature to separate the serum,

which was subsequently preserved at -80°C until required

for analysis.
2.3 Cytokines assay

Serum levels of interleukin-2 (IL-2), interferon-g (IFN-g), tumor

necrosis factor-a (TNF-a), interleukin-6 (IL-6), interleukin-4 (IL-4),
and interleukin-10 (IL-10) were measured via enzyme-linked

immunosorbent assay (ELISA) kits (QUANZHOU RUIXIN

BIOTECHNOLOGY CO. LTD., Quanzhou, China) following the

producer’s protocols. The IL-6 and IL-4 ELISA tests have a detection

range of 1.5 to 48 pg/mL, while the IL-2, IL-10, and IFN-g ELISA tests

have a range of 25 to 800 pg/mL. The TNF-a ELISA test covers a

range of 2.5 to 80 pg/mL. The inter-assay and intra-assay variations of

cytokines are < 15% and < 10%, separately. The recognition limit for

the IL-4, IL-6, and TNF-a ELISA kits is 0.1 pg/mL, whereas for the

IL-2, IL-10, and IFN-g ELISA kits, it is 1 pg/mL. All standard curves

had R² values > 0.99.
2.4 Untargeted metabolomic profiling

Untargeted metabolomics analysis was executed using UHPLC-

QTOF-MS/MS, according to methods described previously (12). In

brief, 50 mL of serum sample was mixed with 450 mL of pre-cooled

HPLC-grade acetonitrile, followed by vortexing for 2 minutes, left

to stand for 20 minutes at 4°C, and centrifuged at 13523 × g for 15

minutes at 4°C. The supernatant was collected for metabolomic

profiling. Additionally, quality control (QC) sample was prepared

by pooling 10 mL from each serum sample via the same methods.

All samples were analyzed in a random order.

The chromatographic examination separation was performed

via a Waters AC-QUITY UPLC system with an ACQUITY HSS T3

column (100 mm × 2.1 mm, 1.8 mm). The MS data was acquired

using a SYNAPT G2-Si HDMS Q-TOF-MS instrument (Waters

Corporation, Milford, MA, United States) in both negative and
Frontiers in Endocrinology 03
positive electrospray ionization modes. Detailed parameter settings

can be found in a previously published article (12).

The data was processed in Progenesis QI V2.0 software to

remove background noise and align peaks. Peaks with above 50%

missing values were removed, and padding with zeros was applied

using the k-nearest Neighbor method. Normalization was carried

out in the MetFlow Platform using the QC SVR (MetNormalizer).

Multivariate data analysis, including principal component analysis

(PCA) and partial least squares discriminant analysis (PLS-DA),

was conducted using the OmicStudio tools (https : / /

www.omicstudio.cn/tool) (13). The reliability of the PLS-DA

models was assessed through permutation tests. Distinctive

metabolites between groups were selected based on the following

criteria: fold change (FC) > 2.0, adjusted p-values using the T-test

method < 0.05, and variable importance in the projection (VIP) > 1

in PLS-DA. Each peak was identified by matching the accurate mass

and MS/MS fragments with benchmark data from the human

metabolome database. Pathway analysis of the differential

metabolites was conducted utilizing MetaboAnalyst 6.0 and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database (14).
2.5 Targeted metabolomic profiling

Targeted metabolomic profiling of 46 serum amino acids was

performed as previously reported, including phenlpyruvic acid

(PPA), cystine, arginine, threonine, aspartic acid, lysine, indole-3-

acetic acid (IAA), glycine, tyrosine, glutamic acid, leucine,

tryptophan, isoleucine, indole-3-carboxylic acid, urocaninic acid,

4-hydroxybenzoic acid, phenylalanine, glntamine, histidine,

ornithine, proline, alanine, methionine, valine, serine, phenyllactic

acid, indole-3-lactic acid, benzoic acid, indole-3-propionic acid,

histamine, phenylacetic acid, 3-hydroxybenzoic acid, tyrosol,

imidazolepropionate, indole-3-carboxaldehyde, hydroxycinamic

acid, 4-hydroxyphenylacetic acid, tryptamine, tryptophol, 4-

hydroxycinamic acid, 4-hydroxyphenlpyruvic acid, indole-3-

acetamide, hippuric acid, indole-3-acrylic acid, indole-3-pyruvic

acid, indole-3-butyric acid (15–17). Briefly, 10 mL of internal

standard (paminosalicylic acid) was added to 50 mL of serum

sample. After incubation for 5 minutes on ice, 450 mL of HPLC-

grade pre-cooled acetonitrile was added. The mixture was vortexed

for 2 minutes, then left to stand for 20 minutes at 4°C, and

centrifuged for 15 minutes at 13523 × g at 4°C. The supernatant

was collected for UHPLC-QQQ-MS/MS analysis. All standard

curves had R² values > 0.99. Distinctive metabolites between the

groups were selected by p < 0.05 and |log2(FC)| > 0.25.
2.6 Statistical analysis

The baseline characteristics of the subjects were examined via

the Statistical Product and Service Solutions software (SPSS V24.0,

Chicago, IL, United States). Variables were analyzed by student’s t-

test. Receiver operating characteristic (ROC) analysis, random

forest model, and Pearson’s correlation coefficient were carried

out by the OmicStudio tools at https://www.omicstudio.cn/tool
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(13). GraphPad Prism was utilized for data visualization. The results

were presented as mean ± standard deviation, and a two-tailed p-

value < 0.05 was considered statistically significant.
3 Results

3.1 Clinical characteristics and immune
cytokines of the participants

The average age of the participants was 31.98 ± 3.45 years. The

clinical and demographic characteristics of the subjects are listed in

Table 1. Notably, age and AMH levels did not differ significantly

between the groups. However, compared with the control group,

serum TSH was lower in the RPL group. The serum concentration

of IL-6 (Figure 1D) and IL-10 (Figure 1E) were significantly higher

(p = 0.017 and 0.016, respectively) in the RPL group, while IL-2

(Figure 1A) and IFN-g (Figure 1B) levels were significantly lower

(p = 0.007 and 0.001, respectively) in the RPL group. No significant

differences between the groups were observed in IL-4 (Figure 1F)

and TNF-a (Figure 1C) levels.
FIGURE 1

Serum immune cytokines concentration between the RPL (n=34) and control (n=30) groups. Serum IL-2 (A) and IFN-g (B) levels were lower in the
RPL group (p = 0.007 and 0.001, respectively), while serum IL-6 (D) and IL-10 (E) levels were higher in the RPL group (p = 0.017 and 0.016,
respectively). Serum TNF-a (C) and IL-4 (F) did not show a significant difference between the groups. RPL, recurrent pregnancy loss; IL-2,
interleukin-2; IFN-g, Interferon-g; TNF-a, tumor necrosis factor-a; IL-6, interleukin-6; IL-10, interleukin-10; IL-4, interleukin-4. Data presented as
mean ± standard deviation.
TABLE 1 The clinical characteristics and immune cytokines of the RPL
and control group.

Variables RPL Control P

Sample numbers 34 30

Age (y) 31.85 ± 2.79 32.13 ± 4.12 NS

Number of pregnancy losses 2.65 ± 1.10 0 <0.001

AMH (ng/ml) 2.77 ± 1.66 3.26 ± 1.31 NS

TSH (mIU/L) 1.41 ± 0.81 2.24 ± 1.36 0.038

IL-2 (pg/ml) 79.36 ± 34.57 114.01 ± 55.22 0.007

IL-4 (pg/ml) 14.11 ± 8.94 16.44 ± 8.34 NS

IL-6 (pg/ml) 33.71 ± 12.1 27.81 ± 3.95 0.017

IL-10 (pg/ml) 275.13 ± 43.48 233.23 ± 77.87 0.016

TNF-a (pg/ml) 23.86 ± 7.67 22.76 ± 6.88 NS

IFN-g (pg/ml) 264.7 ± 77.16 349.97 ± 106.59 0.001
RPL, recurrent pregnancy loss; AMH, anti-Müllerian hormone; TSH, thyroid stimulating
hormone; IL-2, interleukin-2; IL-4, interleukin-4; IL-10, interleukin-10; IL-6, interleukin-6;
IFN-g, Interferon-g; TNF-a, tumor necrosis factor-a. Data presented as mean ± standard
deviation. P-p value; NS, not significant.
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3.2 Untargeted metabolomic profiling of
serum samples

In the untargeted metabolomics analysis, to reduce the effects of

systematic variation, metabolites with a coefficient of variation > 0.2

in QC samples were removed. Finally, 3184 positive-mode

metabolite peaks and 2537 negative-mode metabolite peaks were

identified. A clear separation between the serum metabolomic

profiles of patients with RPL and the controls was observed in

PCA (Supplementary Figure S1) and PLS-DA plot under both

ionization modes (Figure 2A), indicating remarkable metabolic

differences between the two groups. The R2 and Q2 values in the

PLS‐DA analysis were 0.914 and 0.253, respectively (Figure 2B).

To identify significant variances between the groups,

metabolites were filtered by both multivariate and univariate

statistical criteria (p < 0.05 and FC > 2). The volcano plots

illustrated that there were 138 significantly increased and 158

significantly decreased metabolites in the RPL group (Figure 2C).

Further details on these differential metabolites between the RPL

and control groups can be found in Supplementary Table S1.

Metabolic pathway analysis was further performed to uncover

the disrupted metabolic pathways linked to RPL based on the
Frontiers in Endocrinology 05
identified differential metabolites. These metabolites were found

to participate in 31 metabolic pathways, prominently in amino acid

metabolic pathways such as lysine, branched-chain amino acids,

aspartic acid, tryptophan, histidine, tyrosine, arginine, glutamic

acid, alanine, cysteine, methionine, serine, glycine and threonine

(Supplementary Table S2). The top 25 metabolic pathways are

depicted in Figure 2D. The KEGG pathways showing significant

enrichment (p < 0.05) include lysine degradation, tryptophan

metabolism, butanoate metabolism, and histidine metabolism.

This suggests that amino acid metabolic pathways could

potentially have a significant influence on the development of RPL.
3.3 Untargeted metabolomic profiles
between the subgroup of RPL

RPL is categorized as primary if all prior pregnancies have

resulted in pregnancy losses, and as secondary if at least one of the

pregnancies progressed beyond 24 weeks or ended with a live birth.

Some research suggests that the causes of primary and secondary

RPL may be different (18, 19). To investigate the potential influence

of primary and secondary RPL, we performed PCA to distinguish
FIGURE 2

Integrated analysis of untargeted metabolomics data in serum samples between the RPL and control groups. (A) PLS-DA score plot in positive and
negative polarity mode, (B) PLS-DA model permutation test in positive and negative polarity mode, (C) volcano plot of 138 significantly increased
(red dots) and 158 decreased (blue dots) metabolites in the RPL group, (D) the top 25 KEGG pathway enrichment plot of differential metabolites
between the RPL and control groups. RPL, recurrent pregnancy loss; PLS-DA, partial least squares discriminant analysis.
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FIGURE 4

Targeted metabolomic profiling of amino acid metabolites between the RPL and the control group. (A) PCA score plot between the RPL (n = 34,
yellow dots) and control (n = 30, blue dots) groups (p = 0.029), (B) volcano plot of 13 significantly increased (red dots) metabolites in the RPL group,
(C) heatmap of 29 amino acid metabolites in the RPL and control groups. RPL, re-current pregnancy loss; PCA, principal component analysis; PPA,
phenlpyruvic acid; Cys, cystine; Arg, arginine; Thr, threonine; Asp, aspartic acid; Lys, lysine; IAA, indole-3-acetic acid; Gly, glycine; Tyr, tyrosine; Glu,
glutamic acid; Leu, leucine; Trp, tryptophan; Isoleu, isoleucine; Iald, indole-3-carboxylic acid; UA, urocaninic acid; 4-BA-2, 4-hydroxybenzoic acid;
Phe, phenylalanine; Gln, glntamine; His, histidine; Orn, ornithine; Pro, proline; Ala, alanine; Met, methionine; Val, valine; Ser, serine; PLA, phenyllactic
acid; ILA, Indole-3-lactic acid; BA, benzoic acid; IPA, indole-3-propionic acid.
FIGURE 3

PCA score plot between subgroups of RPL. (A) PCA score plot between primary (RPL1, n = 22, green dots) and secondary (RPL2, n = 12, pink dots)
RPL (p = 0.866), (B) PCA score plot be-tween RPL with two pregnancy losses (RPL3, n = 22, blue dots) and three or more pregnancy losses (RPL4, n
= 12, orange dots) (p = 0.184). RPL, recurrent pregnancy loss; PCA, principal component analysis.
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metabolite profiles between the two groups. Figure 3A demonstrates

that there was no difference in the serum metabolome between the

primary (n = 22) and secondary (n = 12) RPL groups (p=0.866).

The definition of RPL varies, with some guidelines indicating

three or more pregnancy losses, while others suggest two or more

losses (1). To explore how the number of pregnancy losses

influences serum metabolomic changes, we utilized PCA to

differentiate metabolite profiles between groups with two

pregnancy losses and those with three or more losses. The

findings presented in Figure 3B show that the groups with two

pregnancy losses (n = 22) were not distinguishable from those with

three losses (n = 12) (p = 0.184).
3.4 Targeted metabolomics of amino acids
in serum samples

In untargeted metabolomics analysis, we observed a notable

differentiation in amino acid metabolism pathways between the

RPL and control groups. Subsequently, we conducted a targeted

metabolomics analysis focusing on amino acid metabolism-related

metabolites, covering 43 amino acid metabolites, of which 29 were

detected. PCA analysis was first performed to reveal distinct

discrepancies between the RPL and control groups (P=0.029)
Frontiers in Endocrinology 07
(Figure 4A). The volcano plots highlighted 13 amino acid

metabolites that increased in the RPL group compared to the

control group (Figure 4B). Notably, IAA, tyrosine, glycine,

isoleucine, tryptophan, lysine, aspartic acid, arginine, leucine,

threonine, glutamic acid, cystine, and PPA were up-regulated in

serum samples of the RPL group (Figure 4C). These results confirm

changes in amino acid metabolism during the development of RPL.
3.5 Discovery of diagnostic biomarkers by
random forest model and ROC analysis

To improve the ability to distinguish, a random forest model was

constructed using clinical indicators, immune cytokines, and all

differential serum metabolites between groups as input data. The

model included the top 20 metabolites with the highest contributions,

as illustrated in Figure 5A. Subsequently, ROC curves were created

and the area under the ROC curve (AUC) was determined to assess

the capability of these top 10 metabolites as biomarkers for RPL. The

AUC values for PPA, 5-hydroxy-L-tryptophan (5-HTP),

imidazoleacetic acid, tryptophyl-glycine, glutaconic acid, 2-

methylacetophenone, S-acetyl dihydroasparagusic acid, lysoPC(16:1

(9Z)/0:0), 3-oxoalanine, and IAA were 0.910, 0.830, 0.776, 0.793,

0.790, 0.818, 0.733, 0.788, 0.809, and 0.703, respectively (Figure 5B).
FIGURE 5

Identification of potential serum metabolite biomarkers of RPL. (A) the top 20 metabolites with high contribution in the random forest model,
(B) ROC curve and AUC value of the top 10 metabolites identified in the random forest model, (C) ROC curve and AUC value for the combined top
2 metabolites identified in the random forest model. RPL, recurrent pregnancy loss; PPA, phenlpyruvic acid; IAA, indole-3-acetic acid; 5-HTP, 5-
hydroxy-L-tryptophan; ROC, receiver operating characteristic; AUC, area under the ROC curve.
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Subsequently, a diagnostic model based on these top 2 metabolites,

PPA and 5-HTP, was developed. Evaluation of the model’s diagnostic

performance using a ROC curve (Figure 5C) revealed an impressive

AUC value of 0.969. Overall, PPA and 5-HTP showed potential as

predictive markers for RPL.
3.6 Correlation analysis between
differential metabolites and
immune cytokines

To clarify the connection between metabolites and the disease,

we conducted Spearman correlation analysis to explore the

connections between the 13 differential metabolites identified

through targeted metabolomics analysis and immune cytokines.

As depicted in Figure 6, our findings indicated that arginine,

cystine, threonine, glutamic acid, aspartic acid, isoleucine, leucine,

IAA, tyrosine, and glycine showed negative associations with IFN-g,
while cystine and threonine exhibited negative associations with IL-

2. Additionally, cystine displayed a positive correlation with IL-6,

while arginine and tyrosine were positively correlated with IL-10,

and arginine showed a positive correlation with TNF-a.
4 Discussion

Identifying biomarkers and understanding the pathophysiological

processes of RPL are essential for its prevention and treatment. It is
Frontiers in Endocrinology 08
commonly acknowledged that immune dysregulation plays a

significant role in RPL (2, 20). In this study, we examined Th1/Th2-

related immune cytokines and found significant differences in the

levels of IL-6, IL-10, IL-2, and IFN-g between the RPL and control

groups. Additionally, untargeted and targeted metabolomics analyses

indicated notable variances in amino acid metabolites between the two

groups. Nevertheless, we did not detect any differential metabolites

between the primary and secondary RPL groups, nor within

subgroups of RPL categorized by the number of pregnancy losses. A

diagnostic model highlighted PPA and 5-HTP as potential biomarkers

for RPL. Correlation analysis revealed associations between amino

acid metabolites and immune function.

Multiple studies have indicated that dysregulation of Th1/Th2

immunity may contribute to RPL (5, 21, 22). Th1 cells participate in

cellular immunity by generating proinflammatory cytokines such as

IL-2, TNF-a, and IFN-g, while Th2 cells release anti-inflammatory

cytokines like IL-4, IL-6, and IL-10, and play a role in humoral

immunity (23). Our findings revealed elevated levels of IL-6 and IL-

10, and decreased levels of IL-2 and IFN-g in the RPL group, with

no significant variations in TNF-a and IL-4 levels between the

groups. These results indicate a dysregulation of Th1/Th2

immunity and a prevalence of Th2 immunity in nonpregnancy

individuals with RPL. Several studies have compared blood immune

cytokines in RPL patients to those in healthy controls, with some

findings aligning with our results and others showing discrepancies

(24–27). These variations may stem from differences in the stages of

reproduction among the patients included in the studies. Cytokines

play a crucial role in all stages of reproduction and exhibit dynamic
FIGURE 6

Correlation analysis between differential amino acid metabolites and immune cytokines. * p < 0.05, ** p < 0.01. IFN-g, Interferon-g; IL-2, interleukin-
2; TNF-a, tumor necrosis factor-a; IL-4, interleukin-4; IL-10, interleukin-10; IL-6, interleukin-6; PPA, phenlpyruvic acid; Cys, cystine; Arg, arginine;
Thr, threonine; Asp, aspartic acid; Lys, lysine; IAA, indole-3-acetic acid; Gly, glycine; Tyr, tyrosine; Glu, glutamic acid; Leu, leucine; Trp, tryptophan;
Isoleu – isoleucine.
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changes throughout the process (28, 29). The importance of our

research lies in offering references and evidence to assess whether

individuals are at a heightened risk of RPL based on the detection

of cytokines.

Prior studies have suggested a noticeable differentiation in the

causes of RPL between primary and secondary RPL (19, 30).

However, recent research has indicated that there is no

substantial variance in the underlying causes of primary and

secondary RPL (31). Through untargeted metabolomic profiling,

it was found that there are no variations in serum metabolites

between primary and secondary RPL patients. Similarly, there is

ongoing debate regarding whether there is a disparity in the etiology

between three or more pregnancy losses and those with two losses

(32, 33). Our study reveals that there is no significant distinction in

serum metabolites between individuals with three or more

pregnancy losses and those with two losses through untargeted

metabolomic profiling. These results provide metabolomics-based

evidence supporting the idea that there are no significant

distinctions in the etiologies of primary and secondary RPL, as

well as RPL between individuals with three or more pregnancy

losses and those with two losses.

Metabolomics captures the alterations in the body resulting from

genetic and environmental influences (34). In the presence of disease,

cells, tissues, andorganismsexhibit specificmetabolic responses, altering

the profile, composition, and levels of endogenousmetabolites. Through

metabolomics, these shifts can be identified, offering a distinctive

approach to uncovering disease mechanisms and identifying

biomarkers linked to various conditions (34–36). Our metabolomics

analysis revealed significantmetabolic distinctions between theRPL and

control cohorts. Certain metabolites could serve crucial roles in

diagnosing or predicting RPL, as well as contributing to its

pathogenesis. PPA, an intermediate in the phenylalanine metabolic

pathway, is of particular interest. Elevated levels of PPA can impact

nerve cell proliferation, leading to abnormal fetal nervous system

development (37, 38). This compound also hinders the metabolism of

tetrahydrobiopterin, whose deficiency can disrupt uterine placental

remodeling, resulting in fetal growth restriction and pregnancy-related

hypertension (39, 40).Additionally, studies suggest thatPPAmay trigger

excessive activation of nucleotide-binding oligomerization domain-like

receptor protein 3 inflammasomes, exacer bating inflammatory

processes (41). Based on the available evidence, it is suggested that

PPAmayplay a role in vascular remodeling and inflammation, both key

pathogenic mechanisms in RPL. Currently, no research has directly

reported the involvement of PPA in the pathogenesis of RPL. Further

investigation into the role of PPA in placental angiogenesis and immune

regulationwithin the endometrium in RPL could be a promising area of

study. 5-HTP is derived from tryptophan and serves as a precursor to

serotonin. Studies suggest that 5-HTP is linked to emotions, appetite,

andphysical activity (42, 43).Moreover, supplementingwith5-HTPcan

increase serotonin levels in the body, influencing the regulation of

immune cells and immune factor release (44). Our study indicates that

5-HTP may be a valuable biomarker for RPL, potentially due to the

immunomodulatory effects of its metabolite serotonin. Further

investigation is required to elucidate the specific mechanisms involved.

Among the top10metabolites identifiedby the randomforest algorithm,

including imidazoleacetic acid, tryptophyl-glycine, glutaconic acid, 2-
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methylacetophenone, S-acetyl dihydroasparagusic acid, lysoPC(16:1

(9Z)/0:0), 3-oxoalanine, and IAA, there is limited research on their

associationwithRPL. Further investigation isnecessary to elucidate their

potential roles in RPL.

Our findings suggest notable abnormalities in amino acid

metabolism in RPL, aligning with findings from various existing

studies. These abnormalities were identified in both the blood and

decidua of RPL patients (11, 45, 46). Previous literature has

highlighted that disrupted amino acid metabolism can hinder

maternal decidualization and increase the risk of RPL (45, 47).

Additionally, the expression of amino acid transporters at the

maternal-fetal interface differs between RPL patients and healthy

controls, including SLC3A2 and SLC7A11 (48, 49). These

differences in amino acid transporter expression contribute to

metabolic changes in amino acids that are involved in RPL

pathogenesis. Besides, the primary pathogenesis of RPL involves

immune dysfunction, with recent research indicating that amino

acid metabolism contributes to the regulation of immune function.

Amino acids serve as essential nutrients for immune cells

throughout tissue maintenance, organ development, and immune

responses. Changes in amino acid metabolism are crucial in

modulating the differentiation and function of immune cells (50).

In our correlation analysis between differential amino acid

metabolites and immune cytokines, we observed that cystine and

tyrosine showed a positive correlation with Th2 cytokines and a

negative correlation with Th1 cytokines. In our study, we observed

elevated levels of cystine in the RPL group, with a positive correlation

with the Th2 cytokine IL-6 and negative correlations with the Th1

cytokines IFN-g and IL-2. Cystine, a non-essential amino acid derived

from two cysteine molecules, is involved in protein synthesis,

glutathione production, immune function modulation, and

maintaining intracellular redox equilibrium (51, 52). The

proliferation and activation of T cells rely on a delicate balance of

intracellular oxidative and reducing agents. Key among these are

cysteine and glutathione, which are produced by cystine within cells.

However, immatureT cells lack the expressionof cysteine transporters.

Studies have shown that antigen-presenting cells andmacrophages can

convert transported cysteine into cysteine within cells, regulating its

delivery to T lymphocytes in a controlledmanner. This process plays a

role inmodulating T lymphocyte differentiation (53, 54). Research has

shown that supplementing with cysteine can boost the Th2 response

(55). This aligns with our findings, showing a positive correlation

between elevated levels of cystine and the Th2 cytokine IL-6. The

upsurge in cystine levels may play a role in the onset of RPL by

prompting the differentiation of Th cells into Th2 cells. Our findings

indicated a significant rise in tyrosine levels in RPL compared to the

control group, aligning with previous studies on serummetabolomics

during the implantation window period of RPL (11). The increase in

tyrosine levels was negatively related to the Th1 cytokine IFN-g and
positively linked to the Th2 cytokine IL-10. Tyrosine can be

transformed into vital compounds such as dopamine,

norepinephrine, epinephrine, and thyroid hormones in humans,

playing a vital role in the nervous system (56). While there are no

existing literature reports on the interaction between tyrosine and Th

cells, further investigation is needed to understand its role in RPL.

Arginine exhibits differential expression in RPL, in line with earlier
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findings (8, 11). Arginine serves as a critical regulator of immune cell

activities, with T cells being particularly responsive to changes in their

levels (57, 58). Our study revealed associations between arginine and

the immunecytokinesTNF-a, IL-10, and IFN-g.Additional research is
needed to clarify the potential involvement of arginine in the

pathogenesis of RPL through immune modulation. Moreover, our

analysis revealed correlations between threonine, glutamic acid,

aspartic acid, isoleucine, leucine, IAA, glycine, and immune

cytokines. The impact of increased levels of these amino acid

metabolites on the development of RPL requires further investigation.

We acknowledge the limitations of this study. Firstly, it was a

cross-sectional research, thus, the cause-and-effect relationship

between metabolites and RPL could not be determined. A

prospective study with clinical intervention is recommended to

address this uncertainty. Secondly, the number of participants in

our study was relatively small, and it is advisable to validate our

findings in larger cohorts. Additionally, the diagnostic model and

potential mechanisms identified in our study have not been

validated or further investigated. Lastly, our research focused on

patients already diagnosed with RPL, which may not be

representative of individuals with a predisposition to RPL but no

history of pregnancy loss. Nevertheless, we believe that this

metabolomic analysis of RPL will offer valuable insights for the

establishment of diagnostic criteria for individuals at risk of RPL.
5 Conclusion

In summary, our study underscores the significance of amino

acid metabolism in developing RPL. It indicates that PPA and 5-

HTP could serve as promising predictive indicators for RPL, while

cysteine and tyrosine might have pivotal roles in the immune

response linked to RPL. A deeper exploration of the underlying

molecular mechanisms could offer novel insights for advancing

diagnostic and therapeutic approaches for RPL.
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