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At the time of breast cancer diagnosis, most patients meet the diagnostic criteria

to be classified as obese or overweight. This can significantly impact patient

outcome: breast cancer patients with obesity (body mass index > 30) have a

poorer prognosis compared to patients with a lean BMI. Obesity is associated

with hyperleptinemia, and leptin is a well-established driver of metastasis in

breast cancer. However, the effect of hyperleptinemia on angiogenesis in breast

cancer is less well-known. Angiogenesis is an important process in breast cancer

because it is essential for tumor growth beyond 1mm3 in size as well as cancer

cell circulation and metastasis. This review investigates the role of leptin in

regulating angiogenesis, specifically within the context of breast cancer and

the associated tumor microenvironment in obese patients.
KEYWORDS
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Introduction

All cells, including cancer cells, depend on the vasculature for oxygen, nutrient access

and waste removal to support their basic metabolic functions. This is particularly true for

fast-growing solid tumors, where the densely packed and metabolically active tumor stroma

quickly drives the tumor microenvironment to become acidic and hypoxic. As

hypothesized by Dr. Judah Folkman in 1971, cancer must at some point during tumor
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progression become dependent on the blood vasculature; and, in the

absence of tumor neovascularization, the tumor core quickly

becomes necrotic, constraining solid tumors to <2mm3 in size

due to the limitation imposed by oxygen diffusion distance (7).

Many cancers escape this constraint by inducing nearby blood

vessels to undergo angiogenesis, such that new blood vessels sprout

towards and invade the tumor mass. Resulting blood flow into the

tumor brings critical oxygen and nutrients that can support further

tumor growth and expansion (8). In addition to being a critical step

in tumor growth, cancer neovascularization also provides an

essential conduit for metastasis – the process by which some

cancer cells escape the primary tumor and invade the blood (or

lymphatic) circulation to seed a secondary tumor at a distal

tissue site.

Regulation of the angiogenic signaling axis is affected by several

disease states, including chronic obesity, which drives a systemic

pro-inflammatory state that promotes angiogenesis (9, 10). As

obesity becomes more and more prevalent, it is increasingly

important to understand how obesity contributes to the pathology

of many diseases, including cancer. There is a strong correlation

between poor outcomes in cancer and obesity: overweight and

obese patients are at increased risk of cancer mortality (11).

Additionally, obesity is associated with higher incidence of many

cancers, including cancer affecting colorectal, endometrial, and

breast tissue (12, 13).

Obesity is associated with higher risk of developing breast

cancer – especially in post-menopausal women – and is also

associated with larger tumors, positive lymph node status, and

shorter disease-free interval with decreased survival (1–3, 14, 15).

Furthermore, most breast cancer patients are obese or overweight at

diagnosis (1). Thus, there is a pressing need to better understand

how obesity interacts synergistically with breast cancer to affect

patient outcomes. In particular, identifying the molecular targets

which contribute to the obesity-breast cancer axis may allow for the

development of novel interventions for breast cancer patients that

specifically address obesity’s contribution to their disease

progression. In this review, we focus on the role of the adipokine

leptin, whose blood concentration is greatly elevated in proportion

to patient obesity.

Leptin is a peptide hormone produced and secreted by

adipocytes and adipose stem cells (ASCs) and is the primary

regulator of long-term balance between energy storage and

expenditure (4). Leptin also appears to be an upstream regulator

in the obesity-breast cancer axis (5). Obesity-induced

hyperleptinemia contributes to poor outcomes across breast

cancer subtypes, with increased metastases in triple negative
Abbreviations: BMI, body mass index; EC, endothelial cells; ASC, adipose-

derived stem/stromal cells; LEPR, leptin receptor; NO, nitric oxide; OS, overall

survival; PFS, progression-free survival; MMP, matrix metalloproteinase; FGF,

fibroblast growth factor; IL, interleukin; IGF-1, insulin growth factor 1; FOXC2,

forkhead box C2; APLN, apelin; HIF-1a, hypoxia inducible factor 1a; TAF,

tumor angiogenesis factor; IBC, inflammatory breast cancer; HRE, hypoxia

response element; VEC, vein endothelial cells; COX-2, cyclooxygenase 2; ROS,

reactive oxygen species; TME, tumor microenvironment.
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breast cancer (TNBC) and increased tumor growth in estrogen

receptor positive breast cancer (5, 16, 17). Separately, leptin is well-

established as a potent inducer of angiogenesis, in both physiologic

and pathologic contexts (10, 18) pointing to a logical link between

elevated leptin and enhanced tumorigenesis. Given the critical role

that angiogenesis plays in cancer development and patient survival

outcomes, the role of leptin in driving angiogenesis in obese breast

cancer patients is of critical relevance.
Angiogenic dysregulation in obesity

The link between obesity and angiogenic dysregulation is well-

established in both cancer and non-cancer (e.g., diabetes and

cardiovascular disease) contexts, which are more common in

obese individuals (19). Figure 1 depicts the effect of obesity-

associated dysregulation of angiogenesis in the context of cancer.

Adipose tissue is highly vascularized, and several metabolic

signaling axes that affect adipose tissue function also regulate

angiogenesis. For example, genes that govern adipose tissue

expansion in obesity also affect angiogenic signaling, including

insulin-like growth factor 1 (IGF-1), which is produced by

adipocytes near capillaries and which stimulates endothelial cell

proliferation and angiogenesis (20). Genes associated with

angiogenic patterning, including forkhead box C2 (FOXC2) and

apelin (APLN), are also expressed in adipocytes in the context of

obesity, which may contribute to adipocyte metabolic function and

insulin sensitivity (20). High caloric intake and the resulting

obesity-related adipocyte hypertrophy are associated with

impaired capillary architecture of associated adipose tissue as

demonstrated in Figure 1 (20). Interestingly, many signaling

pathways elevated in obesity are also present in cancer and

appear to target angiogenic signaling (21). For example, HIF-1a is

elevated in adipose tissue macrophages with obesity, and its

expression decreases after weight loss (22). HIF-1a is also

expressed in many cancers, including breast cancer (23), where it

drives the production of the pro-angiogenic signal VEGF.

Circulating VEGF itself is also elevated in both obese individuals

(9, 24) and in some cancers (25), including breast cancer, where it

appears to be prognostic for patient outcome and survival (26, 27).

Together, these data suggest that angiogenic dysregulation serves as

a nexus between obesity and breast cancer, such that obesity might

promote a pro-angiogenic state in the tumor microenvironment

that is favorable for breast cancer progression and metastasis.
Angiogenesis in cancer

Endothelial cells (ECs) form the vascular endothelium, a

continuous single-cell layer that faces the lumen of blood vessels

and separates circulating blood from surrounding tissues (8, 28). In

addition, ECs play critical cell signaling roles in controlling tissue-

level blood flow and regulating immune cell adhesion and

extravasation (8). Lastly, ECs drive new blood vessel sprouting

during angiogenesis, in which avascular tissue secretes pro-

angiogenic signals (e.g., VEGF) that stimulate nearby ECs. ECs
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respond to this pro-angiogenic signal by expressing matrix

metalloproteases (MMPs) that digest the extracellular matrix,

allowing them to partially detach from the vascular endothelium,

proliferate, and migrate towards the source of the pro-angiogenic

signal to establish a new vessel sprout (29). Angiogenesis is a critical

step during embryonic development to initially establish blood

vasculature, and many pro-angiogenic signals are frequently

reactivated postnatally both under physiological conditions (e.g.,

female reproductive tissue cycling, wound healing, etc.) and in

pathological settings (e.g., cancer) (30, 31).

Angiogenic activation of ECs is determined by the relative

balance of pro- (e.g., VEGF, ANG-1, FGF, etc.) (29) vs. anti- (e.g.,

thrombospondin-1, angiostatin, interferon a/b) angiogenic factors,
a phenomenon referred to as the “angiogenic switch” .

Dysregulation of this switch is a classic hallmark of cancer (6,

32). The earliest evidence of this was the observation that

implantation of tumor cells induced neovascularization (33). In

another classic study, Folkman isolated a soluble factor from human

tumor cells – called Tumor-Angiogenesis Factor (TAF) – that

rapidly stimulated endothelial cells to form capillaries (7). It has

since been established that many cancers overexpress several

soluble pro-angiogenic signals, as well as their upstream

regulators (e.g., Ras, Myc, etc.) (32). Beyond inducing sprouting

angiogenesis, tumor cells can also access vascular blood flow by

inducing pathological vasculogenesis (the formation of vessels de

novo by recruiting circulating endothelial progenitor cells) (34), or

by migrating towards and “co-opting” native healthy vessels (35).

Indeed, an immunohistochemical study of a human inflammatory
Frontiers in Endocrinology 03
breast cancer (IBC) xenograft model revealed that pathological

vasculogenesis may be a significant contributor to breast cancer

neovascularization (36). Lastly, some tumor cells can

transdifferentiate directly into EC and integrate into healthy

vasculature, a process termed “vasculogenic mimicry” (37). These

non-angiogenic mechanisms may also be affected by obesity in

breast cancer but are beyond the scope of the current review.
Angiogenesis in breast cancer

As solid tumors develop, central regions distant from the

existing vasculature become hypoxic leading to the stabilization

and accumulation of the transactivating factor Hypoxia Inducible

Factor-1a (HIF-1a). Like most solid tumors, breast cancer is highly

vascularized due to elevated production of soluble pro-angiogenic

signals, such as VEGF and FGF that are downstream of HIF-1a in

precursor lesions and early-stage cancer (38, 39). HIF-1a induces

VEGFA production by both breast cancer stroma and tumor-

associated macrophages, which make up ~50% of the total

cellular mass in breast cancers (40). White adipose tissue of

surrounding breast tissue, which produces a variety of factors that

directly regulate the breast cancer tumor microenvironment, also

contribute to pro-angiogenic signaling by releasing VEGF, basic

fibroblast growth factor (bFGF), matrix metalloproteases (MMPs),

and interleukin 8 (IL-8) (41, 42). Excess HIF-1a-induced VEGF

stimulates local vessel growth and can even enter the systemic blood

circulation where it is critical for establishing vasculature within the
FIGURE 1

Obesity promotes dysregulation of angiogenesis and induces a pro-inflammatory state in adipose tissue in the context of cancer. In the lean tumor
microenvironment (TME), the adipocytes, vasculature and immune involvement are all normal. In the obese TME, adipocyte hypertrophy can occur
resulting in the adipocytes becoming enlarged, lipid storage impairment, a pro-inflammatory secretory profile, and angiogenic dysregulation. Also, in
the obese TME, immune recruitment is increased via production of IGF-1, FOXC2, and apelin. Macrophages in obese adipose tissue display increased
HIFa which drives production of VEGF, leading to a pro-angiogenic state. Created in Biorender. Benz, M. (2024).
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developing breast cancer. Consistent with these observations, VEGF

production and tumor angiogenesis are significantly disrupted in

the absence of elevated HIF-1a (43). Indeed, high circulating serum

VEGF levels are prognostic for breast cancer progression and

patient survival (26, 27, 44), likely because it correlates to tumor

vascularity and metastatic potential.

In addition to the previously described data linking circulating

VEGF levels to patient outcomes in breast cancer (26, 27, 44), recent

transcriptomic studies have directly linked increased expression of

many pro-angiogenic genes with poor patient outcomes (44, 45).

For example, Guarischi-Sousa et al. conducted a 1000-patient

cohort study in which they identified a 153 gene signature for

pathological angiogenesis that was predictive for poor prognosis

and decreased patient survival in luminal A, luminal B, and basal,

but surprisingly, not HER2-positive, breast cancer subtypes (46, 47).

This finding is consistent with clinical trials showing that anti-

VEGF therapy is not effective in HER2-positive breast cancer

patients (AVEREL Trial) (46, 47). Interestingly, some genes

identified in the study by Guarischi-Sousa et al. are regulated by

obesity-associated leptin signaling, including SERPINE1 and

VEGFA (16, 48).
Frontiers in Endocrinology 04
Anti-angiogenic therapy in
breast cancer
Because of the essential role that tumor neovascularization plays

in tumor progression, anti-angiogenic therapy offers, at least in

theory, a strategy for halting both tumor growth and metastatic

invasion. In reality, however, the angiogenic switch is regulated by a

complex (and often functionally redundant) nexus of pro- and anti-

angiogenic signals. This may explain why anti-angiogenic

monotherapies – such as a humanized monoclonal antibody that

binds to and sequesters VEGF-A rendering it signaling-incapable

(Avastin/Bevacizumab) has produced only limited improvements

for breast cancer patients (49). Anti-angiogenic therapies and their

current use in breast cancer is summarized in Table 1. Despite

several clinical studies documenting Bevacizumab treatment (either

alone or in combination with conventional chemotherapy) to be

initially effective in breast cancer (50–52), the RIBBON-1 study

found that this did not ultimately translate into significantly

increased overall survival (52). This finding, along with the

observation that Bevacizumab increases toxicity of standard
TABLE 1 Anti-Angiogenic drugs and clinical trials in breast cancer.

Drug Target/Mecha-
nism of Action

Current use in
Breast Cancer

FDA-
labelled indications

Non FDA-
labelled
indications

Relevant
or
Ongoing
Clinical
Trials

Sources

Bevacizumab
(Avastin)

Humanized Anti-VEGF
monoclonal antibody

FDA approval withdrawn in 2011,
but currently can be used off-label
to treat metastatic HER2 negative
breast cancer, in combination with
paclitaxel or other chemotherapy

Cervical cancer, Glioblastoma
multiforme, Liver Carcinoma,
colorectal cancer, Renal cell
carcinoma, Nonsquamous non-
small cell lung cancer,
ovarian cancer

Metastatic HER2
negative breast
cancer. Macular
degeneration,
other
retinopathies

RIBBON-1,
NCT05192798
NCT04739670

(64, 65)

Ramucirumab
(Cyramza)

Monoclonal antibody
targeting VEGFR-2

Not currently used in breast
cancer, trials did not demonstrate
improvement in Overall Survival
(OS) or Progression Free
Survival (PFS)

Esophogastric cancer, gastric
cancer, liver carcinoma,
colorectal cancer, non-small
cell lung cancer

Urothelial
carcinoma

NCT01234402 (64, 66)

Sorafenib
(Nexavar)

Tyrosine kinase inhibitor
targeting VEGFR,
PDGFR, and RAF

Not currently used in breast
cancer, trials did not demonstrate
improvement in OS or PFS

Liver carcinoma, renal cell
carcinoma, thyroid cancer

Acute myeloid
leukemia,
gastrointestinal
stromal tumor

NCT00544167
NCT00096434

(64, 67)

Sunitinib
(Stutent)

Tyrosine kinase inhibitor
targeting VEGFR1,
VEGFR2, fetal liver
tyrosine kinase receptor
3, c-KIT, PDGFRa,
and PDGFRb

Not currently used in breast
cancer, trials did not demonstrate
improvement in OS or PFS

Gastrointestinal stromal tumor,
pancreatic neuroendocrine
tumors, renal cell carcinoma

Thyroid cancer NCT00471276
NCT00246571

(64, 68)

Vandetinib
(Caprelsa)

Tyrosine kinase inhibitor
of VEGFR2, VEGFR3,
EGFR and RET

Not currently used in breast
cancer, trials did not demonstrate
improvement in OS or PFS

Medullary thyroid carcinoma None NCT02530411 (64, 69)

Axitinib
(Inlyta)

2nd generation pan-
VEGFR Tyrosine
kinase Inhibitor

Not currently used in breast
cancer, trials did not demonstrate
improvement in OS or PFS

Renal cell carcinoma Metastatic renal
cell carcinoma

NCT00076024
NCT05904730

(64, 70)

Pazopanib
(Votrient)

Tyrosine kinase inhibitor
targeting VEGFR,
PDGFR, FGFR, and
c-KIT

Not currently used in breast
cancer, trials did not demonstrate
improvement in OS or PFS

Renal cell carcinoma, soft
tissue sarcoma

Gastrointestinal
stromal tumor,
Thyroid cancer

NCT01466972
NCT00558103

(64, 71)
fr
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chemotherapy in this trial, resulted in the FDA withdrawing

approval for Bevacizumab for combination treatment of

metastatic Her2/neu negative breast cancer in 2011 (53).

Although it remains unclear why Her2-negative breast cancer is

resistant to Bevacizumab when combined with other

chemotherapies, one possibility is that overexpression of other

pro-angiogenic/pro-lymphangiogenic growth factors in this

cancer type may compensate for inhibition of VEGF-A.

Alternatively, ordinarily leaky and disorganized blood vessels may

“normalize” following anti-angiogenic therapy which increases

access of cytotoxic drugs to the tumor stroma, thereby enhancing

their efficacy (54, 55). Indeed, anti-angiogenic drugs have been

shown to prune the tumor vasculature by eliminating excess ECs,

leading to reduced tumor vessel density in mice (56, 57) while

improving tumor vascular perfusion (58). Whether this effect is less

likely to occur in some breast cancer types – thereby contributing to

the apparently reduced efficacy of anti-angiogenics in some breast

cancers – is unknown.

In addition to these possibilities, obesity may be a confounding

factor in treating breast cancer with an anti-angiogenic approach

using Bevacizumab. The expression of inflammatory cytokines and

angiogenic factors like interleukin-6 (IL-6) and fibroblast growth

factor 2 (FGF2), which contribute to resistance against anti-

angiogenic therapies (59–61), are upregulated in adipocyte-rich

hypoxic regions (62). Those regions are more prevalent in tumors

from obese mice which likely contributes to anti-VEGF (anti-mouse

VEGF antibody-B20-4.1.1) therapy resistance (63). The same study

also showed increased systemic concentration of IL-6 and/or FGF-2

in obese patients suggesting possible activation of alternative

angiogenic pathways in association with obesity (63).

Nonetheless, combination anti-angiogenic/cytotoxic

chemotherapy approaches (including some strategies involving

Bevacizumab) have been more promising in a spectrum of solid

tumor malignancies, including renal cell, pancreatic, gastric, head

and neck, colorectal, glioblastoma, hepatocellular, cervical, ovarian,

and importantly several types of breast cancer (64); among these are

some (e.g., pancreatic, ovarian, etc.) that – like breast cancer – are

more prevalent with patient obesity. Thus, while anti-angiogenics

remain a viable strategy for cancer treatment, a better

understanding of how angiogenic signaling is dysregulated by

both obesity and tumor stroma is needed to better understand

how current and new anti-angiogenic approaches can be adapted to

improve efficacy in obese breast cancer patients.
ASC-derived leptin is a key regulator
of the breast microenvironment

The breast environment is a complex milieu comprised of

multiple cell types including adipocytes, ductal epithelial cells,

vascular endothelial and mural cells, fibroblasts, immune cells and

adipose-derived stromal/stem cells (ASCs). ASCs are a mesenchymal

cell type that play key roles in energy and lipid homeostasis, and serve

as a major source of endocrine signals, including leptin, which

positions ASCs as crucial regulators of signaling crosstalk between
Frontiers in Endocrinology 05
the distinct cell populations within healthy (and diseased) breast tissue

(28, 75, 76). In particular, ASC contribution to the leptin signaling axis

in breast stroma is critical for healthy adipose function in the breast.

ASCs are altered by obesity and metabolic diseases, including insulin

resistance, dyslipidemia, atherosclerosis, hypertension, and certain

cancers (72). In obese patients, for example, increased fat mass

dysregulates inflammation- and angiogenesis-associated genes in

association with reduced adipose tissue oxygenation, likely

contributing to altered adipose tissue homeostasis (73). Adipocyte

hypertrophy and hyperplasia also alter the secretory profile of ASCs,

resulting in excess production of cytokines and adipokines, including

leptin (74), which promote inflammation in obesity (72). For these

reasons, ASCs are key regulators of obesity-associated sequelae and

disease due in part to their control of leptin signaling.

Adipocyte- and ASC-derived leptin (28, 75, 76) regulates energy

balance, metabolism, endocrine signal regulation and immunity

(77–80), and increased circulating leptin levels are associated with

obesity and its associated sequelae. Indeed, leptin is considered a

master regulator of obesity: high levels (i.e., hyperleptinemia) have

been shown to significantly increase the risk of glucose and lipid

metabolism-associated disorders in obese patients (81), and

increased leptin is both necessary and sufficient to induce

hypertension in obese mouse models (82).

Hyperleptinemia is also associated with reduced survival rates

in obesity-related cancers, including breast cancer (83). This may be

due to several effects of altered leptin signaling, including increased

cancer cell resistance to anti-estrogenic drugs (e.g., Tamoxifen) (78,

84). Dysregulated leptin signaling in breast cancer may influence

tumor growth by acting both directly and indirectly on tumor

neovascularization and angiogenesis. For example, in a model of

4T1 mammary carcinoma cells grown adjacent to the mammary fat

pad of syngeneic mice (85), leptin receptor antagonists reduced

tumor growth by up to 90% and this was associated with reduced

VEGF and VEGFR tumor expression. Similarly, leptin knockout in

obesity-derived adipocytes reduced tumor growth of triple negative

breast cancer (BT20) which was associated with reduced expression

of angiogenesis-promoting genes (e.g., SERPINE1, SNAI2, IL-6,

TWIST1, and PTGS2) (86). Leptin has also been found to drive

metastasis in both an ER+ and ER- context, with leptin knockout in

obese ASCs resulting in reduced motility of BC cell lines in vitro and

reduced metastasis in an in vivo patient-derived xenograft model of

TNBC (5, 87). Thus, in addition to its other regulatory roles, leptin

plays a central role in tumor angiogenesis and metastasis in breast

cancer (5).
Leptin regulates angiogenesis and
metastasis in breast cancer

Leptin is a well-known inducer of angiogenesis, and exogenous

leptin classically promotes angiogenic sprouting in corneal explant

models (88). In breast cancer, leptin promotes angiogenesis via

several mechanisms (Figure 2): i) leptin acts directly on breast

cancer stroma to promote the production of soluble pro-angiogenic

signals (e.g., VEGF (89), FGF); ii) leptin acts directly on ECs of
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tumor blood vessels to promote angiogenic activation and enhance

angiogenic responses (90); and iii) leptin indirectly promotes

angiogenesis by priming the tumor microenvironment for

neovascularization through effects on estrogen signaling and

immune cell activation. Each of these mechanisms will be

explored more in depth in the subsequent sections.

In addition to these pro-angiogenic effects, leptin also regulates

adipocyte capillary fenestration (91), resulting in vessels that may

become more permeable to cancer cell extravasation and metastasis.

This is a critical effect of leptin on tumor blood vessels in adipose

tissue but is beyond the scope of the present review.
Leptin activates breast cancer-
expressed leptin receptors to promote
angiogenic signaling

Leptin signals directly to breast cancer stromal cells by

paracrine and/or autocrine signaling activation of cell surface

leptin receptors (LEPRs), ObR-a and ObR-b. Both receptor

isoforms are strongly expressed in human breast cancer cell lines

and are significantly overexpressed in human breast cancer in

comparison to non-transformed mammary gland tissue (92, 93).

In addition to promoting tumor cell proliferation, leptin signaling

activation upregulates cancer cell production and secretion of

soluble VEGFA via NFkB, Sp1, and HIF-1a signaling to induce
Frontiers in Endocrinology 06
angiogenic sprouting into the growing tumor mass (85, 94). In

particular, HIF-1a binds directly to the hypoxia response element

(HRE) of the VEGFA promoter in mammary tumor cells (95), and

when the HRE site was deleted from the VEGFA promoter in a

luciferase reporter assay, leptin-induced luciferase signal was

significantly reduced (86). Gonzalez-Perez and colleagues also

reported that leptin-mediated production of HIF-1a and NFkB
involves different signaling pathways: the former via canonical

(JAK2/STAT3, PI3K/AKT1, and MAPK/ERK1/2) and the latter

non-canonical (p38, JNK and to a lesser extent PKC) downstream

signaling pathways (86).

Leptin also regulates pro-angiogenicVEGF/VEGFR2 via a distinct

Notch/IL-1 signaling axis termed Notch, IL-1, Leptin crosstalk

outcome (NILCO) (96). Leptin upregulates Notch signaling effector

expression (includingNotch1/4 receptors, andNotch ligands Jag1 and

Dll4) which upregulates Notch target genes (HEY2, Survivin) and

enhances IL-1 expression. Notch signaling is required for leptin-

induced pro-angiogenic activation (96), and inhibition of IL-1R type

1 blocks leptin-induced Notch signaling activation, as well as

downstream upregulation of HEY2, Survivin, and VEGF/VEGFR2.

Taken together, the above-described studies underscore leptin’s

critical role in regulating the expression of soluble pro-angiogenic

VEGF in breast cancer cells via multiple intermediate signaling

pathways. Thus, overexpressed VEGF in breast cancer stroma

critically supports tumor expansion by activating nearby blood vessels

to undergo sprouting angiogenesis and tumor neovascularization.
FIGURE 2

Leptin signaling promotes angiogenesis in the breast cancer TME through integrations with Leptin receptors. Leptin acts directly on cancer cells to
stimulate the release of angiogenesis-promoting factors. It also can act on endothelial cells directly to promote proliferation and vascular expansion.
Leptin can also indirectly promote angiogenesis through other cell types and factors present in the tumor microenvironment, including immune
cells and alteration of estrogen signaling. Created in Biorender. Fang, J.S. (2024).
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Leptin activates endothelial-expressed
LEPRs to directly promote angiogenic
activation of tumor ECs

In addition to directly regulating breast cancer cells to increase

VEGF expression in the tumor microenvironment, leptin can

potently activate angiogenesis by acting directly on tumor

endothelial cells. First, Sierra-Honigmann and colleagues found that

vein endothelial cells (VECs) express LEPRs in vitro, and that leptin

can induce angiogenesis in normal but not leptin receptor-deficient

rat corneas (88). Leptin may activate angiogenesis in multiple ways,

including by increasing endothelial cell expression of pro-angiogenic

factors such as VEGFRs and MMPs, including MMP2 and MMP9,

both classic hallmarks of pro-angiogenic activation of ECs (97–99).

Leptin also can enhance the activation of proliferation- and

migration-associated PI3K/Akt and MAPK signaling pathways (97–

99). As a result, ECs display a dose-related angiogenic response to

leptin that promotes EC survival, proliferation, migration, and growth

(98, 100), as well as their organization into capillary-like structures

(100, 101). Direct leptin stimulation of ECs is critical for the

angiogenesis that underlies healthy adipose tissue extension (100),

as well as for angiogenesis and tumor neovascularization in cancers

such as glioblastoma in vitro (101).

Leptin activation of endothelial-expressed leptin receptors

promotes VEGF signaling by directly trans-phosphorylating the

VEGFR2 receptor and increasing Notch expression which in turn

increases VEGF/VEGFR expression in EC (102). VEGFR and Notch

are necessary for leptin-induced direct effects on EC: a study by

Lanier et al. showed that leptin-induced proliferation and EC tube

formation were impaired by either VEGFR or Notch signaling

inhibition. The study further demonstrates that leptin-induced

VEGFR-1 and VEGFR-2 transphosphorylation was necessary for

leptin’s actions (102). Separately, Garonna et al. showed that

VEGFR2 activation also increases endothelial cyclooxygenase 2

(COX-2) expression to induce angiogenesis, and that this

response is enhanced in a p38MAPK- and PI3K/Akt -dependent

manner (98). COX-2 inhibitors, such as celecoxib, reduce tumor

growth in breast cancers (103), indicating the need for further study

to determine whether inhibition of these downstream components

affects leptin-induced angiogenesis in a breast cancer context.

Additionally, leptin regulates the expression of endothelial

nitric oxide synthase (eNOS), which produces vasodilatory nitric

oxide (NO) to regulate local vasomotor responses and control

downstream blood flow and tissue perfusion (100, 104). This is

especially relevant in the context of both cancer and obesity-

associated fat expansion, as both can lead to metabolic imbalance

and excessive production of reactive oxygen species (ROS).

Resulting oxidative stress can in turn drive endothelial

dysfunction due to reduced NO bioavailability (104), and also can

be compensated for by leptin-mediated angiogenesis to re-establish

tissue (or tumor) blood flow and support metabolic waste removal.

Lastly, leptin may also regulate angiogenesis through the Wnt

signaling pathway. Wnt is a potent pro-angiogenic signal, andWnt2

deficiency is lethal in 50% of embryos due to placental and

embryonic vascular defects (105). ECs express several types of
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Wnt ligand, Wnt receptor, and downstream b-catenin-associated
transcription factors (106). Using an in vitroMatrigel assay, Wnt/b-
catenin signaling activation is sufficient to promote the formation of

capillary networks (106), possibly by transcriptional regulation of

pro-angiogenic VEGF (107), Interleukin 8 (IL8) (108), and MMPs

(106). Interestingly, some studies have implicated leptin as an

upstream regulator of Wnt signaling in ECs. Yu et al. found that

leptin activates Wnt pathways in ECs in vitro and in vivo, and that

silencing RNA knockdown of Wnt signaling effectively blocks

angiogenesis in vitro (109). In these studies, Akt knockdown

reduced GSK-3b phosphorylation and b-catenin translocation.

Thus, b-catenin translocation can be triggered by either the Wnt/

Frizzled or Leptin/Akt signaling axes, and these pathways appear to

converge at the level of GSK-3b. Separately, leptin was found to

regulate breast cancer cell growth in a Wnt/b-Catenin-mediated

manner (110). This same study also showed upregulation of leptin

in serum of breast cancer patients in comparison to the healthy

individuals. However, it remains unclear to what extent leptin/Wnt

signaling crosstalk supports breast cancer growth by specifically

promoting tumor neovascularization, or if other outcomes of leptin/

Wnt signaling activation predominate in breast cancer tissue.
Indirect leptin-mediated mechanisms
of pro-angiogenic activation

Beyond leptin signaling onto breast cancer and endothelial cells

to directly control the VEGF/VEFR signaling axis and other pro-

angiogenic pathways, leptin can also induce a pro-angiogenic TME

through estrogen-signaling in breast adipocytes and by promoting

pro-inflammatory signaling by tissue- (or tumor-) resident

macrophages, as shown in Figure 3. Both may potentially

contribute to angiogenesis in the setting of breast cancer.
Leptin-regulated estrogen signaling in
adipocytes and breast cancer cells

Estrogen and the estrogen receptor (ER) are essential drivers

and therapeutic targets for hormone receptor-positive breast

cancer. Leptin interacts with estrogen pathways through several

mechanisms to indirectly promote angiogenic signaling in cancer

cells and in the tumor microenvironment. In ER+ breast cancer

cells, leptin increases aromatase expression and enzymatic activity,

leading to an increase in overall estrogen levels (111). In post-

menopausal women, circulating estrogen is low, but it can still

remain high in breast adipose tissue thereby serving as an estrogen

source for breast tumors (112). Multiple mechanisms for

maintaining post-menopausal estrogen production in breast have

been proposed, including suppression of LKB1/AMPK, suppression

of the MAPK/p53 axis, and upregulation of COX2 (83). Leptin-

induced aromatase expression also occurs in adipose stromal cells

within the tumor microenvironment (113).

Although the link between leptin and estrogen signaling has not

been explicitly studied in the context of angiogenesis, estrogen

signaling is known to strongly regulate vessel growth. Treatment
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of cardiac microvascular ECs with estrogen (E2), for example,

reduces oxidative stress and inflammatory cytokines, and also

promotes endothelial progenitor cell recruitment to sites of

vascular damage (114, 115). In breast cancer, increased E2

bioavailability also promotes angiogenesis. In ovariectomized

mice, treatment with E2 improved endothelial cell maturation,

stabilization, and organization, as well as increased expression of

VEGF-A, VEGFR-3, and VEGFR-1 (116). Another study found that

Matrigel plugs mixed with ER+ breast cancer cells from estrogen-

treated, ovariectomized mice had lower expression levels of soluble

VEGFR-1, increased bioavailability of VEGF protein, and increased

angiogenesis, compared to untreated controls (117). Increases in

VEGF mRNA and VEGF protein expression with estrogen

treatment also have been observed in vitro with ER+ cell line,

MCF7 (118, 119). Lastly, estrogen signaling can induce HIF1-a
nuclear translocation to enhance the release of soluble VEGF (120).
Leptin-regulated cytokine production and
immune responses

Leptin also regulates immune responses – both locally in the

breast as well as systemically – in a manner that modulates
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angiogenic responses. Leptin becomes elevated during infection

and inflammation, and it regulates cytokine production and

immune cell responses in patients (121, 122); both strongly

influence angiogenesis. Structurally related to pro-inflammatory

cytokines (e.g., IL-6, IL-11, IL-12, and Oncostatin M), leptin is

upregulated by cytokine-induced signaling activation, including by

tumor necrosis factor alpha (TNF-a) and IL-6 (123). Interestingly,

the long form of the LEPR OB-Rb shares structural and functional

similarities to IL-6-type cytokine receptors (124).

Leptin acts on multiple cell types of healthy mammary tissue

and breast cancer, including on mammary-resident (and tumor-

resident) macrophages, which can contribute to tumor

neovascularization. Many circulating immune cells including

CD34+ hematopoietic cells, CD4+ and CD8+ lymphocytes, and

platelets express the long form of the leptin receptor Ob-Rb (124),

as well as toll-like receptor 4 (TLR4) and inflammatory chemokine

C-C chemokine ligand 2 (CCL2) receptor, that enable them to

crosstalk with cancer and adipose tissue (125). Macrophages, on the

other hand, specifically express the short form of leptin receptor

(124). As a result, leptin is a strong chemoattractant for monocytes

even at concentrations as low as 1pg/ml (126). Additionally, the

treatment of M2 macrophages with leptin activates the IL-8

promotor through the p38/MAPK and MAPK/ERK1/2 pathways
FIGURE 3

Indirect leptin-mediated pro-angiogenic action in the breast cancer TME. The left panel depicts the impact of leptin on macrophage-mediated
angiogenesis via increased matrix metalloproteinase and VEGF production as well as MCP-1 recruitment of endothelial cells. The right panel illustrates
leptin induced conversion of androgens to estradiol in TNBC cells resulting in increased VEGF production. Created in Biorender. Hawes, M. (2024).
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leading to increased IL-8 secretion resulting in enhanced tumor

growth in vivo and increased migration and invasiveness in breast

cancer cell lines (127). Indeed, even slight changes in interstitial

leptin concentration can significantly enhance chemoattraction and

recruitment of monocytes and macrophages into breast adipose

tissue, leading to altered breast cancer migration and metastatic

potential in mouse models (126, 128, 129).

Leptin stimulates macrophages to secrete pro-inflammatory

and pro-angiogenic cytokines, including IL-1, IL-18, TNFa, NO
and pro-angiogenic VEGF (128, 130, 131). Leptin-induced IL-8 is

pro-angiogenic in several human cancers, including in colorectal

and lung cancer (132), and may also activate angiogenesis in breast

cancer. Indeed, IL-8 signaling activation promotes the formation of

dense vascular networks in the breast stroma during malignant

progression (133). In triple negative xenografts, knockdown of the

leptin receptor decreased the level of infiltrating macrophages and

CCL2 expression, reducing the secretion of pro-angiogenic

cytokines and VEGF (134). Separately, leptin-induced NFkB
activation also leads to increased expression of IL-1, which in

turn promotes VEGF production in breast cancer in vitro (89).

This leptin-cytokine-angiogenesis axis is particularly interesting

because it has been proposed as a therapeutic target in certain

diseases. In a model of obese breast cancer in humans, it has been

suggested that targeting leptin regulation of cytokine production

could be potentially therapeutic by decreasing angiogenesis and

regulating stem cell function in breast tumors (135).

In addition to directly promoting cytokine production, leptin

feeds back onto both the innate and adaptive immune systems,

contributing to a systemic pro-inflammatory and pro-angiogenic

state. Regarding the adaptive immune system, leptin critically

regulates circulating T-cell number and function. Mice lacking

leptin production (ob/ob) or leptin receptor (db/db) exhibit

thymic atrophy and decreased T-lymphocyte levels, while

exogenous leptin rescues thymus proliferation in the thymus of

ob/obmice (136) and can promote thymic proliferation and survival

in humans (123). In addition to direct effects on T-cell maturation,

Leptin upregulates IL-2 and IFN-g, and downregulates IL-4 levels,

which regulate the phenotypic switching between Th1 and Th2

CD4+ T-cells (124, 137). Leptin also suppresses anti-inflammatory

regulatory T-cell (Treg), further contributing to a pro-inflammatory

state (137). In patients with chronic obstructive pulmonary disease

(COPD), for example, increased leptin is associated with decreased

Treg cells in the lung due to inhibition of T-cell glycolysis, an

essential metabolic pathway for T-cell survival and conversion into

Tregs (138). In a separate study of the gastric mucosa, Treg function

was affected by Helicobacter pylori vaccination in a leptin-

dependent manner (139).

In terms of the innate immune system, leptin regulates the

function of macrophages in various ways (137), in addition to being

a chemoattractant (129). Leptin triggers calcium influx in

macrophages to enable the “leading edge” and “ruffling”

structures that allow macrophages to migrate towards leptin, but

not towards other chemoattractants such as MCP-1 (126, 140), and

also modulates macrophage cytokine secretion profiles (130). In a

murine model of Roux-en-Y gastric bypass (RYGB), post-bypass
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mice exhibited decreased leptin levels in association with

macrophage polarization toward the M2 phenotype (141) and

increased Treg levels (142). This suggests a link between weight

loss and leptin signaling in macrophage polarization. In a separate

study using a human Salmonella typhimurium infection model,

gram-negative bacteria activate LEPR signaling in human

macrophages. When the LEPR gene was absent, macrophages

exhibited increased lysosomal functionality, reducing bacterial

burden and inflammation (143). These and other data underscore

how leptin functions as a bridge between inflammation and

metabolism and can play a central role in the pro-inflammatory

signaling that occurs in obesity and other metabolic disorders.

Leptin-induced pro-inflammatory signaling and immune cell

activation can indirectly enhance angiogenic responses in breast

cancer and other tissues through several mechanisms. These include

inducing macrophages to secrete pro-angiogenic VEGF to stimulate

angiogenesis, releasing extracellular matrix metalloproteases to

degrade local extracellular matrix (144), and producing CCL2

(also known as MCP-1) to recruit endothelial cells and smooth

muscle cells for neovascularization (45). M1 vs. M2 macrophages are

distinctly involved in different phases of tumor neovascularization,

and appropriate temporospatial regulation of M1 and M2

macrophages determines the extent of angiogenic sprouting and

vascular growth. Recently, a research group found in a three-

dimensional microfluidic angiogenesis model that M2 macrophages

are pro-angiogenic in glioblastoma, while M1 macrophages are

anti-angiogenic (141). CD4+ T-cells also regulate and promote

angiogenesis. Tregs express Neuropilin-1, VEGF, and Leptin (145),

and it was recently shown that Tregs stimulate angiogenesis

in gliomas through VEGF signaling and in lung ischemia

(146, 147), and CD4+ T-cells may regulate angiogenesis via IL-22

signaling (148).
The potential for leptin-based
therapeutics to inhibit aberrant
angiogenic processes

Given the role of leptin signaling in promoting and regulating

angiogenesis, the potential for leptin-based therapeutics in addressing

angiogenic disease and aberrant angiogenic processes is being studied

in both cancer and non-cancer contexts. Allo-aca, a small peptide

inhibitor of LEPRs, has been found to inhibit VEGF signaling effects

in an ophthalmic neoangiogenesis model (149). Coroniti et al. found

that crosstalk between leptin and VEGF in retinal and corneal

endothelial cells resulted in increased proliferation and motility;

Allo-aca treatment inhibited chemotaxis and expression of VEGF-

induced pathways in vitro as well as choroidal neovascularization in

vivo (149). Leptin signaling antagonists also appear to improve

outcomes in cardiovascular disease: leptin induces thrombotic

events in a mouse model of pulmonary embolism, but event

frequency is reduced–and overall survival improved–by treatment

with a leptin-neutralizing antibody (150). Leptin signaling also has

been found to significantly contribute to post-infarction cardiac
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remodeling and heart failure (151). In rats, treatment with a LEPR-

neutralizing antibody was able to prevent post-injury myocardial

hypertrophy and significantly improve cardiac function in rats

following coronary artery ligation (151). While not directly relevant

to angiogenesis in cancer, these studies indicate that pharmacological

agents can interrupt the leptin signaling axis in vascular disease.

Many LEPR antagonists exhibit anti-cancer activity in various

cancer subtypes and models, though few studies have specifically

examined the effect of LEPR inhibitors on tumor angiogenesis

(152). In a colorectal cancer xenograft model, LEPR inhibition

(via Allo-aca) blocks NILCO-induced expression of VEGFR1/2,

although this did not affect the overall tumor growth rate in mice

(153). In breast cancer, Gonzalez et al. reported that a LEPR

inhibitor (pegylated LEPRA2) significantly reduces endothelial

cell proliferation and tube formation by preventing leptin-induced

upregulation of VEGFR and subsequent Notch activation (85).

LEPRA2 reduced VEGF secretion and expression in 4T1 murine

breast cancer cells, and treatment with LEPRA2 significantly

reduced VEGF levels in serum, as well as tumor growth in 4T1

implant tumors (85). However, it remains unclear from these

studies whether the observed reduction in tumor growth with

LEPR inhibition is due solely to effects on angiogenesis, as

LEPRA2 also reduces Cyclin D expression in breast cancer cells

in vitro (85). Nonetheless, the same group later confirmed that

LEPR2A also reduces tumor growth rate and VEGF/VEGFR2 levels

in ER+ (MCF7) and ER- (MDA-MB-231) breast cancer cells and

tumor xenografts (154).

Despite these promising results, ongoing challenges limit the

use of LEPR antagonists to inhibit angiogenesis in breast cancer

patients. As discussed above, leptin is a well-established immune

system modulator (155), and the LEPR antagonist Allo-aca affects T

cell differentiation and function in mice (156). While this may be

desirable in autoimmune conditions, further research is needed to

determine how combining this effect with chemotherapy drugs in

cancer might impair therapies that require functional T-cells to be

effective, such as PD-1 and PDL-1 inhibitors.

Additionally, because leptin is crucial for satiety and metabolic

functions, LEPR antagonism often results in weight gain, an

unwanted side effect that may limit patient adherence.

Furthermore, some data indicate that weight gain is associated

with poor outcomes in BC patients making it unclear whether

potential benefits of LEPR inhibition of breast cancer angiogenesis

would outweigh the negative effects of associated weight gain (10).

However, Zabeau et al. have recently created a LEPR antagonist

antibody that uncouples the downstream metabolic and immune

functions of LEPR (157). Using a single-domain antibody that

selectively inhibits LEPR-EGFR crosstalk, they observed no

significant changes in food intake, weight gain, or visceral or

subcutaneous fat composition in LEPR antibody-treated mice

compared to vehicle controls. However, they also observed that

treatment blocked leptin’s protection against starvation-induced

splenic and thymic atrophy, leading to a decrease in lymphocytes

compared to leptin treated controls (157). Thus, it may be possible

to avoid unwanted weight gain with LEPR inhibition, and further

research is needed to develop such uncoupled LEPR antagonists for

clinical use.
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Discussion

Given the prevalence of obesity in the general population and

specifically among breast cancer patients, it is critical to understand

how obesity contributes to breast cancer pathology. In this review,

we describe how hyperleptinemia in obesity can drive angiogenesis

in breast cancer through its actions on both cancer cells themselves

and on other cells in the tumor microenvironment, including

endothelial cells and immune cells. Leptin is also able to promote

angiogenesis indirectly via upregulation of estrogen signaling. This

supports the importance of local stromal remodeling in breast

cancer: hyperleptinemia can drive estrogen-dependent alterations

to the TME, which can have profound effects on tumors regardless

of BC hormone receptor status.

Most studies referenced in this reviewarticlewereperformedusing

patient-derived xenograft ormurinemodels of breast cancer; however,

in the future, more studies exploring the difference in intratumoral

microvascular density in obese vs. non-obese patients would provide

valuable insight into how obesity (and associated hyperleptinemia)

affects angiogenic signaling in breast cancer. Nonetheless, while anti-

angiogenic therapies are effective inmany cancers, their effectiveness is

likely modulated by obesity-associated signaling, such as through the

leptin signaling axis. Thus, therapies that jointly target leptin signaling

alongside anti-VEGF therapy may help breast cancer patients –many

(but not all) of whom are obese – in which conventional anti-VEGF

combination therapy is less effective, such as in Her2-negative breast

cancer. Future studies should further focus on developing such

approaches, which would likely prove beneficial to all breast cancer

patients and particularly those who present with obesity at the time of

breast cancer diagnosis.
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