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Novel perspectives on
the pharmacological
treatment of thyroid-
associated ophthalmopathy
Zilin Li*

No. 1 Teaching Hospital, Norman Bethune College of Medicine, Jilin University, Changchun,
Jilin, China
Thyroid-associated ophthalmopathy (TAO), an autoimmune disease closely

related to thyroid dysfunction, remains a challenging ophthalmic condition

among adults. Its clinical manifestations are complex and diverse, and disease

progression can lead to exophthalmos, diplopia, exposure keratitis, corneal

ulceration, and compressive optic neuropathy, resulting in irreversible vision

damage or even blindness. Traditional treatment methods for TAO, including

glucocorticoids, immunosuppressants, and radiation therapy, often have

limitations and side effects, making this disease problematic in ophthalmology.

As a result, the development of novel targeted drugs has become a research

hotspot for addressing the pathogenesis of TAO. A range of novel targeted drugs,

such as teprotumumab and tocilizumab, have been successfully developed and

demonstrated remarkable efficacy in relieving inflammation and managing this

disease. In addition, some drug candidates and molecular targets identified in the

TAO in vitro model have shown promising prospects. This article briefly reviews

the potential new strategies for future clinical treatment and the progress of new

drug therapies for TAO.
KEYWORDS

thyroid-associated ophthalmopathy, drug treatment, research progress, molecular
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1 Introduction

Thyroid-associated ophthalmopathy (TAO), also named Graves’ orbitopathy (GO) or

Thyroid-eye disease (TED), is one of the most common orbital diseases in adults and

occurs in approximately 20.1% of thyroid dysfunction patients (1). TAO is more frequent

in women than men, approximately 4.9: 1 (2). This autoimmune disease is closely

associated with thyroid disorders and involves various intraorbital tissues, such as the

eyelid, extraocular muscle, and orbital adipose tissue. It is related to genetic factors, stress,

radioactive iodine treatment, smoking, and other factors (3, 4). In the early stages of TAO,

patients typically present with eyelid retraction, congestion, and edema of the eyelid and
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conjunctival tissues. Disease progression can lead to exophthalmos,

ocular motility disorders, and diplopia. In later stages, exposed

keratitis, corneal ulceration, and dysthyroid optic neuropathy

(DON) result in irreversible vision loss or even blindness.

Currently, we have some specifically designed targeted therapies

for TAO, such as teprotumumab. However, these targeted drugs

have not yet been widely used clinically. TAO remains a challenging

problem in ophthalmology.

The pathogenesis of TAO remains incompletely understood.

Current theories suggest that it is a complex organ-specific

autoimmune disease arising from immune dysfunction triggered

by antigenic stimulation, environmental factors, and genetics. These

factors lead to an immune tolerance imbalance, activating

autoimmune T cells (including Treg cells, CD8+ cytotoxic T cells,

CD4+ T cells, natural killer T cells, Th1 cells, Th2 cells, and Th17

cells) and B cells (including Breg cells), which initiate a cascade of

reactions (5–10). In patients with active inflammation, thyroid-

stimulating hormone receptor (TSHR) expression in orbital tissues

is significantly greater than in patients with quiescent inflammation

(11). Additionally, insulin-like growth factor-1 receptor (IGF-1R) is

overexpressed in the orbital fibroblast (OF) and lymphocyte of

patients with Graves’ ophthalmopathy (12). TSHR and IGF-1R can

form functional complexes that mediate downstream signaling via

TSHR (13–15), suggesting that they may act as “co-culprits” in the

pathogenesis of TAO (16).

OF plays a crucial role as both target and effector cells in the

development of TAO (17, 18). OF interacts with infiltrating

lymphocytes, monocytes, dendritic cells/macrophages, and mast

cells in the orbit, and secrets various chemokines and cytokines,

such as IL-1b, IL-2, IL-6, CXCL8, IL-10, and IL-17A (19); IL-35, IL-

21, COX2, CCL2, CCL5, and TGF-b (20, 21); and IFN-g and TNF-a
(22). These cytokines amplify inflammation and autoimmune

responses, stimulating OF to synthesize and secrete prostaglandin

E2 (PGE2). PGE2 modifies B cell behavior, affects their phenotypic

switch, and regulates mast cell activation. Furthermore, OFs secrete

various glycosaminoglycans, particularly hyaluronic acid (HA),

which forms high-molecular-weight polysaccharides with

hydrophilic groups that promote orbital soft tissue edema. This

leads to increased orbital pressure, exophthalmos, and swelling of

the extraocular muscles. The increase in the number of orbital

adipocytes, the expansion of soft tissues, and the secretion of

adipokines and growth factors by adipose tissue may also

contribute to the pathogenesis of TAO (23, 24) (Figure 1).

TAO treatment focuses on reducing orbital inflammation,

alleviating exophthalmos, improving appearance, inhibiting the

fibrosis of extraocular muscles, orbital fat, and periorbital soft

tissues, and preserving visual function. Currently, the clinical

management of TAO mainly involves nonspecific glucocorticoids

(GCs) therapy, radiotherapy, specific targeted therapies (anti-

IGF1R, anti-CD20) and surgical intervention. Current research

hotspots include expanding the understanding of TAO

pathogenesis, identifying relevant targets, and developing novel

pharmacologic treatments. Herein, we comprehensively

summarize the potential target strategies for the progress of new

drug therapies and future treatment for TAO.
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2 New drugs currently used in
clinical practice

TAO currently includes clinical use of drugs such as

immunosuppressants, somatostatin analogs, and monoclonal antibody-

targeted biologics, most of which have shown gratifying benefits.

Ongoing clinical trials evaluate these drugs’ efficacy and safety, which

may soon become integral components of TAO management (Table 1).
2.1 Immunosuppressant

Mycophenolate mofetil (MMF) competitively and reversibly

inhibits inosine monophosphate dehydrogenase, reducing antibody

production by B cells and having dual antiproliferative effects on B

and T cells (39). Combined with GCs, MMF has been shown to

enhance the treatment response rate among patients with active

moderate-to-severe TAO (40, 41). A four-year retrospective cohort

study confirmed that MMF is an effect ive and safe

immunosuppressant for treating TAO (42). The clinical efficacy of

active moderate-severe TAO patients was 100% (8/8) in non-DON

group and 90% (9/10) in DON group at 24 weeks. In a clinical study

involving 60 patients with active moderate-to-severe TAO, the

efficacy of the MMF combined with GCs pulse therapy group

(73.3% and 83.3%) at 12 weeks and 24 weeks, respectively, was

significantly higher than that of the GCs pulse therapy alone group

(46.7% and 60.0%) (p < 0.05) (43). In another comparative study

involving 242 cases of TAO, the combined oral administration of

MMF (one 500 mg tablet twice per day) and prednisolone (5 mg per

day) was found to be highly beneficial in alleviating exophthalmos

and diplopia (44). The latest EUGOGO guidelines also recommend

the combination of MMF (0.72 g daily) and methylprednisolone as a

first-line treatment for active moderate-to-severe TAO (25).

Combined therapy is expected to provide greater benefits to patients.

Cyclosporin reduces T cell secretion of IL-2 by inhibiting the

calcineurin pathway. Research suggests that combining it with GCs

may be an effective method (56% improvement) for treating

moderate to severe TAO, while cyclosporin monotherapy is not

superior to GCs (22% vs 61%) (26, 45). Azathioprine is used alone

to treat TAO, but its effectiveness is unclear. It may have potential

benefits in reducing the recurrence of TAO after the cessation of

steroids (27, 46). Methotrexate is an anti-folate antimetabolite that

exerts immunosuppressive effects by interfering with the DNA/

RNA synthesis of proliferating cells. It can improve periorbital and

conjunctival edema, relieve exophthalmos, and reduce intraocular

pressure in patients who are unresponsive to GCs (47, 48). Study

showed that reduced GCs plus methotrexate therapy is effective and

safer in treating active and moderate-to-severe TAO patients than

4.5 g GCs monotherapy (28). These investigations suggest that

monotherapy utilizing immunosuppressants for the treatment of

TAO has not demonstrated superior efficacy. When used in

combination with GCs, they could provide good clinical benefits

while reducing the side effects of GCs pulse therapy. Combination

therapy represents a viable treatment option that merits

consideration within clinical practice, albeit its long-term benefits
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FIGURE 1

Overview of TAO pathogenesis.
TABLE 1 New drugs currently used in clinical practice.

Agents studied
(no. of pts)

Mechanism
of action

Dose and
treatment
protocol

Treatment
indication

Effectiveness Key findings of research

Mycophenolate mofetil (25) antiproliferative effects
on B and T cells

oral, 0.72 g daily active moderate-
to-severe TAO

Yes The combination of mycophenolate
mofetil and methylprednisolone as a
first-line treatment.

Cyclosporin (26) reduces T cell secretion
of IL-2

oral, 7.5 mg per
kilogram of body
weight daily

moderate to
severe TAO

Yes The combination of cyclosporin and
prednisone can be effective.

Azathioprine (27)
Methotrexate (28)

interfering with the
DNA/RNA synthesis of
proliferating cells

oral, 100–200 mg
daily;
12.5mg per week

active moderate-
to-severe TAO

Yes The combination with glucocorticoids
represents a viable treatment option.

Lanreotide (29)
Octreotide (30)

inhibit lymphocyte
activation, proliferation,
and cytokine production

im injection, 30mg
every 2/4 weeks

mild active TAO Conflicting The clinical application of somatostatin
analogs remains an area of
ongoing exploration.

Teprotumumab (31) IGF-1R
monoclonal antibody

intravenous, 10 mg/kg
for the first time,
followed by 20 mg/kg

active TAO Yes The development of this drug represents
a milestone in the treatment history
of TAO.

Rituximab (32) CD20
monoclonal antibody

intravenous, a single
dose of 500 mg

active moderate-
to-severe TAO

Conflicting Rituximab has shown preliminary
efficacy in TAO.

Tocilizumab (33) IL-6 receptor
monoclonal antibody

intravenous, 8 mg/kg
body weight
per month

moderate-to-
severe
corticosteroid-
resistant TAO

Yes Tocilizumab seems an effective and safe
treatment option for refractory TAO.

Batoclimab (34) a neonatal fragment
crystallizable receptor
(FcRn) inhibitor

subcutaneous
injections, 680 mg,

moderate-to-
severe TAO

Yes The result highlights the efficacy and
safety of batoclimab, endorsing its
potential for further investigation
for TAO.

Etanercept (35)
Adalimumab (36)
Infliximab (37)

tumor necrosis factor-
alpha inhibitors

subcutaneous
injection, 25 mg/80mg
twice weekly

active, mildly-to-
moderately
severe TAO

Yes These drugs may have a role in the
treatment of active TAO with prominent
inflammatory symptoms.

Statins (38) activating TH2 and
regulatory T cells,

oral, 20 mg daily moderate-to-
severe,
active TAO

Yes Addition of oral atorvastatin to an ivGCs
regimen improved TAO outcomes.
F
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necessitate further corroboration through extensive and rigorous

clinical research endeavors.
2.2 Somatostatin analogs

Somatostatin is an endogenous cyclic peptide with widespread

inhibitory effects on various systems (49). The rationale for using

somatostatin analogs for treating TAO is based on their ability to

inhibit lymphocyte activation, proliferation, and cytokine production

(50, 51). Octreotide and lanreotide are considered first-generation

synthetic somatostatin analogs. In a double-masked randomized

controlled trial (RCT), octreotide did not demonstrate significant

efficacy in patients (n=50) with moderate-to-severe TAO (p=0.043)

(52). Chang TC et al. found that compared to placebo, lanreotide only

alleviated diplopia when looking downward (p=0.03) and that

lanreotide treatment did not significantly impact clinical activity

scores (CAS) or proportion requiring orbital surgery (p=0.29) (29).

In contrast, compared with placebo, octreotide has been shown to

significantly reduce exophthalmos (p=0.027) at the end of the 4-

month treatment period (30). Another double-blind RCT revealed

that patients (n=25) treated with octreotide had more significant

decreases in CAS (p= 0.02) and a significantly improved palpebral

fissure height (decreased 1 mm on the right and 0.5 mm on the left,

p<0.01) than the placebo group (53). The differences in conclusions

between the studies may be attributed to variations in patient

inclusion criteria, variations in oral dosage, as well as the small

sample and short follow-up duration, leading to biases. Therefore, the

clinical application of somatostatin analogs remains an area of

ongoing exploration.
2.3 Teprotumumab

Research has indicated that IGF-1R is overexpressed in patients

with TAO OFs and lymphocytes (12). Teprotumumab, a monoclonal

antibody, binds to IGF-1R with high affinity and competitively inhibits

its interaction with endogenous ligands (IGF-1 and IGF-2) (54, 55),

demonstrating significant therapeutic potential. The development of

this drug represents a milestone in the treatment history of TAO. Two

multicenter, randomized, double-blind clinical trials (phase 2 and

phase 3) (31, 56) evaluated the efficacy of intravenous teprotumumab

compared to placebo (administered every 3 weeks for 8 times; the

infusion dose was 10 mg/kg for the first time, followed by 20 mg/kg for

subsequent times) in approximately 170 newly diagnosed active TAO

patients. The results showed that compared with placebo,

teprotumumab had better results with proptosis response (83% vs

10%), CAS of 0 or 1 (59% vs 21%), diplopia response (68% vs 29%), and

TAO quality-of-life overall score (13.79 vs 4.43), and these results were

maintained in most patients in the long term (p<0.001 for all). Severe

adverse events were rare; the typical adverse events after

teprotumumab treatment included muscle spasms (25%), nausea

(17%), hair loss (13%), diarrhea (13%), fatigue (10%), hearing

impairment (10%), and hyperglycemia (8%). Teprotumumab is

contraindicated in patients with inflammatory bowel disease and

pregnant women (57). The OPTIC-X study showed that TAO
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patients who did not respond to teprotumumab or whose disease

worsened in the first course also benefited from teprotumumab

treatment (58). More patients receiving teprotumumab achieved a

reduction of at least 2 mm in proptosis at week 24 versus placebo (65

[77%] of 84 patients assigned teprotumumab vs 13 [15%] assigned

placebo, p<0·0001) (59). Furthermore, compared to 20 patients in the

placebo group, 42 patients in the group receiving teprotumumab

exhibited significant improvement in ocular protrusion (-2.41 vs

-1.48, p=0.0004) among long-term low-inflammation TAO patients

regardless of disease duration/activity (60). Following treatment with

teprotumumab, the lacrimal gland volume of TAO patients decreased

significantly (768 mm3 to 486 mm3, p < 0.01), while dry eye symptoms

decreased markedly (61). Although current dosing regimens have

proven effective for treating TAO, further comprehensive research is

warranted, including dose-ranging studies involving variable

concentrations, infusion frequencies, and maintenance

therapy durations.
2.4 Rituximab

Rituximab is a monoclonal antibody that targets CD20, which is

only expressed by B cells (from pre-B cells to mature memory B cells).

It is the first biological therapy applied to treat TAO (62). Mario Salvi

et al. (63) reported using rituximab in 43 active GO patients, with 39

patients (91%) showing a tendency toward stability, 3 showing no

change, and 1 showing disease progression. Subsequently, a double-

blind RCT (64) compared the effects of rituximab and GC shock

therapy in active moderate-to-severe patients, with the results showing

that 100% of patients in the rituximab group experienced symptom

alleviation at 24 weeks and that 38%-62% of patients experienced

improvement in quality of life. However, another RCT conducted the

same year (65) showed no additional benefit in active moderate-to-

severe TAO patients using rituximab compared to those using placebo,

accompanied by significant adverse reactions. In a study of rituximab

treatment in 17 active moderate-to-severe GO patients, a low-dose (100

mg) single injection was effective (CAS score decreased from 4.56 ±

0.96 to 1.25 ± 1.14 at 24 weeks, p=0.001) (66). In a study of rituximab

treatment for active moderate-to-severe TAO with different dosage

groups (single dose of 100 mg, single dose of 500 mg, and 1000 mg

given in two doses one week apart), considering factors such as patient

activity remission, impact on quality of life, and treatment cost, it is

recommended that most patients use a single dose of 500 mg (32).

Rituximab has shown preliminary efficacy in the clinical treatment of

TAO, but some studies report no significant benefits. This may be

related to small sample sizes, varying inclusion and exclusion criteria,

and differences in population types. Thus, further clarification of the

role of rituximab in TAO treatment through long-term, large-sample,

multicenter clinical trials is still needed.
2.5 Belimumab

Belimumab is a monoclonal antibody targeting B cell

stimulating factor (BAFF). Like rituximab, belimumab targets

naive and transitional B cells and is currently approved for
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treating systemic lupus erythematosus (67). Given the reported

elevation of serum BAFF concentrations in Graves’ disease patients

(68, 69) and the expression of BAFF on thyroid cells in patients with

autoimmune diseases or a nodular goiter (70, 71), belimumab

potentially exhibits beneficial effects in reducing disease activity in

Graves’ disease and TAO. A clinical randomized controlled trial is

underway in Italy (72), and the outcomes remain to be evaluated.
2.6 Tocilizumab

Tocilizumab is a recombinant human monoclonal antibody

targeting the interleukin-6 (IL-6) receptor (73). IL-6 is a pleiotropic

cytokine secreted by various cell types, including T cells, macrophages,

fibroblasts, osteoblasts, and endothelial cells. A preliminary study

showed that intravenous tocilizumab reduced disease activity in

patients unresponsive to GC therapy (mean CAS score reduction

5.89 ± 1.41 points, p< 0.00027) (74). A subsequent double-blind

RCT demonstrated a significant decrease in disease activity (CAS

score < 3, 86.7% vs 35.2%, p =0.005) and severity in GC-resistant

patients treated with tocilizumab compared to those treated with

placebo (33). Two longitudinal studies (75, 76) also indicated that at

least 4 months of tocilizumab treatment (one dose per month)

provided significant benefits to patients with moderate-to-severe GC-

resistant TAO. In an observational study of 12 patients with moderate-

to-severe GC-resistant TAO, intravenous (tocilizumab 8 mg/kg, once

every 28 days for 4 doses) reduced disease activity, with varying degrees

of relief of proptosis and diplopia (Hertel score reduced by 2.3 mm on

the right eye[p=0.003], 1.6 mm on the left eye [p=0.002]) (77).

Tocilizumab appears to be an effective and safe treatment option for

refractory TAO, providing a new alternative for patients with GC

contraindications or resistance.
2.7 Batoclimab

Batoclimab, a neonatal fragment crystallizable receptor (FcRn)

inhibitor, was evaluated in a double-masked RCT involving 77

patients with moderate-to-severe TAO (34). Subjects received weekly

subcutaneous injections of batoclimab (680 mg, 340 mg, or 255 mg) or

placebo. At 12 weeks, the batoclimab (680 mg) group showed a

significant reduction in TSH-R-Ab levels, and participants tolerated

the drug well throughout the study. Furthermore, phase 3 randomized

placebo-controlled 24-week trials (NCT. 05524571 and NCT.

05517421) and a 24-week open-label extension (NCT. 05517447)

have been designed, and more relevant clinical data are anticipated.

2.8 Tumor necrosis factor-
related inhibitors

Key tumor necrosis factor a (TNF-a) inhibitors include etanercept
(a recombinant human soluble TNF-a receptor fusion protein),

adalimumab (a human monoclonal antibody targeting TNF-a), and
infliximab (a monoclonal antibody against TNF-a). A preliminary

study demonstrated that the subcutaneous etanercept injection

improved ocular symptoms in 10 patients with active TAO without

serious adverse events (CAS score reduced from 4 to 1.6 at 12 weeks,
Frontiers in Endocrinology 05
and the mean ophthalmopathy index reduced from 5.8 to 4.4) (35).

Another case report described a female patient with concurrent TAO

and rheumatoid arthritis who received etanercept for rheumatoid

arthritis treatment, resulting in improved ocular symptoms and

reduced exophthalmos (78). A retrospective study suggested that

subcutaneous adalimumab might be an effective treatment for

patients with active disease and significant inflammation (36), but

prospective RCTs are needed to confirm its efficacy. Infliximab has also

shown therapeutic effects in case reports of TAO, with a significant

reduction in ocular inflammation, improvements in visual function,

and no apparent short-term side effects (37, 79). However, large-scale

clinical RCTs are still needed to assess the efficacy and safety of anti-

TNF-a treatment.
2.9 Statins

Statins are commonly used as lipid-regulating agents in clinical

practice. Previous studies have suggested that statin therapy may be

associated with a reduced risk of TAO development in Graves’ disease

patients (80). A Swedish study (81) statistically analyzed 34,894 patients

newly diagnosed with Graves’ disease and revealed that statin users had

a significantly lower likelihood of developing TAO, indicating a

potential preventive effect on TAO progression. There is a significant

correlation between the occurrence of TAO and total cholesterol and

low-density lipoprotein cholesterol levels, suggesting that statin

treatment may benefit patients with TAO and provide a new

therapeutic direction (82). A phase 2 clinical trial in Italy showed

that adding oral atorvastatin to intravenous GC pulse therapy

improved TAO outcomes in patients with moderate-to-severe active

ophthalmopathy and hypercholesterolemia (p=0·042) (38). This may

be due to the ability of stains to shift the primary proinflammatory T-

cell response to an anti-inflammatory response by activating TH2 and

regulatory T cells, thereby alleviating clinical symptoms. Future phase 3

studies are required to confirm this association.
3 Promising candidates target drugs in
the laboratory

With continuous exploration by researchers, it has been

confirmed that some commonly used clinical drugs and

traditional Chinese medicine components have therapeutic effects,

such as inhibiting adipogenesis, anti-inflammatory, and anti-

fibrotic effects, in the TAO in vitro model. The following section

will briefly discuss the new perspectives of old drugs, as well as

emerging molecular targets in TAO.
3.1 Drug discovery in an in vitro model of
TAO (I)

Preventing orbital tissue inflammation and adipose tissue

hyperplasia during the early stages of the disease is critical for

addressing exophthalmos. Previous studies have reported that
frontiersin.org
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several clinically used drugs exhibit therapeutic potential for

inhibiting adipogenesis and inflammation in in vitro models of

TAO. Diclofenac suppresses COX-2 to inhibit mature adipocyte

formation in OFs (83). Salazosulfamide inhibits adipogenesis by

downregulating PPARg expression in OFs (84). Idelalisib, a

treatment for lymphocytic leukemia, inhibits lipid droplet

formation and decreases the expression of PPARg and c/EBPa/b
in OFs (85). Simvastatin inhibits the expression of adipogenesis-

related genes in preadipocytes and OFs stimulated with cigarette

smoke extract (86). Metformin, a first-line treatment for type 2

diabetes, inhibits adipogenesis and inflammation in in vitro models

of TAO by activating AMPK phosphorylation and suppressing ERK

phosphorylation signaling (87). Nintedanib, a treatment for

idiopathic pulmonary fibrosis, inhibits fibroblast growth factor-

induced adipogenesis in OFs from patients with TAO (88).

Disulfiram, a drug used to treat alcohol aversion, significantly

inhibits the differentiation of OFs from TAO patients into mature

adipocytes, inhibiting ERK phosphorylation by partially inhibiting

ALDH1A1 (89). Linsitinib, a novel and highly selective dual

inhibitor of IGF-1R and insulin receptors, may reduce local

inflammatory responses by promoting Treg differentiation and/or

activation and reducing TNF-a levels in a mouse model of TAO

(90). Intriguingly, caffeine has also been found to reduce oxidative

stress and inhibit adipogenesis in an in vitro model of TAO (91).

Studies have shown elevated levels of platelet-derived growth

factor (PDGF)-AA, AB, and BB in the orbital connective tissue of

TAO patients, with OFs expressing PDGF receptors (92, 93).

PDGFs can induce the proliferation of OFs, promote adipogenesis

(94), promote the secretion of hyaluronic acid and IL-6 (95), and

increase the expression level of surface TSHR (96). Tyrosine kinase

inhibitors, such as imatinib, dasatinib, and nilotinib, may be

candidates for targeting PDGF signaling (97). The serum IL-17

concentration and positive detection rate are significantly greater in

TAO patients than in healthy controls, and the serum IL-17

concentration is significantly associated with CAS (p < 0.001)

(98). The proportion of T cells that secrete IL-17A is significantly

greater in TAO patients than in healthy subjects (19, 99). Various

IL-17A monoclonal antibodies, including secukinumab (100),

ixekizumab (101), and bimekizumab (102), have been successfully

developed. They are expected to serve as targets in future

treatment approaches.

Traditional Chinese medicines (TCMs) have also been found to

inhibit adipogenesis. Quercetin is used as an adjunctive treatment

for chronic bronchitis and coronary heart disease, and it inhibits the

differentiation of OFs into mature adipocytes by reducing oxidative

stress (103). Tanshinone II inhibits adipogenesis in OF in a dose-

dependent manner, reducing oil red O staining and decreasing the

expression of PPARg and C/EBPa (104). Icariin, a flavonoid, affects

the differentiation of TAO preadipocytes into mature adipocytes by

inhibiting AMPK/mTOR-mediated autophagy, reducing orbital

adipose tissue expansion and lipid droplet accumulation (105).

Chloroquine/hydroxychloroquine, an antimalarial drug, affects the

proliferation, adipogenesis, and hyaluronic acid production of TAO

OFs by inhibiting autophagy (106). Liensinine, an alkaloid extracted

from lotus seed embryos, inhibits IL-13-induced autophagosome

formation and the overexpression of autophagy markers, increases
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the LC3-II/LC3-I ratio, and ultimately downregulates p62

expression in TAO OFs, thereby reducing inflammation and

adipogenesis (107). Berberine, a significant component of Coptis

chinensis, inhibits lipid droplet formation in OFs and reduces IL-

1b-induced inflammation (108).
3.2 Drug discovery in an in vitro model of
TAO (II)

Suppressing the fibrosis of extraocular muscles and periorbital

soft tissues is another urgent clinical issue. Pirfenidone, a treatment

for idiopathic pulmonary fibrosis, inhibits IL-1b-induced increases in
TIMP-1 and hydroxyproline levels in an in vitro model of TAO,

exerting antifibrotic effects (109). Pirfenidone has also been found to

regulate TGF-b1-mediated OF differentiation into myofibroblasts

and ECM homeostasis (110). Simvastatin has been found to inhibit

TGF-b-mediated a-SMA expression in an in vitro model of TAO

(111). Metformin exerts anti-inflammatory and antifibrotic effects on

OFs by activating autophagy and the AMPK/mTOR signaling

pathway (112). Relaxin, a recombinant form of the human

hormone relaxin-2, alleviates TGF-b1-induced a-SMA, COL1A1,

FN1, and TIMP1 expression in OFs through the Notch pathway,

exerting antifibrotic effects (113).

Certain TCMs have also been found to have antifibrotic effects.

Curcumin inhibits the TGF-b1 signaling pathway and attenuates

TGF-b1-induced CTGF and a-SMA expression (114). Quercetin

has been shown to inhibit TGF-b-stimulated FN1 and collagen Ia
expression and suppresses MMP2 and MMP9 activity in an in vitro

model of TAO, suggesting potential therapeutic and preventive uses

for chronic fibrosis (115). Dihydroartemisinin may exert

antifibrotic effects on OFs through the MAPK/ERK and STAT3

signaling pathways (116). Lutein reduces TGF-b1-induced a-SMA

and COL1A1 expression by inhibiting the ERK/AP-1 pathway

(117). Crocin suppresses TGF-b1-induced OF proliferation and

migration, exerting antifibrotic effects by inhibiting the ERK and

STAT3 signaling pathways (118).

These encouraging findings broaden our clinical therapeutic

approaches. The safety of commonly used Western medicine and

TCMs active ingredients has been widely validated in clinical practice.

However, most of these studies involved in vitro experiments;

therefore, whether these drugs can also inhibit adipogenesis and

reduce tissue inflammation and fibrosis in TAO animal models

remains unverified. Furthermore, there is a lack of an in-depth

understanding of drug interactions with systemic conditions

(thyroid function indicators, liver and kidney function) and

potential systemic adverse effects during TAO treatment. Therefore,

there is still a long way to go before the clinical application of TAO

therapy. Next, we will outline several new drug treatments and their

recent advancements in clinical settings.
3.3 Advances in other molecular targets

With further research, the discovery of emerging molecular

targets has revolutionized therapeutic strategies for TAO. Precisely
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targeted molecules are expected to reduce therapeutic side effects,

enhance treatment efficacy, and offer new hope for patients. Human

placenta-derived mesenchymal stem cells were shown to inhibit

lipid accumulation and ameliorate adipogenesis in the orbital

tissues of TAO model mice (119). Fingolimod (a sphingosine-1-

phosphate inhibitor) improves the outcome of experimental Graves’

disease and TAO by modulating the autoimmune response to

TSHR (120). IL-38 has been shown to exert anti-inflammatory

and antifibrotic effects in in vitro models of TAO (121). IL-11

promotes OF fibrosis by increasing the phosphorylation of ERK and

STAT3 and upregulating the expression of the fibrosis-related

proteins a-SMA and COL1A1 (122). TGF-b has been shown to

enhance YAP expression, and YAP silencing or inhibition with

cerivastatin, verteporfin, TED-347, and CA3 has been shown to

significantly reduce myofibroblast differentiation and collagen

formation in TGF-b-induced TAO (123). The expression of

BRD4, a member of the bromodomain and extra terminal family,

is upregulated in the orbital tissues of TAO patients and in TGF-b1-
stimulated TAO OFs. BDR4 may regulate the fibrotic process in the

OFs of TAO patients through the FoxM1/Plk1 axis, and targeting

the BD2 domain of BRD4 may exert antifibrotic effects (124).

TMEM2 has been shown to suppress inflammatory cytokine

production, ROS production, lipid droplet formation, and

adipogenic factor expression in OFs in TAO mouse models (125).

GSDMD-mediated OF cell pyroptosis induces TAO inflammation

through the NF-kB/AIM2/caspase-1 pathway (126).

Numerous challenges remain. First, the functions and

mechanisms of these targets and small-molecule compounds may
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not be fully elucidated in laboratory settings, adding uncertainty to

subsequent drug development. Second, experimental targets may lack

sufficient clinical data, making it difficult to predict their efficacy and

safety in humans. Additionally, potential issues such as stability,

specificity, and interactions with other biomolecules require further

investigation and validation of new targets. Therefore, despite

promising new targets for TAO treatment, additional research and

overcoming these limitations are necessary. With technological

advancements, we anticipate the discovery of more targets and the

elucidation of their mechanisms of action, leading to more precise

and effective TAO treatment options (Figure 2).
4 Discussion

As research on TAO has progressed, the limitations of

traditional treatments have spurred the emergence of novel

therapeutic approaches, with various new drugs gradually

entering clinical trials. Currently, some medications can alleviate

the activity and severity of the disease, but there are still few

prospective, multicenter, randomized controlled clinical studies.

Further research is needed to investigate the effectiveness, safety,

optimal dosage, and administration methods of these drugs. The

clinical application of these drugs should be guided by specific

indications personalized according to the disease grade and activity

of each patient. However, the exact mechanisms of these drugs and

the risk of complications during treatment remain unclear, thus

limiting their clinical use.
FIGURE 2

Current status of TAO drug therapy and future directions.
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Given the complexity and individual differences in the

pathogenesis of TAO, personalized treatment plans are crucial. MMF

combined with GCs pulse therapy and intravenous teprotumumab can

be considered effective methods for current drug therapy. Early

intervention can significantly impact the disease course, improve

long-term prognosis, and reduce the incidence of severe

complications. It is imperative to understand the pathogenesis of

TAO further, identify relevant targets, and develop new treatment

strategies. Multitarget combinations, new administration methods, and

traditional Chinesemedicine componentsmay offer promising avenues

for improving drug efficacy and reducing risks. However, high-quality

RCTs and the elucidation of the exact underlying mechanisms are still

needed. There is an urgent need to develop eye drops, ophthalmic gels,

and sustained-release formulations for periorbital injection

incorporating contemporary polymer-based medical materials.

In conclusion, drug therapy for TAO is evolving from new

perspectives. We eagerly await the clinical application of more

effective, safer, longer-lasting, and more straightforward drugs or

treatment modalities, aiming to maximize the long-term prognosis

and quality of life of patients with TAO.
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