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Insulin resistance, a key factor in the development of type 2 diabetes mellitus

(T2DM), is defined as a defect in insulin-mediated control of glucose metabolism

in tissues such as liver, fat and muscle. Insulin resistance is a driving force behind

various metabolic diseases, such as T2DM, hyperlipidemia, hypertension,

coronary heart disease and fatty liver. Therefore, improving insulin sensitivity

can be considered as an effective strategy for the prevention and treatment of

these complex metabolic diseases. Cell-based models are extensively employed

for the study of pathological mechanisms and drug screening, particularly in

relation to insulin resistance in T2DM. Currently, numerous methods are available

for the establishment of in vitro insulin resistance models, a comprehensive

review of these models is required and can serve as an excellent introduction or

understanding for researchers undertaking studies in this filed. This review

examines and discusses the primary methods for establishing and evaluating

insulin resistance cell models. Furthermore, it highlights key issues and

suggestions on cell selection, establishment, evaluation and drug screening of

insulin resistance, thereby providing valuable references for the future

research efforts.
KEYWORDS
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1 Introduction

Insulin resistance, defined as a defect in insulin-mediated control of glucose

metabolism in tissues such as liver, fat and muscle, is a significant contributor to the

development of type 2 diabetes mellitus (T2DM) and cardiovascular disease, particularly in

the context of obesity and metabolic syndrome (1–3). Nowadays, it is now widely

recognized that insulin resistance is typically characterized by impaired GLUT4 function

in muscle and adipose tissue, as well as an inability to suppress hepatic glucose output

(1, 4). In conditions of insulin resistance, the release of glucose from the liver (hepatic
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glucose output), and glucose uptake/utilization into muscle and fat

(where it is stored as glycogen) are both inhibited, even in the

presence of normal or elevated levels of both exogenous and

endogenous insulin (4–6).

Up to now, a multitude of potential pathogenic factors and the

related pathogenesis of insulin resistance have been proposed,

including genetics, obesity, aging, exercise, diet, etc. (7–9). Among

these factors, diet-induced metabolic dysfunction plays a significant

role in the development of insulin resistance currently (10). Diets

high in calories, characterized by an excessive intake of carbohydrates

and fats and a low dietary fiber consumption, can predispose

individuals to insulin resistance (11, 12). Mechanistically, several

mainstream or classical pathological mechanisms of insulin resistance

have gained widespread recognition, including oxidative stress,

inflammatory response, insulin signal disorder, endoplasmic

reticulum stress, as well as mitochondrial dysfunction (13–15).

These conditions can be induced by the excessive intake of

carbohydrates (such as glucose) or fats (especially for saturated

fatty acids), the chronic insulin exposure, and the inflammatory

factors such as tumor necrosis factor alpha (TNF-a) (11–13, 16,

17). The representative mechanisms of insulin resistance have been

described in Figure 1 (mainly including insulin resistance caused by

high glucose, high insulin and free fatty acids). In recent years, the

pathogenesis of insulin resistance has remained a hot issue in
Frontiers in Endocrinology 02
metabolic disease research. Notably, the studies by James and

colleagues have demonstrated that mitochondrial oxidative stress

can cause insulin resistance without disrupting oxidative

phosphorylation, and the elevated mitochondrial ceramide levels

augment mitochondrial membrane permeability and apoptosis,

leading to insulin resistance (15, 18, 19). In addition, growing

evidence suggests a close relationship between gut microbial

dysbiosis and insulin resistance, as is found that individuals with

low bacterial gene counts exhibited higher insulin resistance,

dyslipidemia, and inflammation compared to those with higher

bacterial gene counts (20, 21). Taken together, these findings

provide new insights into the pathogenesis of insulin resistance.

Nevertheless, the molecular mechanisms contributing to insulin

resistance still remain incompletely understood, and it is critical and

necessary to establish insulin resistance models for mechanism

study or drug screening. While animal models, primarily using

rats and mice, have been pivotal in insulin resistance research due to

its biological resemblance to human, the characteristics of animal

study limit its application, such as the lengthy feeding cycles, high

costs, complex procedures, and ethical considerations. In contrast,

cell culture is highly desirable due to its accessibility and

affordability. It serves as a valuable tool for studying mechanisms,

conducting bio-activity screening, and assessing toxicity. Cell-based

screening studies offer several advantages over animal studies. For
FIGURE 1

The classical pathogenesis of insulin resistance caused by HCI, HCG and FFAs. Briefly, in previous studies, high concentrations of insulin (HCI),
glucose (HCG) and free fatty acids (FFAs) have been identified as the primary substrates for inducing in vitro insulin resistance. Mechanistically, HCI
disrupts insulin signaling by activating negative feedback mechanisms, impairing lipid metabolism, as well as inducing inflammatory responses; HCG
interferes with insulin signaling and impairs glucose metabolism through inducing oxidative stress, mitochondrial dysfunction, and inflammatory
responses; FFAs (such as palmitic acid) affect glucose metabolism by causing metabolic disturbances and dysfunction of insulin signaling, while also
promoting oxidative stress and inflammatory responses.
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instance, it is easier to control due to the fewer influencing factors,

including lower individual differences and less impact from

environmental or geographical variations, thereby enhancing the

reproducibility in the experimental process. Additionally, cell

studies are convenient, rapid, and cost-effective, making them an

attractive alternative to animal research.

In previous insulin resistance-associated studies (22–24) cell-

based investigations have been commonly employed for drug

screening and mechanistic exploration. Numerous methods are

available for the establishment of in vitro insulin resistance

models in published data, a comprehensive review of these

models is required and can serve as an excellent introduction or

understanding for researchers undertaking studies in this filed.

Therefore, our current review aims to provide an exhaustive

overview and appraisal of the published in vitro insulin resistance

models. Meanwhile, this review also presents guidelines for the

comprehensive process of constructing these cell models, including

the selection of cell lines, the induction conditions, and the

evaluation methods. Such comprehensive guidance may serve as a

valuable reference for future research in this area.
2 Data sources

We conducted a literature search using databases such as

PUBMED, GOOGLE SCHOLAR, and WEB of SCIENCE,

utilizing keywords such as “insulin resistance” or “insulin

resistance and cell models”. Subsequently, we systematically

reviewed and summarized the literature retrieved from these

databases (up to 1 Nov 2024).
3 Overview and appraisal

3.1 Cell lines for insulin resistance

The liver, muscle and adipose tissue are universally acknowledged

as the primary tissues sensitive to insulin. Consequently, in vitro

models of insulin resistance are typically generated using cell lines

derived from these tissues. This review provides a comprehensive

summary of the cell lines utilized, with an in-depth elaboration on each.

3.1.1 Liver
3.1.1.1 HepG2 cell

The human hepatoma cell line, HepG2, is a widely utilized

model for hepatic cells and has been employed in diverse research

areas ranging from oncogenesis to the investigation of substance-

induced liver phenotypes. Originating from human liver cancer,

HepG2 cells present numerous typical characteristics of liver cells,

such as the ability to express a variety of liver-related enzymes and

transport proteins. Concurrently, HepG2 cell line maintains the

insulin response mechanisms of hepatocytes, making it as an ideal

model for studying insulin resistance in liver cells (25, 26).

Over the past decade, a review of published references reveals

that the HepG2 cell line is the most commonly used model for
Frontiers in Endocrinology 03
studying the pathological mechanisms and conducting drug

screening related to insulin resistance (a total of 1381 papers in

PUBMED searching, using the keywords “HepG2 cells, insulin

resistance”). For instance, studies using HepG2 cells have

demonstrated that early growth response proteins-2 (Egr2)

enhances insulin resistance via JAK2/STAT3/SOCS-1 pathway

(27), PKM2 may promote hepatic insulin resistance via STAT3

pathway (28), and ASGR1 is a potential intervention target for

improving systemic insulin resistance (29). Furthermore, the

HepG2 cell line is increasingly being used in drug screening for

insulin resistance (30–32), with some studies exclusively employing

it as an in vitro model (33–35).

Despite the HepG2 cell line becoming a widely utilized choice in

research due to its accessibility, robust adaptability and stability in

vitro, it presents certain limitations when employed for insulin

resistance studies. Originating from tumor cells, HepG2 cells show

distinct characteristics compared to normal liver cells, which may

lead to abnormal activation of signal pathways or gene mutations,

thus hindering the establishment of accurate insulin resistance

models. For example, the inhibition of FOXK1 expression in

hepatocellular carcinoma cells reduces cellular aerobic glycolysis

and cell viability by impeding the transduction of the AKT/mTOR

signaling pathway, a function distinct from that of Foxk1/2 in

normal liver cells (36). Alterations in the transforming growth

factor-beta (TGF-b) signaling pathway in HepG2 cells may

influence inflammation, fibrogenesis, and immunomodulation

compared to normal liver cells (37, 38). Furthermore, HepG2 cells

are less differentiated than primary hepatocytes, lacking some typical

hepatocyte functions and metabolic characteristics, which can

exacerbate the probing defects in HepG2 cells (such as showing a

weaker insulin sensitivity than primary hepatocytes) (39–41). These

factors should be carefully considered when selecting HepG2 cell

line, especially for studying pharmacological mechanisms.

Additionally, the basal expression or activity of these genes in

HepG2 cells should be taken into account in gene knockdown or

overexpression experiments.

3.1.1.2 L02 cell

The human hepatocyte L02 cells (L02) are also frequently

employed in the development of hepatic insulin resistance models

in vitro (a total of 43 papers in PUBMED searching, using the

keywords “L02 cells, insulin resistance”). As a normal human liver

cell line, L02 cells bear closer resemblance to actual liver cells in

terms of cellular characteristics and functions, including metabolic

pathways, physiological enzyme levels and gene expression

patterns. Hence using L02 cell line can accurately mirror the

mechanisms of hepatocyte insulin resistance under both

physiological and pathological conditions (42, 43). Meanwhile, a

study indicates that L02 cell line shows a slightly narrower toxicity

threshold (assessed by CCK8 assay), making it more stable and

sensitive than HepG2 cells in assessing drug-induced liver injury

(44). In previous studies, L02 cell line has been used to validate that

curcumin ameliorates bisphenol A-induced insulin resistance by

inhibiting the JNK pathway (45), to demonstrate that mitochondrial

oxidative stress-induced hepatic insulin resistance can be mitigated
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by sphingosine 1-phosphate (46), as well as to assess the effects and

mechanism of substances such as pterostilbene and Annexin A1 on

hepatic insulin resistance (47, 48). Furthermore, we observed that

L02 and HepG2 cell models are frequently used in conjunction for

the activity screening of anti-insulin resistance (49–51).

We also note that, the establishment of an insulin resistance

model in vitro using L02 cells may take longer time compared

to HepG2 cells, and regardless of whether it is induced by HCI,

FFAs or other agents, the induction period typically spans 24-72 h

(49, 51, 52). Meanwhile, based on our experience and feedback

from other research groups, L02 cells are highly sensitive to

environmental factors such as temperature, composition of the

culture medium and pH levels. In addition, L02 cell line shows a

slower growth rate compared to HepG2 cells.

3.1.1.3 Primary hepatocyte

Primary hepatocytes are typically procured from the livers of

animals, such as rats and mice, due to the scarcity of human liver

tissue and ethical considerations. These cells are extracted directly

from liver tissues, offering superior physiological relevance, robust

metabolizing enzyme activity and validated gene expression in

comparison to cell lines (53–56). Primary hepatocytes are often

employed in conjunction with in vivo insulin resistance models to

explore the pathogenesis of insulin resistance, screen for drug

activity, and elucidate pharmacological mechanisms (a total of

656 papers in PUBMED searching, using the keywords “primary

hepatocytes, insulin resistance”). For instance, primary hepatocytes

have been employed to assess the impact of Inositol polyphosphate

multikinase on FFAs-induced insulin resistance (57), to evaluate the

role of chemotactic eicosanoid LTB4 in dexamethasone-induced

insulin resistance (58), as well as to determine the insulin

sensitization effect of short-term curcumin gavage in a rapid

dexamethasone-induced insulin resistance (59).

Despite the recognized benefits of employing primary

hepatocytes, their application appears to be less prevalent than

that of hepatic cell lines, particularly in pharmacological

mechanism investigations. This discrepancy may be ascribed to

the complexities involved in obtaining and culturing primary

hepatocytes, as well as the inherent variability derived from

different individual sources, which consequently affects the high

reproducibility. Additionally, primary cells from animals (such as

rats or mice) have species-specific physiological differences

compared with human cells, making it difficult to extrapolate the

results to humans.

3.1.2 Muscle
3.1.2.1 C2C12 cell

The C2C12 cell line is derived from mouse myoblasts and has

the capacity to differentiate into mature muscle tubes under specific

culture conditions. C2C12 cells exhibit physiological characteristics

akin to skeletal muscle cells, including the expression of myosin

heavy chains and the formation of sarcomeres. Thus it has been

utilized extensively as an in vitromodel in understanding metabolic

disease progression, including insulin resistance (60). In previous

studies, C2C12 cells appear to be the most frequently used cell type
Frontiers in Endocrinology 04
for in vitro construction of muscle insulin resistance models (a total

of 666 papers in PUBMED searching, using the key words “C2C12

cells, insulin resistance”). The findings that mangiferin ameliorates

insulin resistance by activating the PPARa pathway (61),

resveratrol enhances PA-induced insulin resistance via the

DDIT4/mTOR pathway (62), and downregulation of lipin-1

induces insulin resistance by elevating intracellular ceramide

accumulation (63), were all derived from the experiments using

insulin resistance C2C12 cell models.

A comprehensive review of studies on the C2C12 cell line

underscores its considerable importance in pharmaceutical and

biomedical research, attributable to its expression of glucose

transporter (GLUT)-4 and other characteristics that bear a

striking resemblance to those of human skeletal muscle cells (60).

While it is acknowledged that C2C12 cells possess the capability to

differentiate into myotubes, it is imperative to recognize that their

differentiation might not be entirely analogous to that of actual

skeletal muscle cells. Incompletely differentiated cells may manifest

diminished GLUT4 expression, frequently in conjunction with

modifications in the expression or activity of pivotal proteins

within the insulin signaling pathway (64, 65). Considering that

glucose uptake serves as a “gold standard” for evaluating insulin

resistance during drug screening, C2C12 cells might present certain

limitations due to their suboptimal responsiveness to insulin-

stimulated glucose uptake, thereby necessitating the employment

of L6 cells as an alternative (66). Additionally, the C2C12 cell line

demonstrates resistance to both gene transfection and viral

transduction, thereby constraining its application in pertinent

cellular molecular biology research (67).
3.1.2.2 L-6 myoblast

L-6 myoblasts (L6 cells), a type of rat skeletal muscle myoblast

cell, are extensively utilized in research pertaining to muscle

development, diseases, and metabolic disorders. Their capacity to

differentiate into mature myotubes under controlled in vitro

conditions, coupled with their robust insulin sensitivity, makes

them ideal for constructing in vitro models of muscle insulin

resistance (68, 69). In previous studies (a total of 477 papers in

PUBMED searching, using the key words “L6 cells, insulin

resistance”), L6 cells have been employed to explore the role of

NF-kB activation in the development of insulin resistance (70), to

study the mechanism of HM-chromanone in alleviating obesity-

related insulin resistance (71), and to assess the impact of

metformin on attenuating insulin resistance (72).

Skeletal muscle serves as a crucial target tissue for insulin action

within the body, playing an instrumental role in the regulation of

blood glucose. L6 cells, which serve as a model for skeletal muscle

cells, are intimately associated with the mechanism of insulin

resistance. L6 cell line can effectively simulate the response of

skeletal muscle cells to insulin in vivo. It also exhibits a GLUT

expression profile similar to fully differentiated mammalian muscle

cells, demonstrating high levels of GLUT4 (the sole insulin-

dependent glucose transporter in skeletal muscle) and

comparatively low expression of GLUT1 and GLUT3, which

results in a low basal glucose uptake rate but a pronounced
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response to insulin stimulation (66, 73). Furthermore, the highest

expression level of GLUT4 is observed in L6 cells stimulated with

insulin, surpassing that of C2C12 and HMSC cells (66). And

meanwhile, the sensitivity of mitochondrial respiration in L6 cells

to mitochondrial poisons is analogous to that observed in primary

muscle fibers, indicating that the L6 cells embody the requisite

metabolic characteristics necessary for exploring the role of

mitochondria in insulin resistance (74). Taken together, these

evidence suggest that L6 cells show a heightened sensitivity

to insulin.

Although both C2C12 and L6 cells have been frequently utilized

in previous studies to establish insulin resistance models in vitro, a

recent study using transcriptomics and metabolomics highlights

significant differences between the two different skeletal muscle

models. It is found that the L6 cells show the highest expression

levels of glucose transporter and mitochondrial electron transfer

genes, coupled with superior insulin-stimulated glucose uptake and

oxidation capacity, which renders L6 cells particularly suitable for

investigations into glucose metabolism and mitochondrial function

(66). Conversely, C2C12 cells with mRNAs encoding for actin and

myosin are significantly enriched, have higher glucose oxidation

capacity than L6 cells; meanwhile, C2C12 cell line shows a similar to

the differentiated muscle tissue in myofibrillar content and glycogen

storage, making it more suitable for exercise/stress response studies

(66). In addition, the mechanisms through which FFAs induce

insulin resistance differ between these two cell types. For example,

evidence suggests that the myocellular abundance of caveolin-

enriched domains (CEM) located at the plasma membrane is

significantly higher in L6 cells compared to C2C12 cells, which

leads to the distinct mechanisms of “PA-ceramide”-induced insulin

resistance observed in both cell types (ectopic accumulation of

ceramide in response to oversupply of PA may underlie the

development of insulin resistance in skeletal muscle) (75–77).

Taken together, our present understanding suggests that L6 cells

may be a more appropriate cell line for the establishment of skeletal

muscle insulin resistance in vitro. However, the differences of

utilizing these two cell types for the construction of an insulin-

resistant cell model, particularly in relation to functionality and

underlying mechanisms, still need further exploration.

3.1.3 Adipose
3.1.3.1 3T3-L1 Cell Line

The 3T3-L1 cell line, a well-established preadipose cell line

derived from murine Swiss 3T3 cells, is frequently employed in

studies investigating adipocyte differentiation and insulin resistance

(78, 79). Upon full differentiation, 3T3-L1 cells display essential

characteristics of mature adipocytes, including lipid accumulation

and the expression of adipogenic transcription factors such as

PPARg and C/EBPa (79–81). Adipocytes play a crucial role in

glucose uptake and insulin response, which contributes to the

progression towards insulin resistance (82–84).

3T3-L1 cells are the most commonly used cell model for

adipocyte insulin resistance research, including basic molecular

mechanism studies and drug screening (2151 papers in PUBMED

searching using “3T3-L1 cells, insulin resistance” as key words).
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In recent years, 3T3-L1 cells are employed in studies about insulin

resistance, such as assessing the effect of phenethyl isothiocyanate

on H2O2-induced insulin resistance (85), exploring the role of

endogenous CSE/H2 S system in TNF-a-induced insulin resistance

(86), and evaluating the activities and mechanisms of natural

products (geniposide or baicalin) in improving insulin resistance

(87, 88). Notably, comparing to the freshly isolated cells, 3T3-L1 cell

line is easier to culture and can tolerate a greater number of passages

and offers a homogeneous cell population, which exhibits a

homogenous response following treatments and changes in

experimental conditions (79, 89). However, the 3T3-L1 cell model

has some limitations in establishing insulin resistance. For example,

the initial subculture necessitates a minimum duration of two weeks

for adipogenic differentiation (90). Moreover, when confluent or

extensively passaged, 3T3-L1 cells lose their ability to differentiate

into adipocytes and become difficult to transfect (79, 91).

3.1.3.2 SGBS Cell Line

The Simpson-Golabi-Behmel syndrome cell line (SGBS) is a

human cell model derived from preadipocytes of a patient

diagnosed with Simpson-Golabi-Behmel syndrome, and it has been

extensively utilized in research to study adipocyte biology and

metabolic functions (82, 92). Initially isolated from subcutaneous

adipose tissue, SGBS cells demonstrate a high capacity for adipogenic

differentiation and exhibit key characteristics (such as gene

expression profile and metabolic functionality) of mature

adipocytes (including primary human adipocytes) (82, 93, 94).

Therefore, SGBS cell lie serves as an ideal model for investigating

human adipocyte differentiation, insulin resistance, and metabolic

disorders. In recent years, SGBS cells have been applied to insulin

resistance research (a total of 41 papers in PUBMED searching, using

the key words “SGBS cells, insulin resistance”). By using SGBS cells

model, it was found that N-Methylpyridinium can attenuate TNF-a-
mediated insulin resistance and inflammation (95), Interferon-

gamma alters adipocyte phenotype and impairs response to insulin

and adiponectin release (96), and miR-146a regulates systemic and

adipocyte insulin sensitivity via downregulation of NPR3 (97).

However, SGBS cells also present limitations in establishing in vitro

models of insulin resistance. The growth and differentiation capacity

of SGBS cells in long-term culture can be easily affected by the

environmental factors such as oxygen concentration and culture

medium composition, which may potentially compromise the

reproducibility and complexity of the experiments (98).

Additionally, in contrast to primary cells, SGBS cells show a

reduced sensitivity to apoptosis-inducing stimuli under certain

conditions, which may limit their effectiveness in studying

adipocyte biology under stress (98).

Overall, the 3T3-L1 and SGBS cell lines are the mainly used

adipocytes for establishing in vitro cell models. However, several

considerations should be taken into account when deciding between

these two cell lines. In chronic insulin stimulated-insulin resistance

model, the basal and insulin-stimulated glucose uptake is more

profoundly affected in insulin resistant 3T3-L1 cells compared to

SGBS cells (82). While both cell lines can be induced to insulin

resistance by using FFAs, insulin, and TNF-a (discussed further in
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the subsequent sections), a study indicates that SGBS cell line is

more sensitive than 3T3-L1 to insulin signaling disruptions induced

by FFAs such as PA, because it shows a more pronounced recovery

of Akt phosphorylation in response to insulin stimulation and a

closer resemblance to human primary cells in signaling responses

(99). In addition, studies suggest that, fully differentiated SGBS cells,

rather than 3T3-L1 cells, present a more similar morphology,

transcript level, and biochemical function to the primary omental

adipocytes associated with obesity-induced metabolic disorder

(79, 100, 101). Interestingly, it is found that SGBS cells not only

show white adipocyte functionality but also possess the ability to

differentiate into brown or beige adipocytes, providing a valuable

platform for exploring the browning process in human fat

tissue (82).
3.2 Induction conditions for
insulin resistance

In previous studies, the most commonly used methods for

inducing insulin resistance include high concentrations of insulin

(HCI) (102, 103), high concentrations of glucose (HCG) (104, 105),

and high levels of FFAs (106, 107), alongside other inducers like

dexamethasone (108, 109), glucosamine (GlcN) (110, 111), uric acid

(UA) (112), and pro-inflammatory cytokines such as tumor

necrosis factor-a (TNF-a) (113, 114). Each method has its

unique advantages and limitations in replicating various aspects

of insulin resistance. In this Review, we primarily focus on the three

most commonly used substrates, including HCI, HCG and FFAs,

which are frequently employed to establish in vitro insulin

resistance in recent publications.

3.2.1 High concentration of insulin
Using HCI to impair insulin signaling and cause insulin

transduction dysfunction in vitro is a generally employed method

for establishing insulin resistance cell model (82, 115, 116).

Mechanistically, HCI triggers the preferential internalization and

degradation of kinase-competent insulin receptors, resulting in a

population of receptors with multiple functional abnormalities

accumulated on the cell surface. And this process reduces the

number of insulin receptors, with the extent of reduction directly

proportional to the levels of insulin and the duration of stimulation

(117, 118). Hepatic cells, primarily HepG2 cells (119, 120), adipocytes

such as 3T3-L1 cells, SGBS cells and primary adipocytes (121–125), as

well as muscle cells like C2C12 (126, 127), are frequently employed to

establish an insulin resistance model via HCI in vitro. In these studies,

exposure times typically range from 24 to 48 hours and

concentrations vary from 100 to 1,000 nM. These conditions have

been documented to decrease glucose uptake and downregulate

or inhibit key insulin signaling proteins such as IRS1 and GLUTs

(82, 115, 122, 128–130).

Chronic hyperinsulinemia is a primary contributor to the

exacerbation and initiation of insulin resistance, leading to the

development of overt T2DM. Numerous studies have demonstrated

the efficacy of chronic insulin exposure in the induction of insulin
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resistance models in vitro (82). In previous studies, Fan et al.

employed a concentration of 100 nM insulin for 36h to induce

insulin resistance and studied the beneficial effect of ginsenoside-

Rg1 on glucose metabolism in HepG2 cells (129). Similarly,

Vlavcheski et al. exposed L6 cells to 100 nM insulin for 24h to

induce insulin resistance cell model and explored the potential effect

of resveratrol against insulin resistance in muscle cells (115).

Nevertheless, there are still many limitations in HCI induction.

For example, HCI induction does not fully replicate the

multifactorial nature of insulin resistance in vivo, where

additional factors like lipotoxicity and inflammation also play a

significant role (131). Meanwhile, evidence indicates that the effect

triggered by HCI may be temporary, with cells potentially reverting

to their original insulin sensitivity levels upon cessation of the

insulin treatment, which poses challenges for conducting long-term

studies or experiments that necessitate a consistent state of insulin

resistance (132, 133). Furthermore, under physiological conditions,

insulin secretion is meticulously regulated, dynamically adjusting in

response to various factors such as blood glucose levels (134, 135).

However, the HCI observed in vitro significantly deviates from

physiological states in terms of insulin secretion regulation,

mechanism of action, and overall metabolic environment, failing

to accurately represent the physiological state. In conclusion, these

limitations of HCI-based construction of insulin resistance and

their induced outcomes should be taken into consideration in

future research.

3.2.2 High concentration of glucose
Excessive glucose (relevant for hyperglycemia) can induce

serine/threonine phosphorylation of IRS protein at multiple sites,

which impedes the binding affinity of IRS to insulin receptor and

suppresses the activation of PI3K/AKT pathway-mediated glucose

metabolism (131). Meanwhile, it has been noted that HCG also

activates the MAPK and NFkB pathways, both of which play a

significant role in the development of insulin resistance (136, 137).

Previous studies have used a variety of cell lines, including HepG2

cells, 3T3-L1 cells, L6 cells, and primary hepatocytes, to induce

insulin resistance in vitro using HCG (35, 138–140). In published

data, the induction of insulin resistance in cells is typically achieved

by exposing them to glucose concentrations between 25 mM and 60

mM over a period of 24 to 48h (139–143). For instance, Zhang et al.

established the insulin resistance model by exposing cells to 25 mM

glucose and discovered that Epigallocatechin gallate ameliorated

insulin resistance by modulating inflammation and oxidative stress

in HepG2 cells (104). Luo et al. treated C2C12 cells with 60 mM

glucose for 5 days to explore the underlying mechanisms of HCG-

induced insulin resistance (144).

HCG-induced insulin resistance model, replicating the

hyperglycemia observed in diabetic patients, is employed to

investigate the mechanisms of insulin resistance and anti-insulin

resistance drug screening in vitro. It is also known that HCG can

induce cell damage, called glucose toxicity. Cellular responses to

high glucose are numerous, and HCG induction can inflict cellular

damage by compromising cell membrane integrity or hastening

ROS-mediated stress responses, further impair mitochondrial
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function, resulting in cellular damage and apoptosis (145, 146).

Therefore, cell viability should be considered when constructing an

insulin resistance model, particularly for drug screening and

evaluation purposes. This aspect is not consistently addressed in

published studies, which will be elaborated upon in our subsequent

evaluation section. Furthermore, it is significant to ensure that the

glucose concentration should be physiologically appropriate. As is

described in a few studies, more than 30 mmol/L glucose has been

used to represent the hyperglycaemia condition (142, 147, 148).

However, we recommend that glucose levels should not exceed 25-

30 mmol/L to mimic the diabetic conditions accurately. Levels

above 30 mmol/L (600 mg/dL), accompanied by serum osmolality

>320 mOsm/kg, induce signs and symptoms related to the

hyperosmolar hyperglycemic state. Treating cells with such high

glucose concentrations is not pathophysiologically relevant,

rendering the findings from these experiments meaningless.

3.2.3 Free fatty acids
FFAs, primarily consisting of PA and oleic acid (OA), are widely

recognized as crucial pathogenic factors in insulin resistance and

the development of T2DM (42, 149). Although the mechanisms

underlying how obesity and FFAs-induced insulin resistance

remain incompletely understood, mainstream views suggest that

excessive FFAs can lead to dysfunction in gluconeogenesis and

glycogen synthesis by increasing the level of intracellular

phosphorylated glycogen synthase, down-regulating the

phosphorylation of protein kinase B (p-AKT), reducing the

expression of glycogen synthase, and inhibiting the insulin signal

pathway (132, 150, 151). Concurrently, FFAs-induced oxidative

stress and inflammatory response play important roles in insulin

resistance development. FFAs produce low-grade inflammation

through activation of nuclear factor-kappa B (NF-kB), leading to

the release of the pro-inflammatory factors and activation of

oxidative stress-activated signaling pathways in the liver and

skeletal muscle (152, 153). Therefore, FFAs can also be utilized as

inducers for modeling insulin resistance, particularly in replicating

obesity-induced insulin resistance in vitro.

From previous studies, the induced concentrations of FFA

(main PA) typically range from 100 µM to 1,000 µM, with

exposure periods spanning between 6 and 48h (106, 107, 154). As

is shown that, Wu et al. simulated obesity-induced hepatic insulin

resistance using 0.25 mM PA and examined the positive impact of

apigenin on alleviating PA-induced insulin resistance in HepG2

cells (106). Lei et al. treated HepG2 cells with 1 mM FFAs (mixture,

OA and PA in a ratio of 2:1) for 24 h to induce the insulin resistance

model and evaluated the anti-insulin resistance effect of vaccarin (a

natural product) (155). Furthermore, FFAs such as OA or linoleate,

can also induce insulin resistance; but the mechanisms and effects of

this insulin resistance differ from those induced by PA (156). A

review of existing literature reveals that PA is more commonly used

in vitro for the creation of insulin resistance models compared to

other free fatty acids such as OA (as was determined by a search of

1082 papers using the keyword “palmitic acid, insulin resistance” in

PUBMED and 591 papers using “oleic acid, insulin resistance.” In

previous studies, OA appears to facilitate the in vitro development
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of a lipid-accumulating cell model. Interestingly, it was found that

low dose of OA or linoleate has a protective effect against PA-

induced cytotoxicity and insulin resistance (157–159). Therefore,

this protective effect of OA should be noted when using mixed FFAs

(such as a mixture of PA and OA) to induce insulin resistance

models in vitro. Meanwhile, it is suggested that the cell viability

should also be considered when evaluating the models of insulin

resistance caused by FFAs due to their cytotoxicity (160, 161).

3.2.4 Other inducers
Over the past decades, although the causal relationship between

inflammation and insulin resistance is not completely understood, a

large number of animal and human studies have strongly suggested

that chronic inflammation in adipose tissue plays an important role

in the development and progression of obesity-related insulin

resistance (162, 163). Pro-inflammatory cytokines such as TNF-a
are widely used in insulin resistance cell models. TNF-a is mainly

produced by adipocytes and peripheral tissues, which induce

localized inflammation through reactive oxygen species (ROS)

generation and transcription-mediated signaling pathways. In

addition, TNF-a inhibits insulin signaling by increasing serine

phosphorylation of IRS-1, thereby reducing the ability of IRS-1 to

transmit downstream signals. This inhibition leads to a decrease in

GLUT4 translocation and glucose uptake, resulting in insulin

resistance (164–166). TNF-a is commonly used at concentrations

of 10 to 50 ng/mL for 24 to 48h (147, 167). The advantage of this

approach is that it closely mimics the pro-inflammatory

environment associated with obesity-related metabolic disorders.

However, the broad effects of cytokines can lead to unintended

cellular responses, complicating data interpretation.

Uric acid (UA) is another agent associated with insulin

resistance, particularly in liver cells (168, 169). Concentrations of

UA ranging from 600 to 1,000 µM were applied for 24 to 48h

(51, 168). UA-induced insulin resistance models are especially

useful for studying the effects of hyperuricemia on insulin

signaling, lipid metabolism, and inflammation in hepatic cells.

Experimental evidence demonstrates that UA exposure elevates

serine phosphorylation of IRS-1 while simultaneously reducing

phosphorylation of AKT, resulting in impaired translocation of

the glucose transporter GLUT4 and subsequently diminishing

cellular glucose uptake (112, 170). Additionally, UA activates the

NLRP3 inflammasome and promotes the secretion of pro-

inflammatory cytokines, driving chronic inflammatory responses.

This sustained inflammation within adipose tissue and other target

organs further disrupts insulin signaling pathways, thereby

exacerbating insulin resistance (171). However, the use of high

concentrations of UA can lead to oxidative stress, potentially

compromising cell viability (172).

Glucosamine (GlcN), a precursor of the hexosamine

biosynthetic pathway, is known to induce insulin resistance in

peripheral tissues and has been utilized extensively for this

purpose both in vivo and in vitro (173, 174). The mechanism by

which GlcN induces insulin resistance involves depletion of

intracellular ATP, impairment of insulin signaling, and inhibition

of GLUT4 translocation (175, 176). Typically, GlcN is employed at
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concentrations around 18 mM, with exposure durations ranging

from 18 to 24 hours (110, 155). While GlcN-induced models are

beneficial for investigating the metabolic effects of alterations in

glucose metabolism in insulin resistance, it is important to note that

the mechanisms underlying GlcN-induced insulin resistance do not

entirely align with those induced by hyperglycemia. This is because

the two differ in specific metabolic pathways and may not fully

replicate the comprehensive pathophysiology of insulin resistance

(176, 177).
3.3 Evaluation for insulin resistance

In pathological conditions, insulin resistance results in

diminished glucose uptake and utilization. This is evident in the

decreased glucose intake and glycogen synthesis, as well as the

accelerated gluconeogenesis (6, 131). Consequently, phenotypic

alterations linked to insulin resistance have been employed to

assess insulin resistance models and have become the benchmark

for evaluating the efficacy of anti-insulin resistance drugs. Here, we

detail the prevalent methods used to evaluate insulin resistance.

3.3.1 Glucose uptake
It is widely recognized that in states of insulin resistance,

glucose uptake or utilization in insulin-sensitive tissues such as

the liver, muscle, or fat is markedly diminished in response to

insulin stimulation. Therefore, the glucose uptake appears to be the

“gold standard” for evaluation of insulin resistance or drug

screening in vitro. In previous studies, two methodologies were

employed to detect glucose uptake in vitro.

3.3.1.1 Glucose oxidase-peroxidase assay

The glucose oxidase-peroxidase (GOD-POD) assay is widely

employed for determining cellular glucose uptake, which is based

on Trinder reaction principle (178, 179). Briefly, glucose is

converted to gluconic acid and hydrogen peroxide by glucose

oxidase (GOD), followed by peroxidase (POD) catalyzing

hydrogen peroxide and inducing the formation of quinone imines

from the chromogenic material (4-aminoantipyrine). The color

intensity of quinone imines is proportional to the glucose

concentration, allowing for measurement and calculation via

absorbance. As demonstrated in most previous studies, celluar

glucose uptake can be calculated with a formula: the glucose

uptake equals the difference between the glucose content of the

detection solution and the residual glucose content in the medium

(128, 180, 181). The GOD-POD assay is characterized by its

simplicity and convenient operation, making it the convenient

method for studying glucose uptake of cells.

3.3.1.2 Fluorescently labeled glucose

Fluorescently labeled glucose uptake assay, such as2-(N-(7-

Nitrobenz-2-oxa-1,3-diazole-4-yl) amino)-2-deoxy-D-glucose (2-

NBDG) fluorescently labeled glucose, enables direct monitoring of

glucose uptake in living cells and tissue (182, 183). Published data

delineate two categories of detection and evaluation methods for
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monitoring and assessing glucose uptake in cells. The distinction of

these two methods lies in the presence or absence of insulin

stimulation before measuring glucose uptake. As previous studies

described, 100 nM insulin was used to induce IR in HepG2 cells,

and in order to evaluate the model or anti-IR activity, a 2-NBDG

assay was performed to detect glucose uptake following stimulation

of the cells with 100 nM insulin for 30 min (184, 185). Another

report introduced an identical method as described above, albeit

without insulin stimulation. Instead, it directly detected cellular

glucose uptake after exposing them to fluorescent-labeled glucose

for 30min (186). Generally, 2NBDG glucose uptake assay is widely

used in most studies due to its convenience. However, a recent study

has found that the excess glucose nor pharmacological inhibition of

GLUT1 impacted 2NBDG uptake in myeloma cells or primary

splenocytes, suggesting the 2NBDG uptake in the cellular uptake of

2NBDG may not be a reliable measure of glucose transport, as it is

facilitated by an unidentified mechanism (187). Notably, the

generalizability of 2NBDG to other tissue cells and the defined

mechanisms still need further investigation, which should also be

addressed in future studies

In addition, with the development of interdisciplinary fields

such as physics, chemistry, and biology, other fluorescent labeled

glucose have been also introduced for determining glucose uptake,

including FITC-labeled-glucose analog (188), near-infrared

fluorescent glucose tracer (Glc-SiR-CO2H) (189), radiolabeled 3-

O-methylglucose (190) etc. And these methodologies are referenced

by evaluation system of 2-NBDG labeling as described above, and

can proficiently oversee glucose uptake in living cells and provide

monitoring images.

It is important to note that, according to published data, when it

comes to investigating glucose uptake in insulin resistant cells,

relative quantification methods are frequently used. The

normalization for relative quantification can better reflect the

overall glucose uptake of cells with or without treatment. For cell

study, it is well-known that cell number or viability plays an

important role in the evaluation of metabolic indexes in vitro,

especially in studies of insulin resistance. However, this factor is not

always clearly addressed in previous studies, leading to unnecessary

misunderstandings of the results (191–193). As we described, the

HCG, HCI, FFAs as well as inflammatory factors such as TNF-a,
can impair cell viability and even cause apoptosis in various cell

lines (145, 146, 194–196). Without doubt, the glucose uptake is

positively correlated with cell number or viability. If the inducers

(such as HCI, HCG and FFAs) cause a reduction or increase of cell

number, the corresponding glucose uptake/consumption will also

change. To eliminate the interference caused by cell apoptosis, the

normalization of uptake ratio should be used to evaluate insulin

resistance. It can be done using the formula to normalize glucose

uptake as described (128, 141, 186): normalization glucose

uptake=glucose uptake/cell viability (MTT, CCK8), as MTT or

CCK8 can relatively reflect the condition of cells.

3.3.1.3 Radiolabeled glucose

Radiolabeled glucose uptake assays, such as [3H]-2-deoxy-D-

glucose or 3-O-[Methyl-3H] glucose, have been used to study glucose
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metabolism in vivo at the molecular level (151, 190, 197–199).

Radiolabeling with glucose analogues is the gold standard for

measuring glucose uptake, with selectivity for tissue, high cellular

uptake, affinity for glucose transporters, retention, and good

interaction with hexokinase (200). These analogues are reliable

tracers that enter cells through the same transport mechanisms as

glucose (201). However, their radioactivity and procedural

complexity limit their use, requiring careful experimental design

and safety precautions.

3.3.2 GLUT4 translocation assay
GLUT4 is predominantly sequestered in intracellular GLUT4

storage vesicles (GSVs). Insulin initiates the brisk repositioning of

GSVs from the trans-Golgi network (TGN) and/or endosomes to the

plasma membrane (PM), where fusion occurs, thereby enhancing

glucose uptake (202). Studies have shown that overexpression of

GLUT4 could improve insulin resistance and insulin action in

diabetic mice, indicating that GLUT4 translocation plays a crucial

role in whole-body glucose homeostasis (203, 204). Currently,

endogenous GLUT4 translocation has been used as an in vitro

readout, and the widely used methods include immunofluorescence/

immunoblotting (analysis of the extracted PM protein) (205, 206) and

tracer assay. Among these methods, GLUT4 trafficking assays rely

heavily on the overexpression of tagged GLUT4 (207–209). However,

GLUT4 overexpression can alter insulin sensitivity and kinase activities

in an insulin resistance context, which limits its use in studies involving

genetic or pharmacological manipulation with endogenous GLUT4.

Significantly, recent research has made significant strides in

understanding the mechanisms of GLUT4 translocation and

localization. Tucker’s team developed antibodies that target the

external surface epitopes of endogenous GLUT4, providing a robust

method for detecting and quantifying transport-competent

endogenous GLUT4 in the PM (210). James’ laboratory established

an imaging-based assay to evaluate endogenous GLUT4 trafficking in

cultured murine and human adipocytes (211). This innovative

approach offers a more precise depiction of the localization and

behavior of endogenous GLUT4 with heightened sensitivity, making

it more suitable for refining insulin resistance models that necessitate

physiological intervention. Meanwhile, it overcomes the limitations of

traditional assays that depend on the overexpression of GLUT4

reporter constructs, which may confer protection against insulin

resistance and exhibit resistance to genetic perturbations and induced

insulin resistance treatment (211).

3.3.3 Glycogen assay
In vivo, excessive glucose (after fully consumed by the body) can

be converted into glycogen, which is stored in the liver and muscle

cells as liver glycogen and muscle glycogen, respectively. Hepatic

insulin resistance can increase the hepatic glucose production,

decrease glycogen synthesis, and eventually raise blood glucose

level (212, 213). Consequently, glycogen is used as an indicator for

insulin resistance evaluation in liver and muscle cells in vitro, and the

glycogen content in these cells can be directly measured using

glycogen assay kits. For instance, one study explored the anti-

insulin resistance activity of lrisin (a natural product) in 10 ng/ml
Frontiers in Endocrinology 09
TNF-a -induced HepG2 cells. The glycogen was detected after

stimulating cells with 100 nM insulin, the reduction of glycogen in

TNF-a-induced HepG2 and the increase of glycogen in lrisin-treated

cells were used to evaluate insulin resistance model and anti-insulin

resistance activity of lrisin, respectively (214). Moreover, Lei et al.

induced insulin resistance in HepG2 cells by incubating them with

5000 nM insulin for 24h; subsequent glycogen content measurement

revealed a significant decrease of glycogen synthesis in insulin

resistance group (155). However, several studies have raised

concerns about the reliability of glycogen content as a readout of

insulin resistance. For example, it was found that, no obvious changes

in the insulin-stimulated glycogen synthesis were exhibited byHepG2

cells, suggesting HepG2 cells may show a lack of sensitivity to the

increase in glycogen synthesis induced by insulin stimulation (215).

In adult skeletal muscle, it should be noted that, although there is no

significant change in overall glycogen synthesis in response to insulin

stimulation, the basal expression levels of key enzymes for glycogen

synthesis, such as AKT and GSK3, are lower in L6 cells compared to

C2C12 cells (66). These differences highlight the importance of

considering cell type-specific factors when using glycogen as a

readout for insulin resistance.

3.3.4 Lipolysis markers
Lipolysis, the process whereby triglycerides in adipocytes are

metabolized into glycerol and FFAs, is integral to the physiological

modulation of insulin resistance and insulin signaling, and it is

hormonally regulated by catecholamines, glucagon and cortisol

(216). These hormones can activate protein kinase A (PKA) in a

cAMP dependent manner, subsequently stimulating key enzymes

such as hormone-sensitive lipase, thereby promoting adipocyte lipid

breakdown and leading to the release of FFA or glycerol into the

bloodstream (217, 218). Inmetabolic disorders (including obesity and

type 2 diabetes), adipose tissue frequently exhibits elevated basal

lipolysis, which leads to chronically high FFA levels or ectopic lipid

deposition, and further impairing insulin signaling both in the liver

and skeletal muscle (219). The accumulation of FFAs and their

subsequent metabolites, such as diacylglycerol and ceramides, can

inhibit IRS and disrupt the PI3K/Akt signaling pathway via activating

protein kinase C (PKC), ultimately reducing insulin-mediated

glucose uptake (220, 221). Therefore, numerous recent studies have

employed lipolysis markers as the readouts of insulin sensitivity (218,

222–224). For example, Zhao et al. reported that metformin and

resveratrol inhibit hypoxia-induced lipolysis by preserving PDE3B

activity and blocking the cAMP/PKA/HSL signaling pathway, which

prevents muscle insulin resistance by decreasing DAG deposition and

suppressing PKCq activation (222). Similarly, Jiang et al. showed that

Astragaloside IV ameliorates insulin resistance in TNF-a-induced
3T3L1 adipocytes by dose-dependently suppressing lipolysis (224). In

addition, lipolysis activity can be quantified by measuring the release

of glycerol into the medium. Briefly, samples are cultured under

conditions that regulate lipolysis, such as exposure to isoproterenol or

insulin. The released glycerol is then quantified using either

colorimetric or fluorescent detection methods (225).

Nevertheless, a recent clinical study suggests that lipolysis does

not invariably impair insulin signaling, because the FFAs produced
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in response to metabolic demands can serve as crucial energy

sources (220). Moreover, tissue sensitivity to the accumulation of

FFAs is not entirely same certain tissues are more vulnerable to the

detrimental effects of FFAs, whereas others demonstrate a higher

tolerance (226). Although inhibition of lipolysis shows a beneficial

effect on improving insulin sensitivity, excessive suppression of

lipolysis could potentially disrupt metabolic homeostasis due to

inadequate energy supply (219). Overall, strategies aimed at

managing insulin resistance through lipolysis necessitate a

nuanced approach that considers both systemic and localized

metabolic effects.

3.3.5 protein synthesis
There is no doubt that protein synthesis significantly contributes

to the physiological modulation of insulin signaling and insulin

resistance. Under normal insulin signaling conditions, activation of

the insulin receptor triggers the IRS and PI3K-AKT signaling

pathways, which facilitates glucose uptake, glycogen synthesis and

protein synthesis (118). While in pathological conditions such as

type 2 diabetes and hyperinsulinemia, chronic high insulin levels can

lead to excessive mechanistic target of rapamycin complex 1

(mTORC1) activation, thereby increasing the burden of protein

synthesis, disrupting ER homeostasis, as well as triggering the

unfolded protein response. Initially, unfolded protein response

(UPR) functions as a protective mechanism via suppressing

protein synthesis to alleviate ER stress. However, persistent

activation causes ER dysfunction and further exacerbates insulin

resistance (227). Evidence have indicated that pretreating cells with

protein synthesis inhibitors (such as cycloheximide), can alleviate

insulin resistance caused by glucocorticoids (dexamethasone) or

high-glucose environments, suggesting the significant role of

protein synthesis load in insulin sensitivity (228). In recent years,

the measurement of protein synthesis has been performed in studies

associated with insulin resistance (229–231). Gao et al. found that

major urinary protein 1 (MUP1) alleviates chemically induced ER

stress and subsequent insulin resistance by inhibiting protein

synthesis (232). Similarly, Marshall et al. demonstrated that the

inhibition of mRNA synthesis with actinomycin D or 5,6-dichloro-

1-beta-D-ribofuranosylbenzimidazole (DRB) fully protects

adipocytes from glucose-induced insulin resistance (233).

Methodologically, the quantitative protein synthesis can be

assessed using experiments such as the [3H]-leucine incorporation

assay. In this process, cells are incubated with radiolabelled leucine,

followed by the precipitation of the protein and the removal of any

unincorporated leucine. Subsequently, the degree to which the

leucine has been incorporated into the newly synthesized protein

is then quantified (225).

Nevertheless, the regulation of protein synthesis has a relatively

limited impact on other components of the insulin signaling

pathway, such as the expression and trafficking of IRS-1 or the

GLUT4 transporter protein (234). This specificity can be also

observed under high insulin concentrations, where protein

synthesis is stimulated but has a minimal effect on glucose

transporter proteins, leading to reduced insulin sensitivity rather

than generalized insulin resistance (228, 230). Moreover, mRNA
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synthesis inhibitors (such as actinomycin D) partially prevent

glucocorticoid-induced desensitization of the glucose transport

system by inhibiting short-lived protein synthesis but do not

significantly affect overall insulin responsiveness (235). Therefore,

although protein synthesis regulation shows a beneficial role in

alleviating ER burden and modulating insulin sensitivity, it fails to

reflect a comprehensive state of cellular insulin resistance (232, 236).

3.3.6 Insulin signal pathway indicators
Abnormalities within the insulin signaling pathway represent both

the cause and consequence of insulin resistance. The functionality of

this pathway is reflected in the expression levels and activities of its key

components, including the insulin receptor, IRS, glucose transporters,

and other associated signaling molecules. In particular, the

phosphorylated status and activation of IRS downstream regulators

are crucial indicators of pathway engagement and response to insulin

stimulation (132, 237). Key signaling molecules in the canonical insulin

signaling pathway, from the receptor to downstream effectors involved

in glucose uptake, inhibition of lipolysis, protein synthesis and glycogen

synthesis, include the insulin receptor, IRS, PI3K, AKT, and GLUT4

transporters (50, 51). The canonical insulin signaling pathway has been

shown in Figure 2. The activation of these nodes is often assessed by

phosphorylation of specific sites (such as IRS1 Ser 307, AKT Thr 308,

and Ser 473), which are essential markers of pathway engagement upon

insulin stimulation (237, 238).

However, relying solely on the detection of these molecular

markers as indicators of insulin resistance, often assessed through

western blot or qRT-PCR analysis, may not always be rigorous.

Some studies on mechanisms of drug action measured the

expression levels of these proteins but failed to evaluate more

direct indicators of insulin resistance, such as glucose tolerance or

insulin-stimulated glucose uptake. Thus, a more comprehensive

assessment is need to accurately reflect the presence and severity of

insulin resistance (239, 240).

There is also an ongoing discussion about defective signaling in

insulin resistance, especially regarding receptor availability and

pathway redundancy. The “spare receptor hypothesis” suggests

that, in some insulin-resistant phenotypes, partial signaling

through the available receptors may suffice for certain metabolic

responses, even when phosphorylation of key signaling nodes is

reduced (132, 241). This hypothesis suggests that not all insulin-

resistant phenotypes can be attributed solely to diminished

phosphorylation of critical signaling components, and that

additional approaches to assess insulin sensitivity that go beyond

phosphorylation status are nedded.
4 Conclusion

Cell culture, a fundamental tool in modern biological sciences,

provides a crucial platform for exploring biological processes. It has

been pivotal in studying the pathogenesis of diabetes and insulin

resistance, as well as in identifying potential therapeutic interventions

for these conditions. Therefore, the development and assessment of

insulin resistance cell models are paramount, particularly for
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TABLE 1 Information of the representative methods for in vitro insulin resistance cell model.

Model Context of Use Cell Lines Outcomes Caveats References

HCI

Simulating
hyperinsulinemia to
study insulin signaling
defects.
Commonly used at 100-
1000 nM insulin for
24-48h.

HepG2, 3T3-L1,
C2C12, SGBS

HCI triggers the preferential
internalization and degradation
of kinase-competent insulin
receptors, resulting in a
population of receptors with
multiple functional
abnormalities accumulated on
the cell surface.

(1) Cannot fully replicate the
multifactorial nature of insulin
resistance in vivo;
(2) May be temporary, with
cells potentially reverting to
their original insulin sensitivity
levels upon cessation of the
insulin treatment;
(3) Fail to replicate
physiological conditions.

(82, 103, 115, 130–
133, 193, 242, 243)

HCG

Replicating the
hyperglycemia observed
in diabetic patients.
Cells are exposed to 30-
60 mM glucose for
24-48h.

HepG2, L6, 3T3-L1,

HCG induction can inflict
cellular damage by
compromising cell membrane
integrity or hastening ROS-
mediated stress responses,
further impair mitochondrial
function, resulting in cellular
damage and apoptosis.

(1) Cause cell damage, called
glucose toxicity; cell viability
should be considered;
(2) The used glucose
concentration should be
physiologically appropriate,
particularly for drug screening
and evaluation purposes.

(35, 139, 141, 144–
146, 244–251)

FFAs

Simulating the obesity-
related insulin
resistance.
PA and OA are typically
used, at concentrations
of 100 µM to 1,000 µM
for 6-48h.

HepG2, 3T3-L1,
C2C12, L6

Excessive FFAs can lead to
dysfunction in gluconeogenesis
and glycogen synthesis by
increasing the level of
intracellular phosphorylated
glycogen synthase, down-
regulating the phosphorylation
of AKT, reducing the
expression of glycogen
synthase, and inhibiting the
insulin signal pathway.

(1) Show cytotoxicity and cause
cell damage, cell viability
should also be considered;
(2) The protective effect on
low dose of FFA (such as OA
or linoleate) should be noted
when using mixed FFAs.

(33, 61, 150, 151,
160, 161, 180,
252–259)
F
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Model, Name of the model used to simulate insulin resistance; Context of Use, Description of how and why the model is used, including typical experimental conditions (concentrations, exposure
time); Cell Lines, Commonly used cell lines in previous studies; Outcomes: Key findings or results observed when the model is applied; Caveats: Potential caveats or challenges associated with the
model; References: Citations supporting the use of the model and its outcomes.
FIGURE 2

Key components of the canonical insulin signaling pathway. Upon insulin binding, the insulin receptor is activated, leading to the phosphorylation of
IRS (insulin receptor substrate), which then engages the PI3K/AKT signaling pathway. This pathway subsequently activates several downstream
effectors, including mTORC1 and GLUT4. mTORC1 mediates processes such as protein synthesis and lipid synthesis, while also inhibiting lipolysis.
Simultaneously, GLUT4 translocates to the cell membrane, facilitating glucose uptake, and the pathway promotes glycogen synthesis.
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preliminary screening of anti-insulin resistance agents. Through

comprehensive investigation and reflection, we recommend that

several factors and details be carefully considered during the

experimental process, including the main selection of cell lines,

induction methods and evaluation metrics for insulin resistance

(show in Table 1). Such considerations will ultimately aid in the

clinical diagnosis and treatment of diseases linked to insulin resistance.
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