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Lin Lin3* and Xiangyuan Yu1*

1School of Public Health and Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical
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University of Medicine, Huaihua, China, 3The Fujian Maternity and Child Health Hospital, College of
Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University,
Fuzhou, China
Background:Gestational diabetes mellitus (GDM) is a complexmetabolic disease

that has short-term and long-term adverse effects on mothers and infants.

However, the specific pathogenic mechanism has not been elucidated.

Objective: The aim of this study was to confirm the associations between

candidate genetic variants (rs4134819, rs720918, rs2034410, rs11109509, and

rs12524768) and GDM risk and prediction in a southern Chinese population.

Methods: Candidate variants were genotyped in 538 GDM cases and 626 healthy

controls. The odds ratio (OR) and its corresponding 95% confidence interval (CI)

were calculated to assess the associations between genotypes and GDM risk.

Then, the false-positive report probability (FPRP) analysis was adopted to confirm

the significant associations, and bioinformatics tools were used to explore the

potential biological function of studied variants. Finally, risk factors of genetic

variants and clinical indicators identified by logistics regression were used to

construct a nomogram model for GDM prediction.

Results: It was shown that the XAB2 gene rs4134819 was significantly associated

with GDM susceptibility (CT vs. CC: adjusted OR = 1.38, 95% CI: 1.01–1.87, p =

0.044; CT/TT vs. CC: crude OR = 1.42, 95% CI: 1.08–1.86, p = 0.013). Functional

analysis suggested that rs4134819 can alter the specific transcription factors (CPE

bind and GATE-1) binding to the promoter of the XAB2 gene, regulating the

transcription of XAB2. The nomogram established with factors such as age, FPG,

HbA1c, 1hPG, 2hPG, TG, and rs4134819 showed a good discriminated and

calibrated ability with an area under the curve (AUC) = 0.931 and a Hosmer–

Lemeshow test p-value > 0.05.
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Conclusion: The variant rs4134819 can significantly alter the susceptibility of the

Chinese population to GDM possibly by regulating the transcription of functional

genes. The nomogram prediction model constructed with genetic variants and

clinical factors can help distinguish high-risk GDM individuals.
KEYWORDS

gestational diabetes mellitus, genetic variants, association, nomogram model,
prediction
1 Introduction

Gestational diabetes mellitus (GDM) is defined as any degree of

glucose intolerance with onset or first recognition during pregnancy

(1). Studies have reported that GDM prevalence is approximately

14.0% globally and that it is approximately 14.8% in Mainland

China (2, 3). GDM is considered to be associated with multiple

adverse outcomes during pregnancy and childbirth in pregnant

women. Hyperglycemic mothers are more likely to develop

polyhydramnios, pre-eclampsia, obstructed labor, cesarean

section, uterine prolapse, and infections, among others (4), while

their offspring may be more prone to suffer from spontaneous

abortion, stillbirth, congenital malformation, shoulder dystocia,

birth injuries, infant respiratory distress syndrome, and

macrosomia, to name a few (5). Moreover, GDM parturient and

their children are both at a high risk of developing type 2 diabetes,

obesity, metabolic syndrome, and cardiovascular diseases in later

life (6). GDM poses a serious threat to maternal and infant health,

but its etiology is still not fully understood.

Considering the adverse effects of GDM onmothers and fetuses,

it is important to develop reasonable strategies to identify and

intervene high-risk individuals to reduce the incidence rate of

GDM. Currently, the well-established risk factors of GDM can be

advanced maternal age, pre-pregnancy overweight or obesity,

family history of T2DM, history of GDM, parity, polycystic ovary

syndrome (PCOS), ethnicity, diet, and physical activity, among

others (7). Among these risk factors, heredity plays an indispensable

role. A study conducted in southern China reported that the GDM

risk of pregnant women with a family history of diabetes in first-

degree relatives were at 2.52 times higher than those without the

history (8). Furthermore, Wan et al. showed that Chinese women

migrating to Australia had an elevated risk at developing GDM

compared to Australian-born Caucasian women (9). In addition,

Asian women had a higher risk of GDM than Caucasian women.

This further emphasized the importance of genetic background in

the pathogenesis of GDM (10).

Genetic studies such as candidate gene studies and genome-

wide association studies (GWASs) have constantly identified the

DNA sequence variant [single-nucleotide polymorphism (SNP)],
02
which might play a role in altering the promoter and enhancer

activity, alternative splicing, mRNA conformation and its

posttranscription level, protein function, etc., leading to individual

differences in disease susceptibility (11–13). To date, studies

including newly two large-scale GWASs performed in east Asia

and Finland have detected numerous GDM-associated SNPs (14,

15), for instance, MTNR1B gene rs10830963, CDKAL1 rs7766070,

TCF7L2 rs34872471, CDKN2B rs1333051, CMIP rs2926003, and

CPO rs1597916. In preliminary studies, we also have identified a

series of GDM genetic polymorphisms in the Guilin population,

such as the OR2D2 gene rs1965211, RXR-g rs2134095, TSNARE1

rs7814359, XAB2 rs3760675, ERBB4 rs1595066, MTNR1B

rs10830963, CDKAL1 (rs7756992 and rs7754840), and ACE2

(rs6632677 and rs2074192) (16–21). These variants were

considered to significantly affect individuals′ susceptibility to

GDM by influencing gene expression or interacting with age, pre-

pregnancy BMI, blood glucose, or lipid levels.

The clinical practice of GDM screening and diagnosis focuses

on 24–28 weeks, which is already in the middle and late stages of

pregnancy and cannot prevent the pathological and physiological

processes of GDM (22). Thus, a rational strategy of GDM

prevention in early pregnancy was desired for clinical application.

A nomogram model is a method that can predict the probability of

disease outcome events that may occur in individuals with specific

characteristics in the future (23). Previously predictive models of

GDM were constructed based on the maternal demographic and

clinical indicators during early pregnancy, such as age, pre-

pregnancy BMI, parity, FPG, and other blood test indicators

(24–26). Even though the performances of their model were

acceptable, these studies did not comprehensively consider genetic

background of pregnant women in the model. Therefore, a risk

predictive model containing both genetic and environment

components was essential to improve clinicians’ decision for

individualized early prevention and intervention of GDM.

This case–control study aimed to detect the associations

between selected functional variants and clinical traits and GDM

risk. Then, a nomogram prediction model based on the GDM

positively associated genetic and clinical markers was constructed,

and its diagnostic efficacy was evaluated.
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2 Materials and methods

2.1 Subjects

A total of 1,164 participants in early pregnancy, namely, 538

GDM cases and 626 healthy controls, aged 18–45 years, were

recruited in the Affiliated Hospital of Guilin Medical University

between September 2014 and April 2016. A standard 75-g oral

glucose tolerance test (OGTT) was conducted at 24–28 weeks of

gestation, and according to the criteria recommended by the

International Association of Diabetes and Pregnancy Study

Groups (IADPSG), GDM was diagnosed if any of the three

threshold values was reached or exceeded: fasting plasma glucose

(FPG) ≥5.1 mmol/L, 1-hour plasma glucose (1hPG) ≥10.0 mmol/L,

and 2-hour plasma glucose (2hPG) ≥8.5 mmol/L (27). Moreover,

subjects in our study should satisfy the following requirements:

singleton pregnancy, local residents, and having no kinship with

each other. Pregnant women who were progestationally diagnosed

as having endocrine and metabolic diseases such as type 1 or type 2

diabetes, and have used long-term glucose metabolism-affecting

drugs before pregnancy were excluded. The present study was

approved by the Ethics Committee of Guilin Medical University

(number GLMC20131205) and conducted according to the

principles of the Declaration of Helsinki. The study design is

shown in Figure 1.
Frontiers in Endocrinology 03
2.2 Data collection

Participants′ information such as age, pre-pregnancy weight,

height, systolic blood pressure (SBP), diastolic blood pressure

(DBP), hemoglobin A1c (HbA1c), blood glucose levels (FPG,

1hPG, and 2hPG) and triglyceride (TG), total cholesterol (TC),

low-density lipoprotein cholesterol (LDL-c), and high-density

lipoprotein cholesterol (HDL-c) levels were collected from

structured questionnaires and hospital medical records. Pre-

pregnancy body mass index (BMI) was calculated as pre-

pregnancy weight (kg) divided by the square of height (m).
2.3 Genomic DNA extraction

The genomic DNA was extracted from EDTA-treated

peripheral whole blood using the Aidlab DNA extraction kit

(Aidlab Biotechnologies Co., Ltd, China) and stored at −80°C

before polymerase chain reaction (PCR).
2.4 Candidate variants selection
and genotyping

After conducting Infinium Asian Screening Array (ASA,

Illumina) BeadChip analysis on 96 cases of GDM and controls, a
FIGURE 1

Design process of the study. ASA chip, infinium Asian Screening Array (ASA, illumina) BeadChip; MAF, minimum allele frequency. CHB, the Chinese
Han population in Beijing. r2 was the index of linkage disequilibrium.
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series of genetic variants were detected at the test level of 10−4

(Figure 2). Candidate genetic variants must meet the following

conditions: located in the current functional region of the genome,

such as transcription factor binding sites (TFBS), splicing sites (SS),

and miRNA binding sites (MBS); the minimum allele frequency

(MAF) in the Chinese Han population in Beijing (CHB) is greater

than 5%; and the linkage disequilibrium (LD) coefficient r2 between

variants is less than 0.8. If r2 > 0.8, only TagSNP is selected. Finally,

five functional polymorphisms were selected, of which four

(rs4134819, rs720918, rs11109509, and rs12524768) were located

at TFBS, and one (rs2034410) was located at miRNA binding sites

(Supplementary Table S1).

Candidate variants were genotyped by the SequenomMassARRAY

Platform. The PCR master mix was composed of 1 mL of template

DNA (20–100 ng/mL), 1.850 mL of ddH2O, 0.625 mL of 1.25×PCR

buffer (15 mmol/LMgCl2), 0.325 mL of 25 mmol/LMgCl2, 0.1 mL of 25
mmol/L dNTPmix, 1 mL of 0.5mmol/L primer mix, and 0.1 mL of 5 U/
mL HotStar Taq polymerase. The reaction was conducted at 94°C for

15 min, followed by 45 cycles at 94°C for 20 s, 56°C for 30 s, and 72°C

for 1 min, with a final incubation at 72°C for 3 min. The PCR primers

are listed in Supplementary Table S2.
2.5 Functional analysis

As predicted by the SNPinfo Web Server (https://manticore.

niehs.nih.gov/snpinfo/snpfunc.html) (28), rs4134819 was located at

TFBS. We thus used the Alibaba 2.1 tools (http://gene-regulation.

com/pub/programs/alibaba2/index.html) to predict the potential

functional influence (29). In addition, expression quantitative trait

loci (eQTL) analysis was adopted to observe the effect of rs4134819

on the expression regulation of XAB2 gene using VarNote-REG

(http://www.mulinlab.org/varnote/application.html#REG) (30)

online tools.
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2.6 Statistical analysis

Data were processed using the IBM SPSS Statistics 28 for

Windows (IBM Corp., Armonk, NY, USA) and R software

(4.3.1). Continuous variables according to normal distribution

were described as mean ± standard deviation (mean ± SD) and

independent samples Student’ s t-test was used to compare the

difference between case and control groups, while variables with

non-normal distribution were presented as median (interquartile

range) and Mann–Whitney U test was utilized for difference

comparison between the two groups. The chi-square (c2) test was
used for categorical variables. The Hardy–Weinberg Equilibrium

(HWE) assessed by the c2 goodness of fit was conducted to

determine whether the genotype frequencies are in equilibrium in

the control group. Odds ratios (ORs) and their corresponding 95%

confidence intervals (CIs) were employed to evaluate the

associations between variants and GDM risk. Stratified analysis

was carried out to detect the relationship between positive SNP and

GDM risk in specific subgroups based on the mean value of clinical

variables. A two-tailed test with p < 0.05 indicates that the difference

is statistically significant. The false-positive report probability

(FPRP) analysis was also performed to assess the significant

associations. A cutoff value of 0.2 and a prior probability level of

0.1 were preset to observe an OR of 1.5 for the combined genotypes

with an increased risk. Only the pFPRP < 0.2 can be considered as

genuine association (31).

Clinical variables with a p < 0.05 in univariate logistics

regression can be subsequently incorporated in multifactorial

regression analysis to further detect the GDM risk factors. The

subjects were randomly split into two groups (training cohort and

validating cohort) at a ratio of 7:3, and the nomogram model was

constructed to predict GDM occurrence using the “rms” package in

the training cohort. The receiver operator characteristic (ROC)

curve and the area under the curve (AUC) were produced to
FIGURE 2

Manhattan plot demonstrating the −log10 p-value for GDM-associated SNPs at the discovery stage. The red line represents a genome-wide
significance threshold (p = 5×10−4).
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evaluate the predictive performance of the nomogram. The

calibration curve conducted via a bootstrap method with 1,000

resamples and the Hosmer–Lemeshow test were used to assess the

level of consistency between the predicted probabilities and the

observed outcomes. Furthermore, the clinical validity and net

benefit of the nomogram were appraised by adopting a decision

curve analysis (DCA). To facilitate the clinical implementation and

application of the risk model, we developed an interactive dynamic

nomogram based on the “DynNom” package and a web application

“shinyapps” (https://www.shinyapps.io/).
Frontiers in Endocrinology 05
3 Results

3.1 Subjects’ characteristics

The anthropometric and biochemical materials were

significantly different between case and control groups. Compared

to the control group, age, pre-BMI, blood pressure levels (SBP and

DBP), blood glucose, and lipid metabolism levels (FPG, 1hPG,

2hPG, HDL-c, LDL-c, and TG) were higher in the case group (p <

0.05), as shown in Table 1.
TABLE 1 The baseline characteristics of subjects (mean ± SD).

Clinical variables GDM (n = 538) Control (n = 626) t p

Age (years old) 31.46 ± 4.74 28.82 ± 4.14 10.05 <0.001

Pre-BMI (kg/m2) 23.13 ± 3.62 21.44 ± 3.01 8.53 <0.001

SBP (mmHg) 111.52 ± 10.59 108.75 ± 9.39 4.67 <0.001

DBP (mmHg) 70.35 ± 8.70 68.66 ± 7.94 3.45 0.001

FPG (mmol/L) 5.22 ± 1.33 4.41 ± 0.37 13.65 <0.001

1hPG (mmol/L) 9.74 ± 2.25 6.95 ± 1.43 24.83 <0.001

2hPG (mmol/L) 8.28 ± 2.16 6.07 ± 1.10 21.46 <0.001

HbA1c (%) 5.43 ± 0.68 5.00 ± 0.49 12.26 <0.001

TG (mmol/L) 2.66 ± 1.20 2.42 ± 1.00 3.71 <0.001

TC (mmol/L) 5.36 ± 1.16 5.30 ± 1.08 0.91 0.361

HDL-c (mmol/L) 1.66 ± 0.42 1.65 ± 0.40 0.17 0.863

LDL-c (mmol/L) 3.48 ± 1.02 3.46 ± 1.01 0.29 0.773
Pre-BMI, pre-pregnancy body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; TG, triglyceride; TC, total cholesterol; HDL-c, high-density
lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol.
TABLE 2 The associated analysis of GDM and screened functional variants.

Genotype GDM Control pHEW p a Crude OR
(95% CI)

p b Adjusted OR
(95% CI)

p c

rs4134819

CC 114 169

0.107

0.033 1 1

CT 273 275 1.47 (1.10–1.97) 0.009 1.38 (1.01–1.87) 0.044

TT 129 146 1.31 (0.94–1.83) 0.115 1.26 (0.88–1.81) 0.199

CT/TT 402 421 0.013 1.42 (1.08–1.86) 0.013 1.34 (0.99–1.79) 0.051

CC/CT 387 444 0.922 1 1

TT 129 146 1.01 (0.77–1.33) 0.92 1.03 (0.76–1.37) 0.871

rs720918

AA 310 353

0.794

0.943 1 1

AG 196 232 0.96 (0.75–1.23) 0.756 0.94 (0.73–1.22) 0.658

GG 30 36 0.95 (0.57–1.58) 0.840 1.02 (0.59–1.74) 0.955

AG/GG 226 268 0.734 0.96 (0.76–1.21) 0.734 0.95 (0.74–1.22) 0.701

AA/AG 506 585 0.884 1 1

GG 30 36 0.96 (0.59–1.59) 0.884 1.04 (0.61–1.76) 0.886

(Continued)
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3.2 Association between variants and
GDM risk

Genotype frequencies of variants (rs4134819, rs720918,

rs11109509, and rs12524768) followed the principle of HWE (pHWE

> 0.05) except for rs2034410 (Table 2). Only the genotype distribution

of rs4134819 was different between GDM cases and healthy controls

(c2 = 6.83, p = 0.033). After adjusting age and pre-BMI, the rs4134819

CT genotype could significantly increase GDM risk compared to the

CC genotype (adjusted OR = 1.38, 95% CI: 1.01–1.87, p = 0.044).

Under the dominant model, CT/TT genotypes could increase the

GDM risk by 42% compared with the CC genotype (crude OR = 1.42,

95%CI: 1.08–1.86, p = 0.013). However, after adjusting for age and pre-

BMI, this significant association disappeared (Table 2).

The stratified analysis was performed under the dominant model.

Compared to the CC genotype, CT/TT genotypes had a higher GDM

risk in subgroups with SBP > 110.03 mmHg (adjusted OR = 1.81, 95%

CI: 1.18–2.78, p = 0.007), DBP > 69.44mmHg (adjusted OR = 1.60, 95%
Frontiers in Endocrinology 06
CI: 1.03–2.47, p = 0.036), 2hPG > 7.10 mmol/L (adjusted OR =1.85,

95% CI:1.12–3.04, p = 0.016), HbA1c > 5.20% (adjusted OR = 1.65, 95%

CI: 1.03–2.64, p = 0.036), and TG > 2.53 mmol/L (adjusted OR = 1.59,

95%CI: 1.03–2.46, p = 0.038) after adjusting age and pre-BMI (Table 3).

However, there was no significant association observed between

other variants (rs720918, rs2034410, rs11109509, and rs12524768)

and the risk of GDM, as shown in Table 2.
3.3 FPRP analysis

The FPRP test was adopted to evaluate the robustness of

positive associations with a prior probability setting at 0.1 and an

FPRP threshold value setting at 0.2. As demonstrated in Table 4, the

association between rs4134819 and GDM risk in the dominant

model (CT/TT vs. CC) seems to be reliable correlation (p = 0.147),

while other statistically significant results may be detected by

chance and should be taken with caution.
TABLE 2 Continued

Genotype GDM Control pHEW p a Crude OR
(95% CI)

p b Adjusted OR
(95% CI)

p c

rs2034410

TT 410 474

<0.05

0.649 1 1

TC 68 80 0.98 (0.69–1.39) 0.922 1.09 (0.75–1.59) 0.659

CC 26 23 1.31 (0.73–2.33) 0.363 1.50 (0.82–2.76) 0.190

TC/CC 94 103 0.734 1.06 (0.77–1.44) 0.734 1.18 (0.85–1.65) 0.323

TT/TC 478 554 0.355 1 1

CC 26 23 1.31 (0.74–2.33) 0.356 1.48 (0.81–2.72) 0.202

rs11109509

AA 264 298

0.377

0.357 1 1

AG 193 248 0.88 (0.68–1.13) 0.311 0.88 (0.67–1.15) 0.334

GG 62 61 1.15 (0.78–1.70) 0.490 1.11 (0.73–1.68) 0.622

AG/GG 255 309 0.553 0.93 (0.73–1.18) 0.553 0.92 (0.72–1.19) 0.533

AA/AG 457 546 0.309 1 1

GG 62 61 1.21 (0.84–1.77) 0.310 1.18 (0.79–1.76) 0.426

rs12524768

GG 409 471

0.376

0.192 1 1

GA 114 146 0.90 (0.68–1.19) 0.455 0.90 (0.67–1.21) 0.472

AA 14 8 2.02 (0.84–4.85) 0.118 2.02 (0.79–5.20) 0.143

GA/AA 128 154 0.750 0.96 (0.73–1.25) 0.750 0.95 (0.72–1.27) 0.749

GG/GA 523 617 0.098 1 1

AA 14 8 2.07 (0.86–4.96) 0.105 2.07 (0.81–5.32) 0.129
frontier
ASA chip, infinium Asian Screening Array (ASA, illumina) BeadChip; HWE, Hardy–Weinberg Equilibrium test; a, Genotype distribution difference tested by c2; b, Unconditional logistic
regression analysis; c, Adjusted for age, pre-BMI in logistics regression models.
Bold values indicate that the differences are statistically significant.
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3.4 Biological functional analysis

Given the fact that rs4134819 is located at the TFBS region of

XAB2 gene, bioinformatic tools were used to predict the potential

functional impact caused by the genetic variant. It can be seen that the

rs4134819 C allele binds with the transcription factor “CPE bind” in

91–100 bp. However, when the wild-type allele changes to T allele, the

transcription factor attached to it also changes to “GATA-1”, which

suggested that rs4134819 may have an impact on the regulation of

gene transcription (Figures 3A, B). Moreover, eQTL analysis based on

the Genotype-Tissue Expression Project (GTEx V8) indicated that

rs4134819 can be an eQTL and affect the expression level of

functional genes such as PET100, PCP2, and CTD-3214H19.6 in

different tissues (Table 5).
Frontiers in Endocrinology 07
3.5 Factor selection and the
nomogram establishment

Clinical variable selection was based on univariate and

multivariate logistic regression analysis. The latter was performed

by a backward stepwise selection with the Akaike information

criterion (AIC). The final results showed that age, FPG, HbA1c,

1hPG, 2hPG, and TG were independent risk factors of GDM with a

model AIC of 536.78. Furthermore, considering that rs4134819 was

significantly associated with GDM, we attempted to take the variant

into the model. Surprisingly, the AIC of the multivariable logistic

regression model was decreased to 533.94 (Table 6).

The seven GDM risk factors were ultimately used to construct the

predictive nomogram in the training cohort. In the traditionally static
TABLE 3 Stratified analysis for associations between XAB2 gene rs4134819 and GDM risk.

Variables CC
(case/control)

CT/TT
(case/control)

Crude OR
(95%CI)

p a Adjusted OR
(95% CI)

p b

Age (years old)

≤30.04 53/122 177/290 1.41 (0.97–2.04) 0.074 1.44 (0.97–2.12) 0.069

>30.04 61/46 225/130 1.31 (0.84–2.03) 0.235 1.21 (0.78–1.90) 0.397

Pre-BMI (kg/m2)

≤22.22 59/119 168/279 1.22 (0.84–1.75) 0.298 1.24 (0.85–1.82) 0.272

>22.22 55/49 234/141 1.48 (0.95–2.29) 0.080 1.44 (0.92–2.27) 0.111

SBP (mmHg)

≤110.03 60/90 187/256 1.10 (0.75–1.60) 0.635 1.02 (0.68–1.52) 0.939

>110.03 54/78 215/164 1.89 (1.27–2.83) 0.002 1.81 (1.18–2.78) 0.007

DBP (mmHg)

≤69.44 62/93 194/229 1.27 (0.87–1.85) 0.209 1.18 (0.80–1.75) 0.409

>69.44 52/75 208/191 1.57 (1.05–2.35) 0.029 1.60 (1.03–2.47) 0.036

FPG (mmol/L)

≤4.78 48/146 154/368 1.27 (0.87–1.86) 0.209 1.19 (0.80–1.76) 0.393

>4.78 66/22 248/52 1.59 (0.90–2.80) 0.109 1.65 (0.92–2.96) 0.096

1hPG (mmol/L)

≤8.24 23/133 95/335 1.64 (0.99–2.70) 0.051 1.55 (0.93–2.57) 0.091

>8.24 91/35 307/85 1.39 (0.88–2.20) 0.159 1.37 (0.85–2.19) 0.193

2hPG (mmol/L)

≤7.10 32/135 106/357 1.25 (0.81–1.95) 0.318 1.17 (0.74–1.85) 0.502

>7.10 82/33 296/63 1.89 (1.16–3.08) 0.010 1.85 (1.12–3.04) 0.016

HbA1c (%)

≤5.20 47/126 141/317 1.19 (0.81–1.76) 0.376 1.10 (0.74–1.65) 0.628

>5.20 67/42 261/103 1.59 (1.02–2.49) 0.043 1.65 (1.03–2.64) 0.036

TG (mmol/L)

≤2.53 61/99 207/265 1.27 (0.88–1.83) 0.205 1.18 (0.80–1.75) 0.407

>2.53 53/69 195/155 1.64 (1.08–2.48) 0.020 1.59 (1.03–2.46) 0.038
fro
The stratified analysis was conducted based on the mean value level of the variables. a, Unconditional logistic regression analysis; b, Adjusted for age, pre-BMI in logistics regression models.
Bold values indicate that the differences are statistically significant.
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nomogram, each value level of the risk factors was given the

corresponding score, and the total score obtained by adding up the

score of all risk factors can be employed to predict the probability of

GDM occurrence (Figure 4). Meanwhile, to make the nomogram

more applicable and convenient for clinicians, we developed an

online dynamic nomogram (https://qiulianl.shinyapps.io/

GDM_risk_prediction/), which was able to visualize the GDM

predictive results (Figures 5A, B). For instance, a 31-year-old

pregnant woman had the following test results: FPG > 4.78

mmol/L, 1hPG > 8.24 mmol/L, 2hPG ≤ 7.10 mmol/L, HbA1c =

6%, and TG = 3 mmol/L, and carried CT/TT genotypes, whose

probability of GDM occurrence was predicted as 66.3%.

Interestingly, when the exposure level of clinical indicators

remained unchanged and only the genotype was altered to
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CC, the predictive probability of GDM was 52.9%, which

suggested that genetic component played a certain role in GDM

occurrence (Figure 5C).
3.6 Validation of the nomogram

The AUC of the nomogram was 0.931 (95% CI: 0.914–0.948) in

the training cohort and 0.902 (95% CI: 0.870–0.935) in the internal

validation cohort, suggesting a good predictive power of the model

(Figures 6A, B). The calibration curves of the nomogram were close

to the ideal line whether in the training cohort or the validation

cohort, and the Hosmer–Lemeshow analysis also produced

acceptable results (p > 0.05), indicating that there was a good
FIGURE 3

Comparison of transcription factors bound to rs4134819 C>T. (A) The transcription factors bound to the wild allele of rs4134819 in the 60–119
sequence. (B) As the wild allele (C) altered to rs4134819 T, the transcription factor changed from “CPE bind” to “GATA-1” in the 97–106 sequence.
TABLE 4 FPRP analysis for the positive associations between rs4134819 and GDM risk.

Comparison Crude OR (95% CI) Adjusted OR (95% CI) Prior probability

0.25 0.1 0.01 0.001 0.0001 0.00001

CT vs. CC 1.38 (1.01–1.87) 0.154 0.353 0.857 0.984 0.998 1.000

CT/TT vs.CC 1.42 (1.08–1.86) 0.054 0.147 0.655 0.950 0.995 0.999

Subgroup

SBP > 110.03 mmHg 1.81 (1.18–2.78) 0.095 0.239 0.776 0.972 0.997 1.000

DBP > 69.44 mmHg 1.60 (1.03–2.47) 0.217 0.454 0.902 0.989 0.999 1.000

2hPG > 7.10 mmol/L 1.85 (1.12–3.04) 0.187 0.409 0.884 0.987 0.999 1.000

HbA1c > 5.20 (%) 1.65 (1.03–2.64) 0.240 0.486 0.912 0.991 0.999 1.000

TG > 2.53 mmol/L 1.59 (1.03–2.46) 0.222 0.461 0.904 0.990 0.999 1.000
fr
The prior probability of FPRP analysis is set to 0.1, and the statistical cutoff value is 0.2.
Bold values indicate that the differences are statistically significant.
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calibration for the risk estimation in the predictive model

(Figures 6C, D). The nomogram DCA curves were higher than

the “treat all” and “treat none” lines for most of the predicted

threshold probabilities, which showed good clinical validity and net

benefit (Figures 6E, F).
4 Discussion

As is known, chronic insulin resistance and pancreatic b-cell
dysfunction are the main physiopathological mechanisms of GDM.

As pregnancy progresses, the upregulation of human placental

lactogen (hPL), estrogen, progesterone, cortisol, and prolactin can

cause progressive insulin resistance, and when pancreatic b-cells fail
to compensate for the situation, it will lead to hyperglycemia and

even gestational diabetes (32, 33). GDM is affected by the interplay

between multiple etiologies and has an obvious genetic tendency

(34). Individual genetic susceptibility often interacts with

environment factors to participate in the onset of diseases. On the
TABLE 5 The eQTL effect analysis of rs4134819 regulating functional gene expression using online tools.

Position (rs4134819) Gene name Tissues p

chr19:7628345 PET100 Whole blood 4.66×10−16

chr19:7628345

PCP2

Esophagus mucosa 3.66 ×10−7

chr19:7628345 Spleen 2.77×10−6

chr19:7628345 Skin (lower leg) 3.14×10−6

chr19:7628345

CTD-3214H19.6

Pancreas 4.68×10−6

chr19:7628345 Esophagus mucosa 3.98×10−5

chr19:7628345 Skin (lower leg) 6.04×10−6

chr19:7628345 Skin (suprapubic) 2.97×10−7
eQTL, expression quantitative trait loci.
TABLE 6 GDM risk factors screened using univariate and multivariate
logistic regression analysis.

Variables Univariate analysis Multivariate analysis

OR 95% CI p OR 95% CI p

Age 1.15 1.11–1.19 <0.001 1.09 1.04-1.15 <0.001

Pre-BMI 1.17 1.11–1.22 <0.001 – – –

DBP 1.02 1.01–1.04 0.008 – – –

SBP 1.03 1.01–1.04 <0.001 – – –

FPG 11.68 8.16–16.72 <0.001 17.3 10.27–29.14 <0.001

1hPG 11.78 8.39–16.53 <0.001 4.33 2.63–7.12 <0.001

2hPG 14.19 9.99–20.16 <0.001 10.10 5.91–17.25 <0.001

HbA1c 5.46 3.70–8.07 <0.001 1.63 1.06–2.51 0.026

TG 1.30 1.12–1.50 <0.001 1.28 1.03–1.59 0.026

rs4134819DM 1.46 1.05–2.04 0.025 1.76 1.06–2.91 0.029
DM, dominant genetic model.
FIGURE 4

Conventional static nomogram model constructed with age, FPG, 1hPG, 2hPG, HbA1c, TG, and rs4134819DM (dominant model). A standard of
scoring based on the regression coefficient (b) of indicators is formulated. Each level of the indicators will be given a specific score, and the scores
of each factor are added up to get the total point. The value corresponding to the vertical line of the total points is the probability of
GDM occurrence.
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basis of genetic predisposition, complex human diseases can be

induced via the acquired environment factors such as personal age,

diet, and physical activity (35).

In this case–control study, we confirmed that the TFBS

polymorphism rs4134819 in XAB2 gene was significantly

associated with an increased GDM risk in all subjects and most

subgroups (SBP > 110.03 mmHg, DBP > 69.44 mmHg, 2hPG > 7.10

mmol/L, HbA1c > 5.20%. and TG > 2.53 mmol/L) in the Guilin

population. Furthermore, we have detected that age, glucose, and

lipid metabolic indicators, including FPG, HbA1c, 1hPG, 2hPG,

and TG, are also risk factors for GDM. A nomogram model

constructed with the XAB2 rs4134819 and the above clinical

indicators suggested a good predictive performance with a

diagnostic AUC of 0.931. These findings support the important

role of rs4134819 in the pathogenesis of GDM.

Xeroderma Pigmentosum group A-binding protein 2 (XAB2) is

a multifunctional protein playing a vital role in cellular processes

such as transcription, splicing, DNA repair, and messenger RNA

export (36). It was reported that XAB2 may exert as a regulator in

hyperglycemia with chronic insulin (37, 38). We observed that

XAB2 rs4134819 was correlated with an elevated GDM risk in this

study, and the FPRP analysis was performed to confirm the positive

association. As predicted by bioinformatic tools, rs4134819 is

located in the TFBS region of the XAB2 gene. We further

analyzed the potential biological functions of rs4134819 and

found that rs4134819 C>T can alter the transcription factors

binding to the promoter and act as an eQTL regulating gene

transcription. Based on the above findings, it is speculated that

this may be one of the biological mechanisms in which XAB2 gene

rs4134819 alters individual susceptibility to GDM.
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Early pregnancy is a critical period before the onset of GDM and

also a critical stage for fetal growth and development. It provides a

unique opportunity for the prevention and treatment of uncertain

maternal and child diseases in the future. Research supports the

circulating biomarkers of the first trimester, such as blood sugar,

fasting insulin, adiponectin, HDL-c, triglycerides, and C-reactive

protein (39), which may predict an enhanced possibility of GDM

risk. The deeper link of indicators of glycolipid metabolism to GDM

may be that the glucose homeostasis is affected by disturbed lipid

metabolism (40), while high triglycerides and elevated free fatty acids

(FFAs) can generate oxidative stress and activate protein kinase C,

coupled with the complex combined actions of a series of

inflammatory factors, leading to insulin resistance and, ultimately,

the development of hyperglycemia (41–43).

The nomogram model based on various risk variables has been

regarded as a useful tool for GDM risk prediction in recent years.

Wu et al. performed a nomogram of GDM based on maternal age,

pre-pregnancy BMI, and OGTT, and obtained a diagnostic AUC of

0.872 (44). There were also several studies constructing GDM

predictive models according to general conditions and laboratory

indicators, such as TG, HDL-c, being overweight or obese before

pregnancy, a family history of diabetes, a history of GDM, and a

sedentary lifestyle (45–47). Although these models′ predictive

powers were acceptable, lack of precise genetic indicators may

decrease the predictive effect of the model. Our study established

the dynamic nomogram by combining the genetic variant

rs4134819 and significant clinical indicators (age, FPG, HbA1c,

1hPG, 2hPG, and TG), which demonstrated a good performance

with an AUC of 0.931, a sensitivity of 0.934, and a specificity of

0.793. This suggests that in the construction of risk prediction
FIGURE 5

Interactive dynamic nomogram based on a web application “shinyapps” (https://qiulianl.shinyapps.io/GDM_risk_prediction/). (A) The value input plate
of pregnant women’s predictive indicators. (B) The results of model prediction are presented in a visual form. A horizontal line represents the predictive
results of one subject, the bold square dot is the probability of GDM, and the two ends of the line are 95% confidence intervals. (C) Presentation of specific
input values and corresponding predictive result values (GDM incidence and 95% confidence interval).
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models for complex diseases, including GDM, it is necessary to

consider key genetic factors.

Our study has some limitations. First, the small sample analyzed

in our previous chip screening stage may reduce statistical efficiency

and cause the deviation of finding clues. Second, the subjects of this

case–control study were selected from the hospital; thus, the

selection bias was inevitable. Third, the biological function of the

genetic variant was only predicted by bioinformatic tools and was

not validated by molecular experiments. Fourth, the risk factors

used to construct the nomogram were limited and we did not adopt

the multi-center validation for the model’s predictive power. It is
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hoped that future studies will comprehensively consider multiple

factors in establishing nomogram model and validate its predictive

effect in different regions and population.

In conclusion, this study supports the significant association

between XAB2 rs4134819 C>T and the pathogenesis of GDM.

Regulating the binding efficiency of transcription factors (CPE

bind and GATA-1) and promoters and affecting the transcription

of functional genes may be a potential mechanism. The dynamic

nomogram constructed by genetic and clinical risk factors can

effectively identify pregnant women with high GDM risk in

early pregnancy.
FIGURE 6

Validation of the nomogram model. (A) The receiver operator characteristic (ROC) curve with an area under the curve (AUC) of 0.931, a cutoff value
of 0.333, a sensitivity of 0.934, and a specificity of 0.793 in the training set. (B) The ROC curve with an AUC of 0.902 in the testing set. (C) The
calibration curve conducted via a bootstrap method with 1,000 resamples in the training set, and its mean absolute error was 0.027. (D) The
calibration curve conducted by a bootstrap method with 1,000 resamples in the testing set, and the mean absolute error was 0.035. (E) Decision
curve analysis (DCA) shows the clinical validity of the nomogram model in the training set. (F) DCA curve in the testing set.
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