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The vascular and lymphatic systems are integral to maintaining skeletal

homeostasis and responding to pathological conditions in bone and joint

tissues. This review explores the interplay between blood vessels and

lymphatic vessels in bones and joints, focusing on their roles in homeostasis,

regeneration, and disease progression. Type H blood vessels, characterized by

high expression of CD31 and endomucin, are crucial for coupling angiogenesis

with osteogenesis, thus supporting bone homeostasis and repair. These vessels

facilitate nutrient delivery and waste removal, and their dysfunction can lead to

conditions such as ischemia and arthritis. Recent discoveries have highlighted the

presence and significance of lymphatic vessels within bone tissue, challenging

the traditional view that bones are devoid of lymphatics. Lymphatic vessels

contribute to interstitial fluid regulation, immune cell trafficking, and tissue

repair through lymphangiocrine signaling. The pathological alterations in these

networks are closely linked to inflammatory joint diseases, emphasizing the need

for further research into their co-regulatory mechanisms. This comprehensive

review summarizes the current understanding of the structural and functional

aspects of vascular and lymphatic networks in bone and joint tissues, their roles in

homeostasis, and the implications of their dysfunction in disease. By elucidating

the dynamic interactions between these systems, we aim to enhance the

understanding of their contributions to skeletal health and disease, potentially

informing the development of targeted therapeutic strategies.
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1 Introduction

Mammals possess two crucial vascular systems that support

essential life functions. The first is the blood vessel system,

responsible for delivering oxygen and nutrients to tissues and

cells while removing metabolic waste. The second is the

lymphatic vessel system, which manages the drainage of

interstitial fluid and immune regulation. Though these systems

develop independently, they are functionally and structurally

interrelated. Their coordinated interaction is vital for maintaining

the microcirculatory environment’s homeostasis. Recent studies

have highlighted that blood and lymphatic vessels in bones and

joints play multiple roles in maintaining the skeletal system’s

homeostasis under both physiological and pathological conditions

(1–5).

A specific subtype of blood vessels, known as type H blood

vessels, is crucial for bone homeostasis. Characterized by high

expression of CD31 and endomucin, these vessels support

osteoprogenitors by coupling angiogenesis and osteogenesis (6, 7).

Additionally, endothelial cells in type H blood vessels facilitate bone

tissue homeostasis and regeneration through paracrine signaling (8,

9). Conversely, interruptions in blood flow and ischemia in the

subchondral bone can impede nutrient diffusion to articular

cartilage, resulting in bone cell death, joint damage, and

conditions like arthritis (5, 10). Recent advancements have

elucidated the functional role of the lymphatic network in the

skeletal system. Studies have identified a lymphatic network in

bones and the role of lymphangiocrine signaling in repairing

radiation-induced bone injuries (2, 11, 12). Increasing evidence

also points to the critical role of lymphatic vessels in maintaining

joint homeostasis, with their pathological changes closely linked to

the onset and progression of inflammatory joint diseases (4, 13).

Consequently, the interest in the role of lymphatic vessels in tissue

injury has grown. As research continues to evolve, the significance

of the vascular-lymphatic network in bone tissue repair and joint

diseases is increasingly recognized. This network maintains tissue

homeostasis and controls disease progression by regulating local

inflammatory activity, facilitating material exchange, and releasing

paracrine signals from vascular and lymphatic secretions. Despite

their importance, review on the holistic role of these networks in

bone and joint homeostasis and related diseases remains limited.

In this review, we provide a comprehensive overview of the

current knowledge on the structural and functional aspects of blood

and lymphatic vessels in bone and joint. We summarize the

regulatory effects of angiogenesis and endothelial secretory signals,

as well as lymphogenesis and lymphatic secretory signals, on the

homeostasis of bone and joint tissues under specific conditions.

Additionally, we review the interactions and co-regulatory

mechanisms of the vascular and lymphatic networks in these

tissues. Finally, we examine the changes and potential regulatory

mechanisms of these networks under pathological conditions.
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2 Blood and lymphatic vessels in bone
and joint

2.1 Blood vessels in bone and joint

The skeleton contains a complex vascular network essential for

tissue oxygenation andmetabolism. Blood vessels in bone playmultiple

roles in maintaining bone homeostasis under both physiological and

pathological conditions. Studies have revealed diverse vascular

subtypes and a specialized vascular microenvironment within bone.

Bone tissue features a unique type of blood vessel known as type

H vessels. Predominant in the metaphysis and endosteum, these

capillaries are characterized by high expression of CD31 (platelet

and endothelial cell adhesion molecule 1) and endomucin (Emcn)

(6, 7). These columnar vessels are interconnected at their distal ends

near the growth plate in the metaphysis by structures termed loops

or arches (7, 14, 15). Within the bone marrow cavity, there is a

highly branched and relatively irregular sinusoidal vasculature with

low expression of CD31 and Emcn, referred to as type L vessels (7,

16, 17). The base of the type H capillary columns in the metaphysis

connects to the bone marrow vasculature at the metaphyseal–

diaphyseal interface, linking the metaphysis to the diaphysis (15,

18). Sinusoidal and columnar vessels are interconnected, forming a

single vascular network (Figure 1).

Type H vessels are less abundant than type L vessels due to their

limited distribution and the large area of the bone marrow cavity

(7). Fed directly by arterioles, type H vessels exhibit higher partial

pressure of oxygen and blood flow than type L vessels (15, 19, 20).

The lower permeability of type H vessels and nearby arterioles

creates an environment low in reactive oxygen species (ROS) (16,

21). Conversely, the lower blood flow in sinusoidal type L vessels

promotes the transendothelial migration of blood cells and the

trafficking of leukocytes (21–23). Type L vessels in the bone marrow

play crucial roles in hematopoietic cell trafficking and serve as

vascular niches for myelopoiesis.

The differing properties of type H and type L vessels have

significant functional consequences for tissue microenvironments.

Type H and type L vessels also have distinct gene expression profiles,

supporting different perivascular cell types and further impacting the

local microenvironment (7). At the protein and transcriptome levels,

in addition to CD31 and Emcn, type H vessels express various growth

factors, including fibroblast growth factor 1 (FGF1), platelet-derived

growth factor A (PDGF-A), and PDGF-B (7, 24). Endothelial cell

transcripts that highly express CD31 and Emcn also express bone

morphogenetic protein (BMP) family members BMP1, BMP4, and

BMP6, known to promote bone formation (24). This may explain the

presence of osteoprogenitor cells around type H capillaries. Type H

vessels are closely associated with osteoprogenitor cells, contributing

significantly to bone remodeling and regeneration. The Notch ligand

DLL4, an important regulator of angiogenesis, is also highly

expressed in type H vessels adjacent to the growth plate (6). Given
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their functional nature and gene expression profile, type H

endothelial cells likely contribute to the coupling of angiogenesis

and osteogenesis in bone development.
2.2 Lymphatic vessels in bone and joint

The lymphatic system plays a crucial role in regulating

interstitial fluid homeostasis, waste clearance, and immune cell

surveillance (25, 26). Through a network of initial lymphatic

capillaries and collecting lymphatic vessels, the system transports

interstitial fluid from peripheral tissues to lymph nodes, enters the

right lymphatic duct and thoracic duct, draining into the subclavian

veins and returning to the blood circulation (27–29).

Initial lymphatic capillaries are lined by a single layer of

lymphatic endothelial cells connected by specialized button-like

junctions, which are highly permeable to solutes and

macromolecules (30–32). When external compressive forces

exceed the interluminal fluid pressure, interstitial fluid is pushed
Frontiers in Endocrinology 03
into the initial lymphatic capillaries and becomes lymph. Lymphatic

endothelial cells overlap to form primary valves that prevent lymph

backflow. These initial lymphatics converge to form larger

collecting lymphatic vessels, which are connected by adjacent

lymphatic endothelial cells through tight zipper-like junctions,

making them less permeable than initial lymphatics (29, 31–34).

Collecting lymphatic vessels are surrounded by one or more layers

of lymphatic muscle cells (LMCs), which facilitate vessel

contraction to propel lymph forward (35). These vessels also

contain secondary bicuspid valves to prevent backflow (36). After

collection by the lymphatic vessels, lymph traverses the afferent

lymphatics to reach the draining lymph nodes (DLNs). The

lymphatic sinuses within DLNs are highly organized structures

containing immune cells, where adaptive immune responses are

generated (37). Finally, lymph exits the nodes via efferent lymphatic

vessels and reenters the circulatory system (Figure 1).

Lymphatic vessels are reported not to be present in several

tissues, including the brain and eye (38, 39). The presence of

lymphatics in bone has been a topic of considerable controversy.
FIGURE 1

The schematic diagram illustrating the structure and distribution of blood vessels and lymphatic vessels in bones and joints. In bones, two distinct
types of blood vessels are identified: type H and type L. Type H vessels, characterized by high expression of endomucin (Emcn) and cluster of
differentiation 31 (CD31), are organized in a columnar manner with arterial connections and are primarily found in the metaphysis. Conversely, type L
vessels, with lower levels of Emcn and CD31, are sinusoidal and located in the diaphysis. The identification of these vascular subtypes enhances our
understanding of the heterogeneity of bone vasculature and its potential role in bone function in both health and disease. The lymphatic system in
bones and joints also displays a hierarchical structure. Lymphatic vessels are present in the cortical regions and bone marrow cavity, with a higher
concentration in the cortical areas. In joints, the lymphatic system begins with lymphatic capillaries, also known as initial lymphatic vessels. These
vessels collect lymph and direct it towards collecting lymphatics equipped with anti-flowback valves. The lymph is then transported to draining
lymph nodes before entering the venous system. Initial lymphatic vessels consist of a single layer of lymphatic endothelial cells (LECs) with a
discontinuous basal lamina. In contrast, collecting lymphatic vessels are composed of tightly connected LECs, forming zipper-like junctions, and are
surrounded by lymphatic muscle cells (LMCs) that facilitate lymph movement through contractions. Initial lymphatic vessels are marked by positive
expression of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), podoplanin (PDPN), prospero homeobox 1 (PROX1), and vascular
endothelial growth factor receptor 3 (VEGFR3), but do not contain a-smooth muscle actin (a-SMA)-positive muscle cells. Collecting lymphatic
vessels, however, exhibit lower levels of LYVE1 and positive expression of a-SMA, PDPN, PROX1, and VEGFR3. This differentiation between initial and
collecting lymphatic vessels highlights their distinct roles and structures within the lymphatic system of bones and joints. (This figure is supported
by Biorender).
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Traditionally, it was believed that bones and bone marrow lack

lymphatic vessels, and that the growth of lymphatic vessels in bone

could be detrimental, as observed in Gorham-Stout disease, a rare

bone disorder characterized by the abnormal growth of lymphatic

vessels in bones (40–42). Lymphatics in bone are not typically

visible on routine lymphangiograms in humans, possibly due to the

rare connections between deep and superficial lymphatics. Some

historical studies, however, suggest a different conclusion. Injection

of radio-opaque agents or macromolecular markers, such as ferritin

and horseradish peroxidase, into the bone marrow has been shown

to reach the periosteal surface of the bone (43–46). These findings

imply the potential presence of lymphatic channels in bone. These

results indicate that if macromolecules flow from the bone marrow

to the periosteal surface, as some fluid transport studies suggest, this

may occur through an alymphatic system or involve matrix

prelymphatics and perivascular prelymphatics lacking an

endothelial lining, similar to those described in the eye and brain

(45, 47). It could be argued that, due to the relatively large gaps

between the pseudopodial processes of endothelial cells in bone

sinusoids, the free movement of macromolecules and newly formed

blood cells between the extravascular and intravascular

compartments is possible, negating the need for a lymphatic

system for fluid transport in bone. However, recent research has

revealed the presence of lymphatic vessels in long bones, the dura

mater of the mouse brain, and the spinal vertebral column (12, 48,

49). Notably, Biswas et al., using high-resolution light-sheet imaging

and cell-specific mouse genetics, demonstrated the presence of

lymphatic vessels in mouse and human bones and further

validated the importance of lymphatic endothelial cell-derived

secretory proteins for bone regeneration (2). In addition, it has

been found that lymphatic vessels were identified within the

stratified connective tissues surrounding the fetal cartilaginous

knee joint tissues in the fetus and adult mice, but not detected in

cartilage tissues (50–52). Moreover, lymphatic vessels have been

identified within the periosteum of long bones (52). Therefore,

lymphatic vessels are extensively distributed throughout the various

tissues of the bone and joint, excluding articular cartilage (Figure 1).
3 The dynamic interplay of vascular
and lymphatic endothelial cells
in development

The vascular-lymphatic network is essential for maintaining

fluid homeostasis, supporting tissue repair, and facilitating immune

cell trafficking. Understanding the biology of endothelial cells (ECs),

which form the lining of blood and lymphatic vessels, is

fundamental to these interactions. EC populations are regulated

by a complex network of signaling pathways that govern their

spatial and temporal organization during critical events in

development, growth, and regeneration.

Both blood endothelial cells (BECs) and lymphatic endothelial

cells (LECs) originate from primitive vascular endothelial

progenitor cells derived from the mesoderm (53, 54). This

common origin gives rise to BECs through the process of
Frontiers in Endocrinology 04
vasculogenesis, driven by key factors such as ETS variant

transcription factor 2 (ETV2), fibroblast growth factor 2 (FGF2),

bone morphogenetic protein 4 (BMP4), and Indian hedgehog

signaling molecule (IHH) (55–59). Angioblasts formed through

these pathways further mature via vasculogenesis or angiogenesis,

with vascular endothelial growth factor A (VEGFA) playing a

significant role in promoting the sprouting of new vessels (60).

The differentiation of these progenitor cells into either BECs or

LECs is governed by distinct yet overlapping signaling mechanisms.

In the early stages of development, ECs undergo arterial-venous

specification, where arterial and venous fates are distinguished by

the expression of EFNB2 and EPH receptor B4 (EPHB4),

respectively (61). The VEGFA-VEGFR2 signaling pathway is

crucial for promoting arterial phenotypes while inhibiting venous

characteristics (62, 63). The Notch signaling pathway, activated by

VEGF, enhances arterial gene expression and suppresses venous

patterning, with Wnt signaling regulating arterial specification

upstream of Notch through b-catenin and Delta-like 4 (DLL4)

expression (64–69). Conversely, the acquisition of the venous

phenotype involves nuclear receptor subfamily 2 (NR2F2, also

known as COUP transcription factor 2, COUP-TFII), which

suppresses Notch signaling and, along with VEGFA-VEGFR2

interactions, supports venous specification (65, 70–72). The

mitogen-activated protein kinase (MAPK) pathway promotes

arterial specification under VEGFR2 activation, while VEGFR2

also activates phosphoinositide-3-kinase (PI3K)/AKT to facilitate

venous specification (73).

LECs primarily originate from venous ECs through

transdifferentiation, though non-venous ECs also contribute (27).

During embryonic development, venous ECs in the dorsolateral

region of the cardinal vein sprout to initiate lymphangiogenesis,

regulated by a network of signals including NR2F2. Deficiency in

NR2F2 disrupts lymphangiogenesis and leads to edema, indicating its

critical role in lymphatic specification (74, 75). Prospero homeobox

protein 1 (PROX1), a classical marker for LECs, is essential for

initiating lymphatic specification. In venous ECs, NR2F2 maintains

the venous phenotype by suppressing Notch signaling, while in LECs,

the NR2F2-PROX1 heterodimer reverses this suppression (76). SRY-

related HMG-box 18 (SOX18) also enhances PROX1 transcription,

driving LEC specification through a positive feedback loop (77).

VEGFC, working alongside transcription factors such as SOX7 and

MAFB (musculoaponeurotic fibrosarcoma oncogene homolog B),

further promotes lymphatic specification by upregulating multiple

LEC markers, including PROX1 (78, 79).

During the life cycle, ECs exhibit phenotypic plasticity,

undergoing transdifferentiation under specific conditions. This

adaptability is exemplified in the development of capillaries and

the transdifferentiation of venous ECs into arterial ECs and LECs.

Such transitions are regulated by signaling pathways like VEGF,

Notch, and Wnt, which orchestrate the formation and

specialization of blood and lymphatic networks. Understanding

the dynamic interplay between these networks is crucial for

developing targeted therapies. While the blood and lymphatic

systems are relatively independent, they regulate and promote

each other’s development. Disruption in this mutual regulation

can lead to developmental abnormalities, underscoring the
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importance of their interdependent signaling mechanisms during

growth and regeneration.
4 Vascular-lymphatic network in
skeletal healing

4.1 Angiogenesis and angiocrine
modulation in skeletal healing

The significant changes in BECs during tissue repair closely

resemble those observed in development. Angiogenesis is the

primary mechanism for new blood vessel formation in response

to injury. Unlike the homeostatic state, repair in the context of

injury has distinct characteristics. This shift is linked to increased

local inflammation following injury, which activates angiogenesis to

aid in vascular network regeneration (80). In bone, a unique form of

angiogenesis, termed vessel bulging angiogenesis, is prominent,

with type H vessels playing a crucial role. These vessels facilitate

revascularization in hard tissue injuries, including spinal fusion

surgeries (81), tooth extraction wounds (82), and diabetic

osteoporosis (83). Type H vessels form by merging vascular buds

from opposite ends, and although typical tip cells are not observed

in bone angiogenesis, ECs display tip cell-like features such as

filopodia and directional migration along VEGF gradients (6, 84,

85). Notably, Notch signaling is strongly activated during bone

vascular regeneration, contrasting with its inhibitory role in vessel

sprouting in other tissues. The intensity of Notch signaling

correlates with blood flow rate and restoring blood flow in aging

individuals promotes bone healing (7, 15). The new vascular

network invades the injury site, restores blood supply, and

provides channels for osteoblast precursors, coupling angiogenesis

with osteogenesis (86).

BECs also release angiocrine factors, influencing vascular

modulation during injury (87). In the skeletal system, type H

vessels release factors like Noggin, which regulate skeletal

morphology and ossification (88). Additionally, type H ECs

release matrix metallopeptidases (MMPs) to remodel the

extracellular matrix (ECM), essential for cartilage resorption

during bone remodeling (89, 90). Various pro-angiogenic and

angiocrine factors, including VEGFA, FGF2, and FGF9, are

involved in inducing vascularization and bone growth during

repair. VEGFA promotes bone repair, while VEGFR1 negatively

regulates blood vessel growth and fracture repair (91, 92). Placental

growth factor (PIGF), a VEGFR1 ligand, facilitates bone healing

(81, 93). FGF signaling, particularly FGF2 and FGF9, stimulates

angiogenesis and osteogenesis during bone repair (6, 83, 84).

Transforming growth factor beta (TGFb), BMP-2, BMP-7, and

growth differentiation factor (GDF) also enhance angiogenesis and

osteogenesis during healing (86, 87). Angiocrine crosstalk via Notch

signaling promotes fracture repair, as evidenced by reduced

hematopoietic stem cell (HSC) regeneration following

endothelial-specific deletion of the Notch ligand Jag1 (88, 90).

ECs also upregulate factors like FGF2, BMP4, Insulin-like growth

factor-binding protein 2 (IGFBP2), and Angiopoietin1, expanding
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hematopoietic stem progenitor cells (HSPCs) and contributing to

hematopoietic recovery and bone repair after acute bone marrow

injury, such as chemotherapy and irradiation (89, 94).
4.2 Lymphangiogenesis and
lymphangiocrine modulation in
skeletal healing

The lymphatic system is primarily responsible for transporting

body fluids and immune cells. Beyond these canonical functions,

lymphatic vessels are implicated in diverse physiological roles

across various organs and tissues. Recent research highlights the

correlation between the integrity of lymphatic vessels and several

metabolic phenotypes, including insulin resistance, cardiovascular

diseases, lipid absorption, and liver injuries (95–98). Notably, LECs

are now recognized for their role in regulating metabolic

homeostasis through the secretion of various proteins, referred to

as lymphangiocrine signals.

Lymphangiogenesis, or the formation of new lymphatic vessels

from existing ones, is especially important for bone and joint health.

Research shows that lymphangiocrine signals significantly impact

the aging process. Biswas et al. discovered lymphatic vessels within

bones, confirming their role in bone regeneration (2). Advanced

imaging revealed these vessels at a single-cell level, expanding in

response to stress in a manner dependent on the inflammatory

cytokine Interleukin 6 (IL-6). LECs were found to secrete C-X-C

motif chemokine 12 (CXCL12), a chemokine that regulates blood

cell production and bone healing. Remarkably, injecting LECs from

young mice into aged mice restored both bone and blood cell

regeneration, highlighting the crucial role of lymphangiocrine

signals in aging (2). The results of study highlight the importance

of lymphangiocrine signals for metabolic homeostasis.

The lymphatic system also plays a vital role in managing

inflammation, particularly in conditions like rheumatoid arthritis

(RA), which is marked by chronic joint inflammation and progressive

damage. In RA, inflammatory cytokines such as TNF-a, IL-1, and IL-
6 trigger synovial inflammation, leading to joint pain, swelling, and

functional impairment (99–101). Lymphatic vessels are crucial for

clearing these inflammatory cells and mediators from the inflamed

synovium. Studies using animal models of RA have shown that the

VEGF-C/VEGFR3 signaling pathway is vital for lymphangiogenesis

in arthritis. VEGF-C and its receptors, VEGFR3 and VEGFR2, are

highly expressed in arthritic synovial tissue, promoting the growth

and migration of LECs (102–104). Macrophages in the inflamed

environment also express VEGF-C and VEGFR3, further supporting

lymphangiogenesis (105).
4.3 Co-regulation of blood and lymphatic
endothelial cells: VEGF and BMP
signaling pathways

The co-regulation of BECs and LECs by shared signaling

pathways underscores their interdependence. This knowledge has
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clinical potential, especially in precision medicine, where

manipulating these pathways could lead to novel treatments for

vascular and lymphatic disorders. VEGF and BMP are key

regulators of both blood and lymphatic vessels, orchestrating their

development, function, and homeostasis (106, 107) (Figure 2).

The VEGF family is central to the repair and regeneration of the

vascular-lymphatic network post-injury. VEGFA-VEGFR2 and

VEGFC-VEGFR3 are primary signals for BECs and LECs,

respectively, driving their migration, proliferation, and

participation in regeneration. However, VEGFR2 can also be

expressed in LECs, and VEGFC can bind to VEGFR2 in BECs,

indicating the complexity of VEGF signaling in this network.

VEGFC not only induces lymphangiogenesis but also stabilizes

blood and lymphatic capillaries by regulating PDGF-B expression,

which recruits pericytes and lymphatic smooth muscle cells to the

vessels (108, 109). Complementary mechanisms refine vascular-

lymphatic network regulation. For example, receptor activity-

modifying protein 1 (RAMP1) has been shown to promote both

angiogenesis and lymphangiogenesis in skin wounds, with its

absence leading to impaired wound healing due to reduced

VEGFA and VEGFC levels (110). Additionally, Ras homolog

family member B (RHOB) and vascular endothelial zinc finger 1

(VEZF1) have opposing roles in vessel growth. RHOB inhibits

blood vessel growth while promoting lymphatic vessel growth
Frontiers in Endocrinology 06
(111). VEGFR1, previously considered a decoy receptor, has been

found to promote angiogenesis and lymphangiogenesis by

modulating the secretome of pro-inflammatory macrophages in

diabetes-related delayed wound healing models (60, 112, 113).

Hemostasis also couples blood-lymphatic vessels post-injury by

releasing coagulation proteases that cleave VEGFC and VEGFD,

promoting LEC proliferation. Activated platelets further facilitate

VEGFC-VEGFR3 binding by upregulating VEGFR3 expression in

LECs (114). Angiopoietins also play a role in co-regulation,

promoting angiogenesis and lymphangiogenesis at wound

margins and influencing vascular-lymphatic remodeling during

inflammation, though their effects can vary depending on the

context (115, 116).

BMPs are crucial regulators of both blood and lymphatic

vessels. In the blood vasculature, BMP2, BMP4, BMP9, and

BMP10 play crucial roles. BMP2 and BMP4 are produced locally

and act as paracrine signals, promoting angiogenesis. In contrast,

BMP9 and BMP10 circulate systemically and inhibit sprouting (117,

118). BMP9 and BMP10 are particularly important for vessel

stabilization and quiescence, inhibiting excessive sprouting and

maintaining endothelial homeostasis (119, 120). In the lymphatic

system, BMP6 and BMP9, circulating in the systemic bloodstream,

signal to LECs. BMP9 is especially crucial for the maturation of

lymphatic vessels and the formation of lymphatic valves. BMP9
FIGURE 2

The combined roles of VEGF and BMP pathways in regulating endothelial cells. In blood endothelial cells, VEGF-A binds to VEGFR-1 and VEGFR-2
receptors. VEGFR-1 modulates angiogenesis, while VEGFR-2 promotes cell growth, movement, stabilization, differentiation, and survival. BMP
signaling, through BMP2, BMP4, and BMP9, supports blood vessel formation and maintains vascular stability. In lymphatic endothelial cells, VEGF-C
and VEGF-D primarily activate VEGFR-3, leading to cell growth and movement, while VEGFR-2 also aids in lymphatic vessel formation. BMP6 and
BMP9 regulate lymphatic endothelial cells, with BMP9 encouraging their transformation into blood vessel cells. BMP signaling pathways interact with
VEGF pathways to maintain endothelial cell function and regulate angiogenesis. (This figure is supported by Biorender).
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knockout mice exhibit defects such as dilated lymphatic vessels and

a reduced number of valves. BMP9, through the ALK1 receptor,

regulates key genes like Lyve1, Foxc2, Connexin37, Ephrin-b2, and

Neuropilin1, which are essential for lymphatic valve development

(121, 122). Moreover, BMP9 downregulates PROX1 in LECs,

leading to restricted cell proliferation and a trans-differentiation

of lymphatic endothelial cells to blood endothelial cells (123, 124).

BMP2 also plays a role in the lymphatic system by negatively

regulating lymphatic vessel development. It inhibits PROX1

expression and induces miR-31 and miR-181a, which target

Prox1 and impede lymphatic endothelium specification (125).
5 Maladaptation of vascular-lymphatic
network in skeletal disease

5.1 Inflammation

Under inflammatory stress, the vasculature in the bone marrow

is crucial for supporting bone remodeling. ECs express BMP-2,

promoting bone formation, and release osteoprotegerin (OPG) to

reduce osteoclastogenesis during diabetes (126, 127). Additionally,

multiple cytokines such as IL-6, TNF-a, and IFN-g are produced by

ECs under inflammatory conditions. These cytokines activate

Nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) signaling, which regulates hematopoietic stem and

progenitor cell (HSPC) functions. Inhibiting the endothelial NF-

kB pathway improves HSPC proliferation and hematopoietic

recovery following myelosuppressive injury (128). IL-33, a pro-

inflammatory cytokine produced by CD105-expressing ECs,

promotes the differentiation of bone marrow-derived stromal cells

into osteoblasts and enhances calcium deposition (129).

Recent studies highlight the connection between lymphangiocrine

signaling and inflammation. Under inflammatory conditions,

lymphatic vessels within the bone undergo significant changes,

including increased lymphangiogenesis and elevated expression of

specific cytokines and growth factors that support this expansion and

associated immune responses (2). IL-6 drives lymphangiogenesis in

bones, and the secretion of CXCL12 from proliferating LECs is critical

for hematopoietic and bone regeneration. Moreover, lymphangiocrine

CXCL12 triggers the expansion of mature Myh11+ CXCR4+ pericytes,

which differentiate into bone cells and contribute to bone and

hematopoietic regeneration. In aged animals, this expansion of

lymphatic vessels and Myh11-positive cells in response to genotoxic

stress is impaired (2). The increased presence of lymphatic vessels and

activated LECs significantly impacts bone regeneration and

repair processes.
5.2 Osteoarthritis

OA is a common joint disorder characterized by the degeneration

of articular cartilage and inflammation of surrounding tissues due to

aging-related mechanical degradation and subchondral bone
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disorders (130, 131). Synovial cells play a crucial role in OA by

releasing inflammatory mediators that stimulate the production of

inflammatory cytokines and matrix-degrading enzymes like MMPs

and ADAMTS (a disintegrin and metalloproteinase with

thrombospondin motifs) proteins in chondrocytes, leading to

cartilage destruction (132, 133). Immunohistochemical analysis of

synovial specimens from OA patients reveals increased lymphatic

vessels infiltrated by inflammatory cells, indicating their involvement

in OA pathogenesis (134). Transmission electron microscopy has

shown dysfunction in microcirculation and lymphatic drainage in

OA patients (135). Post-mortem analysis of knee synovium sections

from OA patients shows reduced lymphatic vessel density, negatively

correlated with synovial effusion, suggesting impaired lymphatic

drainage exacerbates joint inflammation (136). Dynamic changes in

lymphatic structure and function may significantly impact OA

progression, warranting further investigation. In a mice model of

meniscal-ligamentous injury (MLI)-induced OA, increased capillary

lymphatics and decreased collecting lymphatic vessels were observed

(50). Although lymphatic capillaries increased, their drainage

function declined due to a leaky phenotype. This led to impaired

lymphatic pumping and accumulation of pro-inflammatory factors

in OA-affected knees, supported by findings in human OA samples

(52, 137). These results indicate impaired synovial lymphatic

drainage during OA progression.

Macrophages also play a significant role in joint inflammation

and bone destruction in OA, potentially through interaction with

lymphatic vessels (138, 139). Macrophages can be categorized into

pro-inflammatory M1 and anti-inflammatory M2 phenotypes,

accumulating and polarizing within the synovium and articular

cavity during OA progression. Early-stage OA shows synovitis and

M1 macrophage accumulation near lymphatic vessels, with M1

macrophages promoting destructive processes by regulating

inflammatory mediators like TNF, IL-1, and iNOS (140). Itch, a

negative regulator of the NF-kB pathway, suppresses pro-

inflammatory macrophage polarization and IL-1a release (141,

142). Knockout of itch in mice results in severe OA phenotypes

and impaired lymphatic drainage due to M1 macrophage-induced

inflammation (143). Decreased FGFR3 expression in OA patient

monocytes, and conditional FGFR3 knockout in macrophages

exacerbates joint destruction through synovitis and macrophage

accumulation via CXCL12/CXCR7-dependent chemotaxis (144).

Since CXCL12 from LECs is crucial for tissue regeneration post-

injury, further research is needed on the interplay between synovial

macrophages and lymphatic vessels in OA.
5.3 Rheumatoid arthritis

RA is a chronic autoimmune disorder primarily affecting the

joints, leading to persistent inflammation and progressive damage.

This inflammation triggers the release of inflammatory mediators

and activates immune cells, further worsening the condition.

Inflamed joints in RA patients exhibit a significant increase in

activated and infiltrated immune cells, such as macrophages,
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lymphocytes, and plasma cells. These cells are crucial in the

progression of joint inflammation as they produce and release

various mediators, including cytokines, chemokines, and enzymes

(100, 101). Key cytokines involved in RA pathogenesis include tumor

necrosis factor TNF-a, IL-1, and IL-6. These cytokines induce

synovial inflammation and vasodilation, resulting in joint pain,

swelling, and functional impairment (99). RA is also characterized

by increased angiogenesis and vessel density in non-calcified articular

cartilage regions. Lymphocyte infiltration and active ECs are essential

for the trafficking of leukocytes into the joint during RA progression

(145). Intercellular adhesion molecule-1 (ICAM-1), vascular cell

adhesion protein 1 (VCAM-1), and E-selectin expressed by ECs

promote the migration of leukocytes and fibroblasts into RA joints

(146). Specifically, endothelial Notch3 signaling drives the

differentiation of synovial fibroblasts, which acquire an invasive

phenotype during the disease (147). This invasive behavior of

synovial fibroblasts contributes to the overall joint damage and

functional decline observed in RA patients.

Clinical studies and animal models indicate that lymphatic

vessels likely play a crucial role in clearing inflammatory cells and

mediators from the inflamed synovium. The VEGF family

comprises key regulators in angiogenesis and lymphangiogenesis,

including VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-

F, and placenta growth factor (PIGF) (104). These VEGF ligands

activate signaling pathways by binding to tyrosine kinase receptors

known as vascular endothelial growth factor receptors (VEGFRs),

which have three subtypes: VEGFR1, VEGFR2, and VEGFR3.

While VEGFR1 and VEGFR2 primarily regulate angiogenesis,

VEGFR3 signaling is central to lymphangiogenesis (102). The

downstream signaling pathways activated by VEGF-C/VEGFR3

include mitogen-activated protein kinase/extracellular signal-

related kinase (MAPK/ERK), phosphatidylinositol 3-kinase/

protein kinase B (PI3k/AKT), and Jun N-terminal kinase1/2

(JNK1/2) pathways (148, 149). Activation of these pathways leads

to the proliferation, survival, and migration of LECs and the

remodeling of lymphatic vessels. Previous studies have shown

high expression of VEGF-C and its receptors, VEGFR2 and

VEGFR3, in the synovial tissues of arthritis patients compared to

healthy controls. Macrophages also exhibit high expression of

VEGF-C and VEGFR3. Additionally, significantly elevated levels

of VEGF-C have been observed in the synovial fluid of patients with

RA, showing a strong positive correlation with TNF-a levels (150).
5.4 Bone metastasis

Bone metastasis is a frequent complication of several primary

tumors, where disseminated tumor cells (DTCs) can remain

dormant for extended periods before reactivation and metastatic

growth (151, 152). The process of reactivation and metastasis is

intricately linked to the vascular and lymphatic networks within the

bone microenvironment.

ECs in the bone marrow play crucial roles in both supporting and

regulating DTC behavior. They produce thrombospondin-1,

inducing DTC quiescence, and express molecules like Von

Willebrand factor (VWF) and vascular cell adhesion molecule 1
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(VCAM-1), which affect DTC interaction with the perivascular

niche and chemotherapy sensitivity (153, 154). Moreover,

ADAM17-regulated CX3CL1 expression by bone marrow ECs

promotes specific types of metastases, such as spinal metastasis

from hepatocellular carcinoma (155). The vascular structure within

bones also influences metastatic progression. Sinusoids and low blood

flow facilitate interactions between tumor cells and ECs, while type H

vessels with higher blood flow and oxygen supply support tumor cell

survival and resistance to therapies (154). Reduction in blood flow

diminishes type H vessels and inhibits pericyte expansion, thereby

rendering DTCs more susceptible to treatment (156).

Tumors undergo phenotypic changes through accumulated

genetic mutations, fostering polyclonal cell populations. Epithelial-

mesenchymal transition (EMT) enhances cancer cell motility and

invasiveness, mediated by cytokines like TGF-b, FGF, and others.

EMT also reduces E-cadherin expression and promotes

mesenchymal markers like vimentin and N-cadherin, enhancing

malignant traits and chemotherapy resistance (157, 158). In the

context of lymphatic involvement, tumor cells invade lymphatic

vessels primarily from the peritumoral regions rather than from

within the tumor itself due to high interstitial pressure (159). TGF-b
signaling and ALK5 inhibitors play significant roles in tumor

lymphangiogenesis in tumor xenografts (160, 161). Studies suggest

that TGF-b influences tumor metastasis by regulating the structure

and function of newly formed tumor lymphatic vessels. Secondary

lymphedema, a common complication of cancer treatment, often

involves increased TGF-b1 levels. In mouse models, inhibition of

TGF-b1 has been demonstrated to mitigate the severity of

lymphedema (162). Thus, targeting TGF-b could potentially

effectively inhibit lymphatic metastasis and reduce lymphedema.

Several studies emphasize the significant role of bone marrow

mesenchymal stem cells (BM-MSCs) in cancer progression, particularly

through their impact on lymphangiogenesis (163–165). Human BM-

MSCs contribute to tumor growth and metastasis by promoting both

neovascularization and the formation of lymphatic vessels (164).

Research shows that BM-MSCs and their conditioned medium not

only support tumor growth but also facilitate lymph vessel formation in

metastatic environments by increasing the expression of lymph-

associated markers and enhancing tube formation in lymphatic

endothelial cells and specific tumor cell lines (165). However, there

are concerns about the potential for these processes to awaken dormant

tumors through lymphangiogenesis. Additionally, both human and

murine BM-MSCs have demonstrated the ability to adopt a lymphatic

phenotype and stimulate lymphatic vessel formation by secreting

factors like VEGF-A (163). This factor activates the VEGFR-2

pathway in lymphatic endothelial cells (LECs), leading to increased

LEC proliferation, migration, and tube formation, which, in turn,

enhances lymphatic vessel density within tumors and promotes

metastasis (163). While these findings suggest promising therapeutic

applications of MSCs in regenerative medicine, they also highlight the

need to consider their role in cancer-related lymphangiogenesis when

developing cancer treatment strategies.

Overall, understanding the maladaptation of the vascular-

lymphatic network in bone metastasis involves deciphering

complex interactions between tumor cells, endothelial cells, and

the lymphatic system. Therapeutic strategies targeting these
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interactions hold promise for improving outcomes in patients with

metastatic bone disease, necessitating further research into the

precise molecular mechanisms driving vascular and lymphatic

dysregulation in this context.
6 Targeting the vascular-lymphatic
network as a potential
therapeutic strategy

The vascular and lymphatic networks play crucial roles in

maintaining tissue homeostasis and responding to pathological

conditions in bone and joint disorders. Given their involvement

in inflammation, tissue regeneration, and disease progression,

targeting these networks presents a promising therapeutic

approach. By modulating angiogenesis and lymphangiogenesis, it

is possible to address the underlying mechanisms of various bone

and joint diseases, potentially leading to more effective treatments

and improved patient outcomes.

Angiogenesis, the process of blood vessel formation, is essential

for bone tissue engineering and regeneration. Strategies to enhance

vascularization in engineered bone tissues have shown significant

promise, particularly through the delivery of angiogenic growth

factors such as VEGF, Angiogenin (ANG), and PDGF (166–169).

For instance, the incorporation of VEGF into bone scaffolds has been

demonstrated to promote neovascularization and bone healing, as

evidenced by advanced bone regeneration in animal models (167).

Additionally, the sustained release of these growth factors, facilitated

by sophisticated delivery systems, ensures prolonged therapeutic

effects, making them superior to bolus injections (166). Given the

coupling of angiogenesis and osteogenesis, these strategies hold great

potential for improving the success rates of bone tissue engineering

and addressing bone-related pathologies.

The lymphatic network, particularly lymphangiogenesis and

lymphatic drainage, also offers potential therapeutic targets, especially

in conditions like RA and OA. The VEGF-C/VEGFR3 signaling

pathway has emerged as a key regulator of lymphangiogenesis and

lymphatic function. In RA, enhancing lymphatic drainage through

intra-articular administration of VEGF-C has been shown to reduce

joint damage by promoting local lymphatic function (170). Similarly, in

OA, impaired lymphatic drainage has been linked to disease

progression, and targeting VEGF-C/VEGFR3 signaling has

demonstrated the potential to enhance lymphatic function and

mitigate tissue damage (137, 171). Despite these promising findings,

further research is necessary to fully understand the long-term effects

and safety of such treatments, particularly in chronic conditions

like arthritis.

VEGF serves as a crucial common regulator, linking both the

vascular and lymphatic networks. VEGF not only drives angiogenesis,

essential for blood vessel formation and bone regeneration, but also

plays a significant role in lymphangiogenesis through its interaction

with VEGF-C and the VEGFR3 signaling pathway (172–174). This

dual role of VEGF highlights its importance as a therapeutic target

that can simultaneously influence both blood and lymphatic vessel

dynamics. Bymodulating VEGF activity, it may be possible to achieve
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coordinated regulation of these two networks, offering a unified

approach to treating complex bone and joint disorders where both

vascular and lymphatic dysfunctions are involved.
7 Conclusion and perspective

The intricate interplay between blood and lymphatic networks is

vital for maintaining bone and joint homeostasis and responding to

pathological conditions. Type H blood vessels play a crucial role in

coupling angiogenesis with osteogenesis, while emerging evidence

highlights the significance of lymphatic vessels in bone support

regeneration after injury. These networks work synergistically to

regulate bone homeostasis and facilitate bone repair. Understanding

these interactions provides a comprehensive view of skeletal biology

and offers insights into the mechanisms underlying bone and joint

diseases. Future research should focus on elucidating the specific

molecular pathways and signaling mechanisms driving these

interactions, which could pave the way for novel therapeutic

strategies. Additionally, integrating recent advancements in vascular

and lymphatic biology will enhance our ability to develop targeted

treatments for bone and joint diseases, ultimately improving patient

outcomes. This evolving field holds promise for significant

breakthroughs in both basic science and clinical applications.

Research on lymphatic vessels in bone tissue lags behind the

more extensive studies on blood vessels in bones and joints. While

it’s known that lymphatic vessels are present in bones and play roles

in fluid transport and immune surveillance, their drainage pathways

within bones remain unexplored. Identifying these drainage routes

is crucial for a deeper understanding of bone physiology, the specific

functions of lymphatic vessels in bone, and potential drug

interventions. Further research using advanced techniques such as

single-cell sequencing and lineage tracing is necessary to identify

the key cell subsets and molecular characteristics of lymphatic

vessels, particularly in disease conditions. Understanding how

lymphatic vessels change and function during different stages of

diseases like RA, OA, and aging could help pinpoint the optimal

timing for clinical interventions. We anticipate that future research

will lead to better strategies for regulating lymphatic vessels in

joints, ultimately improving the treatment and outcomes of

inflammatory joint diseases.
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