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Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle

function before the age of 40 years with an estimated prevalence of 3.7%

worldwide. Its relevance is emerging due to the increasing number of women

desiring conception late or beyond the third decade of their lives. POI clinical

presentation is extremely heterogeneous with a possible exordium as primary

amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to

different congenital or acquired abnormalities. POI significantly impacts non only

on the fertility prospect of the affected women but also on their general,

psychological, sexual quality of life, and, furthermore, on their long-term bone,

cardiovascular, and cognitive health. In several cases the underlying cause of POI

remains unknown and, thus, these forms are still classified as idiopathic.

However, we now know the age of menopause is an inheritable trait and POI

has a strong genetic background. This is confirmed by the existence of several

candidate genes, experimental and natural models. The most common genetic

contributors to POI are the X chromosome-linked defects. Moreover, the

variable expressivity of POI defect suggests it can be considered as a

multifactorial or oligogenic defect. Here, we present an updated review on

clinical findings and on the principal X-linked and autosomal genes involved in

syndromic and non-syndromic forms of POI. We also provide current

information on the management of the premature hypoestrogenic state as

well as on fertility preservation in subjects at risk of POI.
KEYWORDS
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1 Introduction

Primary ovarian insufficiency (POI) is characterized by impaired

or intermittent ovarian follicle function before age 40 (1, 2),

determined by diminished number of primordial follicles,

accelerated follicular atresia, blocked follicle maturation or follicular

dysfunction. The cut-off age of 40 years is used because it represents

two standard deviations below the mean age of natural menopause.

The definition and appropriate terminology of this condition have

been debated for decades (3): the aforementioned definition of POI,

which should replace the terminology of ‘premature ovarian failure

(POF)’, has the advantage of clearly defining the ovarian origin of the

condition, as is common practice in endocrinology. Moreover, the

latter definition does not take into account the biological course of the

condition, and is uninformative and stigmatizing for patients who

may not experience the cessation of ovarian function at the time of

diagnosis. POI should be intended as a wide clinical spectrum, with

considerable variability of clinical presentation and its own natural

history. It is a condition characterized by strong genetic susceptibility,

occurring in up to 30% of cases in familial form, whose expression is

modulated by various environmental factors (4, 5). It is a

heterogeneous disorder, which can be acquired or congenital,

although in 70-90% of cases it remains idiopathic (6), although

more recent data suggest that, as a result of the effort made in

identifying new genetic mechanisms, the percentage of idiopathic

forms currently stands at 39% to 67% (2). Depletion or dysfunction of

ovarian follicles leads to amenorrhea and subsequently to

menopausal symptoms, infertility, and sexual dysfunction which

adversely impact not only the physical and mental well-being of

those affected but also their self-esteem and interpersonal

relationships (7). Thus, the quality of life of women with POI is

affected from a physical, psychological, and social point of view. The

relevance of POI is emerging as the desire of women to conceive

beyond the age of 30 grows, when the incidence of POI is the greatest,

and life expectancy is extended, and, in turn, also the duration of

hypoestrogenism. Considering the rising incidence of the condition

in younger ages as well (8, 9), POI presents a growing challenge for

women, as it interferes with their reproductive desires. At the same

time, POI diagnosis, especially at younger ages, heightens the risk of

associated morbidities and is expected to lead to early mortality,

thereby having serious consequences on the health of those affected

(10, 11). Therefore, gaining a deep understanding of POI is critical for

its early diagnosis, development of an effective long-term

management and patient counseling strategy. This would finally

lead to improvements in the overall quality of life, including the

physical and psychological well-being, reproductive health and

primary life goals of the affected women.
2 Epidemiology

The Study of Women’s Health Across the Nation (SWAN)

reported that approximately 1.1% of women under the age of 40 in

the general population are affected by POI (12). However, a recent

large-scale meta-analysis study estimated the global prevalence of

POI to be 3.7% (13). The incidence of POI declines exponentially
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with decreasing age. Specifically, the incidence rate ratios are 1:100

for women between 35 and 40 years old, 1:1,000 for women between

25 and 30 years old, and 1:10,000 for women between 18 and 25

years old (14). Interestingly, a nationwide Israeli study in women

under 21 years of age, showed that the incidence rate of POI

diagnoses doubled in the period of 2009-2016 compared to the

period of 2000-2008 (8). Additionally, the results of a recent Finnish

study suggest an increase in the incidence rate of the condition in

adolescent girls, aged 15-19, from 2007 to 2017 (9). These results

place emphasis on the discrepancy between the past and recent

epidemiologic data, whilst indicating a rise in the incidence of POI

amongst younger women, that could also reflect a change towards a

more active approach to primary amenorrhea among adolescent

women. The prevalence and incidence rates also differ across

ethnicities. A multi-ethnic cross-sectional study conducted by

Luborsky et al. (12) demonstrated significantly higher incidence

rates in Hispanic and African American women compared to

Japanese and Chinese women. Additionally, two population-based

cohort studies on the Swedish and Iranian populations showed a

prevalence of 1.9% and 3.5%, respectively (15, 16). Remarkably,

first-degree relatives of women with POI have an increased risk of

having POI themselves (9, 17, 18).
3 Etiopathogenesis

3.1 Genetic causes

Although POI negatively affects fertility, several studies have

indicated that this condition has a strong heritable, and therefore

genetic, component. A decade ago, Stolk and colleagues identified

common loci associated with the age at menopause by a genome wide

association study (19). However, the exact mechanisms underlying

the heritability of this condition are not yet completely understood.

The fact that mothers and daughters show a tendency of inheritance

of the menopausal age supports the view of the inheritable

susceptibility to POI, with a demonstrated high prevalence (31%)

of familial POI in patients (18). Moreover, the even higher incidence

of early menopause (EM) occurring within the same family group or

among first-degree relatives also indicates a variable expression of the

same genetic disease predisposition (20, 21). Two recent population-

based studies further assessed the familial clustering of POI. In

Finland, it has been estimated an odds ratio of 4.6 (95% CI 3.3-6.5)

for POI in first-degree relatives of 129 women with POI (9). Whereas

in a cohort of 396 cases from Utah, first-degree relatives

demonstrated an 18-fold increased risk of POI compared with

controls relative risk (RR, 18.52; 95% CI, 10.12–31.07), second-

degree relatives demonstrated a 4-fold increase (RR, 4.21; 95% CI,

1.15–10.79), and third-degree relatives demonstrated a 2.7-fold

increase (RR, 2.65; 95% CI, 1.14–5.21) (17). Hereditary disorders

can affect the functioning of the ovaries and contribute to the

development of POI: among the genetic conditions that have been

associated with an increased risk of POI, there are X chromosome

aneuploidies, together with polymorphisms and mutations in several

causative genes, that are associated with either pleiotropic genetic

syndromes or isolated cases (Tables 1–3).
frontiersin.org

https://doi.org/10.3389/fendo.2024.1464803
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Federici et al. 10.3389/fendo.2024.1464803
3.1.1 Overview of genetic candidates and stages
of folliculogenesis

In this section, the main genetic factors involved in non-

syndromic forms of POI will be described, according to the

biological process in which each gene participates, based on

literature findings. See also Figure 1 and Tables 1–3 for details.

3.1.1.1 Primordial germ cells and
oogonia formation

Human primordial germ cells (PGCs) originate from the

extraembryonic mesoderm 3 weeks after fertilization and migrate to

the developing gonadal ridges, the bipotential gonads that will

differentiate into either ovaries or testis. Here, female PGCs

differentiate into oogonia and start proliferating in clusters of germ

cells called syncytia or germ cell nests, which are connected and

synchronized by intercellular connections. At this stage, an active

phase of mitosis ensues to establish adequate ovarian reserve. During

this phase of rapid proliferation, PGCs uphold genomic stability by

crucially depending on precise DNA replication and repair

mechanisms, which are tightly regulated through cell cycle blockades.

The maximum number of oogonia resulting from mitotic divisions

occurs approximately during the 20th week of development, with the

ovaries containing approximately 6-7 millions of germ cells. A recent

study in knockout mice (KO) indicated that defects of Fance may act

during rapid mitotic periods in PGCs, leading to impaired cell

proliferation and genomic instability. Through mechanisms not

completely understood, Fance−/− mice showed reduced numbers of

PGCs, decreased ovarian reserve, and infertility (152). In humans,

previous studies have already shown that patients harboring biallelic

pathogenic variants in genes such as FANCA, FANCM, FANCD1,

FANCU, as well as those with monoallelic pathogenic variants in

FANCA, FANCD1, FANCL, presented with gonadal dysfunction and

infertility with or without other phenotypic features of Fanconi Anemia

(74). During these early stages, mitotic oogonia expresses pluripotency-

associated and germ cell-specific genes. Different groups identified

NANOS3 genetic variants in patients with POI (124, 125). The

NANOS3 gene is required for germ cell development coding an

RNA-binding protein which functions by repressing apoptosis in

germ cells. ATG7 and LIN28A are other essential genes involved in

female gametogenesis considered candidates for POI, however, no

significant variations were found in POI cohorts yet (153). ATG7 is an

autophagy induction gene. Autophagy protects germ cells from over-

loss in newborn ovaries. Loss of Atg7 leads to subfertility with a

dramatic decrease of the ovarian follicles pool in female mice (154).

LIN28A together with LIN28B encode highly conserved RNA-binding

proteins regulating microRNA biogenesis by promoting germ cell

proliferation and inhibiting differentiation (155); the disruption of

Lin28a affects germ cell development in mice (156).

3.1.1.2 Primordial to primary follicles transition

Around the 11th week of gestation, the upregulation of FIGLA

drives the formation of primordial follicles. Female mice Figla-/- exhibit

impaired primordial follicle formation and infertility (157). Several

deleterious variants of the FIGLA gene have been found in recent years

by our group (91) and others (92–94). Each primordial follicle consists
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of an oocyte surrounded by a single layer of flattened somatic pre-

Granulosa Cells (GCs) enclosed by a basal membrane which enters

meiosis. The mechanism beyond the meiotic initiation is still poorly

known. During human fetal ovarian development, increasing FMR1

expression marks the developmental transition from primordial germ

cells expressing LIN28 to meiotic germ cells (158). The presence of the

premutated FMR1 allele is frequently associated with ovarian

dysfunction. FMR1 premutation is one of the most frequent

alterations involved in the pathogenesis of SA and POI. Meiosin and

Stra8 germ cell factors interact to trigger meiotic entry via the retinoic

acid-dependent pathway, acting as transcription factors (159). Both

STRA8 and MEIOSIN variants have been found to be associated with

POI (160). Once meiosis proceeds, several genes are upregulated (161).

Among these, Dazl protein mediates transcription of synaptonemal

complex proteins (162). SNPs and rare genetic variants of this gene

could associate with an earlier onset of menopause by impairing germ

cells number (163, 164).

3.1.1.3 Meiotic phases

Key processes of prophase I are homologous chromosome

pairing, synapsis formation, and repair of DNA Double Strand

Breaks (DSBs) to enable recombination and crossover. The genetic

disruption of either one of the meiotic genes leads to impaired

meiosis progression and usually results in oocyte loss as shown in

animal models thus making them candidates for human POI.

3.1.1.3.1 DNA double strand breaks formation

The precise localization and formation of DSBs are essential for the

accurate recognition and pairing of homologous chromosomes.

PRDM9 is a meiosis-specific histone H3 methyltransferase which

catalyzes H3K4 trimethylation, binds chromosome axis by

interacting with CXXC1, HORMAD1, MEI4, REC114, ANKRD31

and IHO1, and together with Hells opens chromatin at hotspots, thus

providing the access for the DSBs machinery. Subsequently, the

endonuclease SPO11, along with MEI1 and TOPOVIB-Like

complexes, is recruited at PRDM9-binding sites where it generates

chromosome breaks. Except for Cxxc1 and Hormad1, the conditional

KOs of the above-mentioned factors demonstrate female mice

infertility with premature oocyte loss caused by impaired DSBs

formation (165). A few pathogenic variants in PRDM9 and

ANKRD31 (83) have been identified in patients with POI so far. Up

to date, no causative variants of POI have been identified in the other

meiotic DSBs genes which are rather associated with male infertility

(166) or other female fertility issues different than POI, such as

preimplantation embryonic arrest and recurrent implantation failure

and female infertility (167, 168).

3.1.1.3.2 DNA double strand breaks processing

Following the formation of DSBs, DNA ends undergo a

maturation process which requires the tight cooperation of the

MRE11-RAD50-NBS1 (MRN) complex. The relevance of the MRN

complex in maintaining the primordial follicle pool has been

demonstrated in animal models (169–171). In humans, biallelic

nonsense mutations in the NBS1/NBN gene have been identified in

compound heterozygosity in two siblings presenting the unique
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clinical symptom of fertility defects and POI (172). Then, the MRN

complex recruits EXO1, an exonuclease which contributes to DSBs

resection and formation of recombinant DNA structures and

participates in mismatch repair. Inactivation of Exo1 in mice

causes dynamic loss of chromosome chiasmata during the first

meiotic prophase, leading to POI (173). Recently, WES performed

in 50 sporadic patients with POI with PA identified in EXO1 gene

one heterozygous missense variant impairing homologous

recombination (HR) (146).

3.1.1.3.3 Synapsis generation

The 5’ to 3’ exonuclease activity of Exo1 generates long 3′ single-
stranded tails, which serve as substrates for assembly of DMC1 and

RAD51 recombinases. Both are necessary for strand invasion during

synapsis formation (165). KO mice for Dmc1 show meiotic arrest at

prophase I with ovaries devoid of follicles. Moreover, DMC1 genetic

variants have been described in POI (87, 174). Recently, a report

described a family with a homozygous frameshift mutation as

causative for both non-obstructive azoospermia and diminished

ovarian reserve, suggesting that DMC1 could be dispensable in

human oogenesis (88). Contrarily, the lack of Rad51 in mice results

in embryo lethality. WES in 50 sporadic patients with POI with PA

identified a missense variation in RAD51 impairing the nuclear

localization of this factor (146).

The nucleation and stabilization of RAD51 at DSBs are

mediated by direct interaction with BRCA2 and BRCA1-BARD1

complexes (175). BRCA1/2 act as tumor suppressor genes known to

predispose the heterozygous carriers of deleterious mutations to

breast, ovarian and other types of cancers (176) Conditional Brca2-

deficient mice exhibit infertility due to defective follicular

development and oocyte degeneration, whilst BRCA2 transcript

may be found downregulated in human POI oocytes (177). A few

genetic studies contributed to the identification of pathogenic

biallelic variants of BRCA2 in patients with POI in absence of

cancer or Fanconi Anemia trait (75, 178), thus supporting BRCA2

haploinsufficiency as a possible mechanism leading to isolated POI

(179). A tendency to accelerated decline of ovarian reserve, oocyte

aging, and POI was also observed in patients carrying BRCA1

germline variants as well as in Brca1 mouse model (180).

Other regulating factors of RAD51-DMC1 are HOP2/PSMC3IP

and MND1. They function as heterodimer which enhances strand

exchange on homologous DNA or containing a single mismatch

(181). Aberrant synapses and DSBs repair result from the loss of

this complex (182). Both the ovarian phenotype displayed by KO

mice and the identification of variants in patients corroborates their

key role in oogenesis and POI pathogenesis (120, 149, 150, 183).

Meiob and Spata22 form a complex recruited to induce DSBs.

Inactivation of Meiob and Spata22 induces meiotic arrest and leads

to infertility in mice (184). Variants of MEIOB and SPATA22

associated with POI are rare, with only 3 cases reported so far for

MEIOB (117, 118) and only one for SPATA22 (151).

3.1.1.3.4 Homologous recombination

The heterodimeric complex MSH4-MSH5 stabilizes the

interaction between parental chromosomes during DSBs repair

(185). Disruption of either Msh4 or Msh5 genes in female mice
T
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TABLE 2 Classic candidate genes for POI.

Gene OMIM
Ovarian Phenotype (PA, SA, OD);

other phenotypic anomalies
Inheritance
(AD, AR, XLD)

Prevalence Ref.

AMH *600957 SA AD 0.2% - 2.0% (81, 82)

AMHR2 *600956 SA AD 0.8%– 2.4% (81, 82)

ANKRD31 *618423 SA AD 0.3% (83)

BMP15 *300247 PA, SA
XLD (dominant
or recessive)

0.4% – 12% (81, 84)

BMPR1A *601299 SA AD unknown (85)

BMPR2 *600799 PA, SA AD 1.4% (81, 86)

DMC1 *602721 SA, DOR AR 2.4% (87, 88)

ESR1 *133430 SA AD unknown (89, 90)

FIGLA *608697 PA, OD AR 0.3-2.5% (91–96)

FMR1 premutation
(55 to 200

CGG repeats)
*309550

Intellectual and developmental disabilities
associated with ovarian dysfunction;
Fragile X-Associated Primary Ovarian

Insufficiency (FXPOI)

XLD
2% in sporadic cases
14% in familial cases

(97)

FOXO3A *602681 PA, SA AD 2.2% (98)

FSHR *136435
OD, PA, SA with pubertal
disorder, oligomenorrea

AR, AD 0.1% – 42.3% (81, 82)

GDF9 *601918 PA, SA, delayed puberty AR, AD 0.2% - 4.7% (81, 99)

HFM1 *615684 PA, SA AR, AD 0.8-4.2% (100–105)

INHA *147380 OD, PA, SA AR, AD 0% – 11% (82)

LHCGR *152790 Delayed or absent menarche, SA AR, AD unknown (106, 107)

LHX8 *604425 Primary infertility, SA AD 0.7% - 1% (53, 108, 109)

MCM8 *608187 PA, SA AR, AD 1.25-2% (104, 110–112)

MCM9 *610098 OD, PA, SA AR, AD 1.6-8% (53, 111, 113–116)

MEIOB *617670 SA AR unknown (117, 118)

MEIOSIN n.d. SA AD rare (119)

MND1 * 611422 OD, PA, SA AR, AD unknown (120)

MRPS22 *605810 SA, delayed puberty AR unknown (121)

MSH4 *602105 OD, PA, SA, DOR AR 1.2% (81, 121, 122)

MSH5 *603382 SA AR 0.6% (81, 123)

NANOS3 *608229 SA AR, AD 0.5-2.5% (124, 125)

NOBOX *610934 PA, SA (with or without delayed puberty) AD, AR 1.2% - 9% (81, 126, 127)

NOTCH2 *600275 PA, SA AD 0.04% (99, 128)

NR5A1 *184757 PA, SA, delayed puberty AR, AD 0.3% – 2.3% (10, 81)

PGRMC1 *300435 SA XLD 2.0% (53, 81)

REC8 *608193 SA AR, AD 1.25% (114, 129)

SMC1B *608685 PA, SA AD 2% (53, 129)

SOHLH1 *610224 PA, SA AD, AR 0.2% - 2.2% (81, 130, 131)

SOHLH2 *616066 SA AD 1.9% (53, 132)

STAG3 *608489 OD, PA AR unknown (53, 105, 133–136)

(Continued)
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results in infertility due to impaired and aberrant chromosome

pairing, followed by apoptosis (186, 187). In the last years, WES in

several POI pedigrees reported the contribution of MSH4 and

MSH5 variants in the pathogenesis of POI. The recent

identification of a digenic heterozygous variant in MSH4/MSH5

suggested that a dysfunctional interaction or cumulative

haploinsufficiency of both heterodimer subunits, may disrupt HR

during meiosis, finally causing POI (81).

MCM8 and MCM9 proteins form a hexameric ATPase/helicase

complex which mediates HR repair (188). HR results impaired in

both Mcm8 and Mcm9 KOmice, also presenting genome instability

and being predisposed to develop tumors, suggesting a role in

cancer development as tumor suppressor genes (189). Evidence for

an association between variants in either MCM8 or MCM9 comes

forth in genetic studies in POI families and worldwide cohorts of

patients (110). Importantly, oncologic screenings are recommended

in mutations’ carriers for prevention and early diagnosis (190).

Another helicase gene involved in the realization of crossing

over is HFM1. In line with the observed phenotype of the Hfm1-/-

mice, variations in the human gene can be causative for sporadic
Frontiers in Endocrinology 10
POI (100–105). Instead, variants in helicase genes, RECQL4 and

BLM, which also participate in HR repair, have been identified in

both Bloom and Rothmund-Thomson syndrome.

3.1.1.3.5 Synaptonemal complex and cohesins

The synaptonemal complex (SC) is a protein complex that

forms a zip-like structure between homologous chromosomes

during meiotic prophase I. Its primary function is to uphold the

pairing of homologous chromatids, thus ensuring crossing over.

The central structure of SC consists of transverse filaments,

constituted by Sycp1, and central elements, including among

others Syce1. Whereas SYCP2 and SYCP3 form the parallel

lateral elements of SC. In patients with POI, except for variants

identified in SYCE1 (101, 113, 137–139, 191, 192), no causative

variations have been identified so far, although infertility has been

described in animal models. Cohesins are proteins that directly

associate with SC and ensure cohesion between sister chromatids.

Some cases of POI have been associated with defective

chromosomal cohesion due to variants in components of the

ring-shaped protein structure made of cohesins. Cohesins core
TABLE 2 Continued

Gene OMIM
Ovarian Phenotype (PA, SA, OD);

other phenotypic anomalies
Inheritance
(AD, AR, XLD)

Prevalence Ref.

SYCE1 *611486 SA AR, AD <2% (101, 113, 137–139)

TP63 *603273 OD, PA, SA AD 3.75% (140–143)
AD, Autosomal Dominant; AR, Autosomal Recessive; DOR, Decreased Ovarian Reserve; OD, Ovarian Dysgenesis; PA, Primary Amenorrhea; SA, Secondary Amenorrhea; POI, Primary Ovarian
Insufficiency; XLD, X-Linked Dominant.
The symbol * before an entry number indicates a gene.
TABLE 3 Proposed candidate genes for POI with still uncertain pathogenic roles.

Gene OMIM
Ovarian Phenotype (PA, SA, OD);

other phenotypic anomalies
Inheritance
(AD, AR, XLD)

Prevalence Ref.

AR *313700 PA, SA XLD 0.03% (144)

BRCA1 *113705 SA AD 1.8% (145)

EXO1 *606063 PA AD 2% (146)

FANCM *609644 SA AR rare (53)

GATA4 *600576 PA AR 0.1% (53, 113)

GJA4 *121012 SA AD unknown (53, 147)

INSL3 *146738 PA AR 0.02% (53)

POLR3H *619801 PA, delayed puberty AR 1.5% (53, 148)

PRDM9 * 609760 SA AD 0.4% (53, 83)

PSMC3IP *608665 OD, PA, SA AR unknown (120, 149, 150)

RAD51 *179617 PA AD 2% (146)

SPATA22 *617673 SA AR 0.1% (151)

STRA8 *609987 PA AR rare (119)

WT1 *607102 PA, SA AD, AR 0.5% (82)
AD, Autosomal Dominant; AR, Autosomal Recessive; OD, Ovarian Dysgenesis; PA, Primary Amenorrhea; SA, Secondary Amenorrhea; XLD, X-Linked Dominant.
The symbol * before an entry number indicates a gene.
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subunits may be meiosis-specific, such as STAG3, RAD21L, and

SMC1B, or generic, such as SMC3 and REC8 (193). Pathogenic

homozygous or compound heterozygous variants in STAG3 gene

have been found in several POI pedigrees. Up to date, 22 variants in

STAG3 have been reported in association with ovarian dysgenesis

and PA, mostly with a predicted loss of function effect (53, 104, 105,

133–136). Variants in other cohesin genes have been firstly found

for SMC1B and REC8, in heterozygosity, by a targeted NGS in 100

sporadic patients with POI (129). Accordingly, female mice KO for

these cohesins are sterile with premature oocyte exhaustion and

higher risk of developing ovarian tumors (Stag3-/-) (194) and early

meiotic arrest (Smc1b-/- and Rec8-/-) (195, 196).

3.1.1.3.6 Dissolution of joint DNA intermediates

The dissolution of the SC takes place in the diplotene stage of

prophase I, when recombined homologous chromosomes start

separating except for the sites of crossovers. The joint DNA

intermediates dissolution is executed by BLM helicase in complex

with topoisomerase III alpha and other subunits. Genetic defects in

this complex cause Bloom syndrome. Oocytes are then maintained

at the diplotene stage for a prolonged period by high concentrations

of cAMP inside the oocyte. During meiotic arrest, p63, a member of

p53 transcription factor family, acts in maintaining the female germ

line integrity. The alpha isoform is particularly expressed in oocytes

of primordial and primary follicles in response to DNA damage and

mediate apoptosis (197). The p63+/DTID transgenic female mice, in

which the transactivation inhibitory domain of the protein is

deleted, show rapid oocyte depletion through apoptosis after birth
Frontiers in Endocrinology 11
(198). Several variants located in the C-terminal region of the

human TP63 gene have been found. Recently, our group

contributed to identify an intragenic duplication paternally

inherited in two sisters diagnosed with ovarian dysgenesis and PA

(140). A few nonsense and missense variants were then reported in

literature in isolated or syndromic POI families (141, 142, 199).

More recently, heterozygous pathogenic single nucleotide variants

and intragenic copy number variations of TP63 have also been

described in sporadic patients with POI (143). All the identified

variants are supposed to enhance oocyte apoptosis leading to

premature depletion of the ovarian reserve, but further

researchers may better elucidate the mechanism and pathways

involved. Thereafter, through a still undeciphered mechanism,

primordial follicles undergo growth and maturation, thus entering

the growing pool of primary follicles (200).

3.1.1.4 Follicular growth and maturation

The primordial follicle cohort may have different fates: some

remain quiescent and constitute the ovarian reserve, while the

majority undergo atresia, either directly or after an initial

recruitment and growth, but a smaller portion is activated and

then develops until ovulation. In physiological conditions, during

transition from primordial to primary follicles, the oocyte resumes

meiosis and gradually increases in size, while the surrounding pre-

GCs enters a proliferative and differentiated state (201). However, in

some pathological situations and after exposure to chemotherapy or

environmental chemicals, primordial follicle depletion may

accelerate thus leading to POI (202).
FIGURE 1

Schematic illustration of the genetic candidates for POI, according to the biological process of Meiotic Prophase I (A) and Folliculogenesis (B) and
based on literature findings. PGCs, Primordial Germ Cells; PmFs, Primordial Follicles; PrFs, Primary Follicles; SFs, Secondary Follicles; Afs, Antral
Follicles; GFs, Graafian Follicles. Figure created with Biorender.com.
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3.1.1.5 Primary follicles development

In mammals, early follicular progression is carried on through

PI3K/AKT/mTOR activation and PTEN inhibition: multiple

players in these pathways have been identified although complete

comprehension of these processes is still very limited, particularly in

human (203, 204). In the oocyte, key events that trigger the

development of primary follicles seem to be the activation of

specific transcription factors, such as NOBOX and SOHLH1/

SOHLH2 together with LHX8. KO mice of these genes present

with hypergonadotropic hypogonadism: in female Nobox-/- fibrous

tissues replace follicles (205), while in female Sohlh1-/- and Lhx8-/-

infertility is respectively caused by gonadal dysgenesis (206), and

early oocytes loss (207). Studies in mouse indicate that NOBOX,

SOHLH1/SOHLH2 and LHX8 are co-expressed and cross-regulate

each other, either directly or indirectly, thus controlling oocyte

development during early follicular progression and therefore their

mis-regulation leads to infertility (95). Differently to NOBOX and

SOHLH1/SOHLH2, LHX8 and FOXO3 maintain primordial

follicles quiescent and inhibit follicular development (208).

FOXO3 is a substrate of AKT. In mice, Foxo3 deficiency

prematurely activates dormant follicles in the pubertal ovary,

while its constitutive expression delays oocytes and follicles

development (209). NOBOX gene is considered one of the major

genetic causes of POI (126), whose variations have a high incidence

in woman from sub-Saharan Africa (210), while SOHLH1,

SOHLH2, LHX8 and FOXO3 variants are rather uncommon (98,

105, 108, 130, 132, 211). Recent WES data in a cohort of women

with infertility and oocyte maturation arrest, however, report the

identification of 5 novel heterozygous loss of function LHX8

variants that produce truncated proteins (109). In turn, Foxo3a

expression results diminished in mice with a homozygous point

mutation in the Polr3h gene and characterized by delayed pubertal

development. Remarkably, a pathogenic mutation in the POLR3H

gene is described in two unrelated POI families, thus highlighting a

new player in ovarian function and a new candidate gene (148). The

continuous oocyte expression of FIGLA regulates the zona pellucida

(ZP) genes, necessary for the production and assembly of an

extracellular coat of glycoproteins which surrounds and separates

the oocyte from the adjacent GCs, but allows the exchange of

second messengers or small molecules through gap junctions (161,

212). At this stage, the ovarian follicle is defined a functional

syncytium, that allows bidirectional communication between

oocytes and GCs, and defects of ZP genes may results in female

infertility in mice and humans (213). To support oocyte

maturations, GCs first become cubically shaped and tight

junctions appear. Then, GCs further enlarge and become

stratified into multiple columnar cells, that progressively

differentiate into internal cumulus cells (CCs) and external mural

granulosa cells (MGCs), characterized by different metabolomes

(214). FOXL2, a pleiotropic transcription factor with key roles

throughout ovarian development, is critical in promoting

differentiation and maintenance of GCs identity (215).

Conditional loss of Foxl2 in mouse adult ovaries causes GCs

reprogramming into testicular cells (216), and human FOXL2

variants have been associated with POI (81, 217). However,

follicles result histologically mostly abnormal and atretic in POI,
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characterized by a partial or complete absence of GCs and,

therefore, an important challenge today is to identify new players

in GCs development.

3.1.1.6 Secondary follicles growth

Primary to small antral follicle transition depends on the oocyte

production and secretion of two members of the transforming

growth factor beta (TGFb) family, GDF9 and BMP15. Evidence

in natural and experimental animal models provide insight into

their roles and demonstrate their oocyte-specific co-expression as

cumulin (218). In particular, it has been reported that BMP15 is

more relevant in mono-ovulating species (such as sheep and

human) than in the poly-ovulating ones (mice) (5). In humans,

mutations in BMP15 have been first found in association with

hypergonadotropic ovarian failure characterized by ovarian

dysgenesis (219) and from then on other variants have been

identified worldwide (220–226). BMP15 maps on the Xp, in a

locus critical for ovarian reserve determination, where several TS

traits are located, including ovarian failure (227, 228). BMP15 as

synergic heterodimer with GDF9 interacts with a tetrameric

receptor complex on GCs formed by the kinase receptor BMPR2

and the ALK3 and ALK6 co-receptors, respectively BMPR1A and

BMPR1B. BMPR2 variants are described in potential functional

association with POI (106). A variant in BMPR1Awas found to alter

downstream signaling, possibly causing POI (85), whereas

mutations in BMPR1B have been associated with some cases of

non-syndromic POI, besides those with Demirhan syndrome (99).

Upon binding receptors, cumulin triggers SMAD proteins

phosphorylation cascade and promotes the transcription of GCs

proliferation genes (229). One of the known downstream targets of

cumulin is FSHR, which expression is essential for follicle growth

and later estrogen secretion (230). Mutations in BMP15 or GDF9

may negatively affect the FSH signaling, arresting folliculogenesis

and causing POI (231). FSHR genetic defects frequently alter

ovarian development in women with highly variable POI clinical

manifestations (PA to SA), depending on the degree of resistance to

FSH action in granulosa cells (27). FSHR mutations lead to POI

when both alleles are affected and represent the first genetic cause

that was linked to POI in the Finnish population (232). Other

TGFb-like growth factors produced by GCs have instead inhibitory

roles on follicles development, such as AMH and INHA. AMH is a

secreted factor that can either interact with its receptor AMHR2,

mainly expressed in the adjacent mesenchyme, or circulate and play

a role in controlling the gonadotropin-releasing hormone (GnRH)

in the hypothalamus (233). Amh mutant female mice show

accelerated ovarian primordial follicle recruitment, despite

morphologically normal ovaries, suggesting a suppressor role in

regulating germ cell development. AMH expression in developing

follicles is highly dynamic: it starts in primary follicles, increases in

preantral and small antral follicles, and then decreases in pre-

ovulatory follicles, but not in CCs. Polymorphisms in this gene

are associated with the age at menopause (234) but are rarely

described in patients with POI, similar to mutations in AMHR2

(235–237). INHA inhibits FSH production in the pituitary gland

and genetic screenings in POI series revealed variations potentially

associated (114, 238). Theca cells (TCs) originate from the ovary
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stroma, develop a blood supply and surround the follicle. TCs

further differentiate into theca externa and interna, which develops

LHCGR receptors and provide androgen hormone secretion. FSHR

and LHCGR receptors are targets of the gonadotropins FSH and

LHCG, respectively, both produced and released by the pituitary

gland upon the hypothalamic stimulus. In turn, gonadotropin-

dependent development allows the formation of antral and

ovulatory follicles (239). LHCGR was among the first genes for

which variations were related to POI (240), but its involvement in

the pathogenesis of POI is rare. Female mice Lhcgr-/- are infertile

with decreased estradiol and progesterone levels (241); however,

after WT ovary transplantation, they can be fertilized (242).

Women carrying homozygous pathogenic LHCGR variants

usually exhibit normal secondary sex characteristics but may have

delayed or absent menarche; however, heterozygous mutations

might contribute to POI phenotype if combined with other

genetic variants (106). Interestingly, infertile women carrying

mutated LHCGR variants, coding for proteins with absent cell

surface localization and signal transduction abilities, achieved

successful oocyte retrieval and high-quality embryos leading to

live births, indicating that LHCGR defects disrupt late

folliculogenesis events and ovulation but have no effect on

fertilization or embryo development (107).

Steroid hormone receptors, ESR1 and AR, are positive

regulators of follicular maturation. ESR1 is a nuclear receptor

expressed by TCs and GCs at this stage of follicular development,

regulating growth and maturation to antral stage. Esr1-/-mice

present folliculogenesis blocked before antral formation or fail to

ovulate and are infertile (243). Polymorphisms in ESR1 have been

associated with increased risk of POI (89, 244). AR is present in GCs

and its deficiency in female mice may lead to dysregulation of

important genes involved in folliculogenesis causing a POI-like

phenotype (245), but few mutations of this gene have been linked to

POI so far (144, 246).

3.1.1.7 Antral follicles formation

Endocrine and paracrine factors from the hypothalamic-

pituitary axis together with precise interactions among oocytes

and GCs/TCs act in concert for antral follicle formation. Pre-

antral follicles continue to extend their diameter, stimulated by

FSH action and by the oocytes production of cumulin, and develop

a fluid-filled cavity (antrum) with the oocyte eccentrically located in

it. Simultaneously, oocyte further increases its volume, with

cytoplasmic synthesis and accumulation of proteins, mRNAs,

glycogen granules, ribosomes, mitochondria, and vesicles (161).

Communication between the oocyte and GCs are facilitated by gap

junctions, through which ions and small molecules pass

mediated by Connexins, and filopodia-like structures with

adherens junctions, where ligand-receptor interaction transduce

the signal (i.e. KIT/KIT-ligand and Notch/Jagged) (247). Among

connexins, GJA4 has a role in ovarian follicle development, and

disruption of this gene in mice results in female infertility due

ovarian folliculogenesis arrest at the preantral stage (248), but

few variations have been reported in patients with POI so

far (147). KIT-Ligand, a NOBOX target (249), activates the
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phosphatidylinositol 3-kinase/AKT pathway by interacting with

its receptor (250). Variations in KIT/KIT-ligand cause ovarian

insufficiency in rodents, but their role has yet to be elucidated in

women affected by POI (53). Notch signaling regulates GCs

proliferation (251): Jag1 ligand on oocyte interact with Notch2

and Notch3 receptors on GCs to activate the expression of target

genes (i.e. Hey transcriptional repressors) (252). NOTCH2 variants

have been identified through WES in patients with POI (99, 128),

while the role of other Notch genes in POI is still unclear. antral

follicles are the most susceptible to atresia and may degenerate after

GCs programmed death throughout apoptosis, autophagy (253),

and ferroptosis (254). Increased circulating FSH levels and a fine

balance of stimulatory and inhibitory growth factors, such as IGF1

and TGFb family members, direct follicles to either atresia or

development until ovulation (4). In monovulatory species, after

puberty, just one dominant follicle, although several antral follicles

are recruited, undergoes final development and maturation during

each reproductive cycle, in response to cyclic hormonal changes

(255, 256). Growing evidence suggests roles of miRNA in gonadal

development, regulating genes involved in folliculogenesis,

ovulation and steroidogenesis (257), although their functions and

regulatory mechanisms remain inadequately understood (258).

3.1.1.8 Ovulation and steroidogenesis

Ovulation is the fine-tuned remodeling process that ensures the

follicle rupture when the uterus is receptive for embryo

implantation. The dominant antral follicle rapidly grows to reach

preovulatory stage (Graafian follicle) and produces higher levels of

estradiol, that positively feedback to the hypothalamic-pituitary axis

in a response required both for its further ovulatory process and for

subordinate follicles growth inhibition after FSH levels lowering

(259). Both FSH and estradiol signaling leads GCs to acquire LH

receptors, thus the properly timed preovulatory LH surge from the

pituitary gland activates the Graafian follicle and triggers a sequence

of events that lead to ovulation: cAMP levels decrease in the oocyte

with subsequent nuclear maturation (meiotic resumption), CCs

mucificate and, at the end, oocyte-cumulus complex is released for

fertilization while the remaining TCs and GCs of the ovulated

follicle undergo dynamic transformation to become the corpus

luteum, a progesterone producing structure needed for pregnancy

(260). Conversely, inappropriate luteinization would impair follicle

growth, reduce both the estradiol production in response to FSH

and the negative feedback on ovary (261, 262). Previous studies

provided evidence for the presence of luteinized Graafian follicles in

the ovaries of women with karyotypically normal POI: in contrast

with control population, in these cases a poor correlation between

follicle diameter and serum estradiol levels and a failure in

subsequent achievement ovulatory serum progesterone levels were

found, suggesting that premature luteinization may be a major

pathophysiological mechanism compromising follicle function in

POI (263). However, the molecular mechanism underlying these

pathophysiological processes are still unknown. The occurrence of

luteinized Graafian follicles is the major source of the cyclic

secretion of ovarian estrogens in women of reproductive age, in a

joint two-cells system between TCs (that produce progesterone and
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precursor androgens under the control of LH signaling) and GCs

(where FSH signaling regulates estradiol synthesis starting from

androgens) (258). A recently identified player regulating this

process of steroidogenesis is Epg5; its underproduction blocks

autophagy in murine GCs and results in the accumulation of Wt1

transcription factor that finally leads to infertility (264). In humans,

WES identified a rare WT1 loss-of-function variant in a non-

syndromic POI patient (265), and NR5A1 is reported as a

fundamental steroidogenic factor, whose variants were associated

also with POI (81), either alone or in combination with other

genetic variations (91). NR5A1 regulates the expression of STAR,

CYP17A1, and CYP19A1 (266), whose variations have been

reported in syndromic POI. Another player with a role in

estrogen production, INSL3, has been identified as mutated in a

Brazilian patient with PA (164); Insl3 mouse KO promotes follicle

atresia and disruption of female cycle (267). Similarly, targeted

Pgrmc1 deletion in GCs suppresses antral follicles development and

increased atresia (268) but its variations are rarely found in patients

with POI and more research is needed (269, 270). In vitro studies

point to a role of GATA4 in ovarian steroidogenesis by impairing

estradiol synthesis (271), and conditional knockdown of Gata4 in

mice showed female infertility. Variation of this gene has been

found in two patients (99, 164). Recent data report that ovulation is

initiated in mice by Progesterone receptor induction in GCs, which

cooperate with RUNX1 to reprogram chromatin accessibility and

alter gene expression (272). Noteworthy, the first in vitro model of

GCs has been generated from human induced pluripotent stem cells

(hiPSCs) after overexpression of NR5A1 and either RUNX1 or

RUNX2; the procedure highlights the role of these transcription

factors in folliculogenesis and is a central starting point in

modelling several key ovarian phenotypes (273).

3.1.1.9 Mitochondrial contribution

Oocyte viability and follicle maturation notably rely on

mitochondrial biogenesis and bioenergetics (274, 275) and are the

central sites for steroid hormone biosynthesis. Their swelling has

been linked to GCs apoptosis and follicles atresia and, consistently,

variations in genes involved in mitochondrial functions are

responsible for POI (276), mainly syndromic cases. Mitochondrial

defects due to mutations in the polymerase pol domain of the

nuclear POLG gene predispose to Progressive external

ophthalmoplegia (PEO) associated with POI (50, 277). Variants

in MRPS22 and MRPS7 are respectively reported in isolated POI

and in a patient with failure of pubertal development and

hypogonadism (121, 278). We previously reported that the

premature impairment of the ovarian reserve is associated with a

significant decrease in the number of copies of the mitochondrial

DNA (mtDNA) in blood cells and could then be considered a form

of anticipated aging in which the ovarian defect may represent the

first manifestation (279). The quantification of mtDNA in the

peripheral blood could be used as a non-invasive biomarker for

POI risk prediction (279, 280). The role of mitochondrial DNA

content and of nuclear and mtDNA genes related to mitochondrial

functions should be deepened with further investigations in larger

populations, and with additional studies in model organisms.
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3.2 Autoimmune causes

It is reported that autoimmune cover between 4 and 30% of POI

cases (6, 281), however recent data suggest that number is closer to

4 to 15% (2, 282, 283). Dysimmune diathesis can be responsible for

polyglandular diseases or result in oophoritis alone. Association

with autoimmune diseases can be frequently found among women

with POI (282, 284). The exact mechanism involved in the

abnormal recognition by the immune system remains unknown,

but both genetic and environmental factors are required for

initiating the autoimmune response. The proofs for an

autoimmune etiology are presence of lymphocytic oophoritis and

associated autoimmune disorders (285), but this is not feasible in

the clinical context. There are several reported target antigens

involved in autoimmune oophoritis; importantly, among them,

adrenocortical and steroidogenic autoantibodies, and in particular

circulating 21-hydroxylase enzyme (21-OH-Ab), are recognized as

the best markers of autoimmune POI (286, 287). A clear association

between serum adrenal cortex autoantibodies and the presence of

histologically confirmed autoimmune oophoritis was demonstrated

(281). Between 2.5 and 20% of patients with POI result positive for

adrenal autoantibodies, i.e. directed against the adrenal cortex

(steroid cell adrenal antibodies, SCA-Ab) or the 21-OH-Ab (285).

The other way round is also true, i.e. 10-20% of patients with

Addison’s disease develop POI (6, 288). However, these antibodies

are usually found in POI associated with autoimmune Addison’

disease, but they are not a frequent occurrence in non-adrenal

autoimmunity or in isolated idiopathic POI (289). Anti-ovarian

antibodies (AOAs) are found in 24-73% of patients with confirmed

POI (285, 290), however, sources conflict in the accuracy of these

findings and the exact prevalence remains unclear. Their role as a

marker for POI is of no value due to the low specificity of existing

tests leading to a high rate of false positive results and lack of

validation (290). Autoimmune thyroiditis (defined as isolated

finding of autoantibodies anti-thyreoperoxidase and/or anti-

thyreoglobulin) appears be the most frequent pathology

associated, with a percentage of patients suffering from clinical

and subclinical hypothyroidism of 8-20% and up to 24% of POI

cases, respectively (291). However, the prevalence of autoimmune

thyroiditis in the female general population results nevertheless

high, varying from 8.6% to 17.3% with prevalence increasing with

age (292). Moreover, it is worth mentioning that a recent case-

control study in 4302 euthyroid women with normal ovarian

reserve and low ovarian reserve, had shown that among the

whole population thyroid autoimmunity was not associated with

low ovarian reserve but was significantly associated with overt POI

in woman with TSH>2.5 mUI (293). Women with diabetes mellitus

are also at higher risk of developing POI with an estimated

prevalence of 2.5%. Therefore, fasting blood sugar or glycosylated

hemoglobin can be recommended (2). POI has also been associated

with numerous other disorders including rheumatoid arthritis,

Crohn’s disease, myasthenia gravis, systemic lupus erythematosus,

and multiple sclerosis (294). The different glandular diseases may

then combine into different clinical and/or subclinical clusters, i.e.

Autoimmune Polyglandular Syndromes (APS). In the specific case,
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patients with POI may fall into APS type 1, type 2 or type 3A in

approximately 3% of cases (295). The APS type 1 typically develops

in pediatric patients and is characterized by the presence of

mucocu taneous cand id ia s i s , Add i son ’ s d i s ea s e and

hypoparathyroidism; auto-antibodies anti-steroidogenic cells can

lead to lymphocytic oophoritis in 60% of cases. Type 2 APS is

associated with Addison’s disease, type 1 diabetes mellitus,

hypothyroidism (or Graves’ disease) and less frequently with POI

(296). However, the causal association between autoimmunity and

ovarian insufficiency remains difficult to establish, and the presence

of autoimmunity (either clinically or biochemically) does not

necessarily imply the autoimmune origin of the condition, also in

view of the relatively broad prevalence of autoimmune disorders

and the low specificity of autoantibody measurement. The

autoimmune etiology of the POI can be consider substantiated in

such case as the presence of adrenocortical and/or steroidogenic cell

antibodies and autoimmune Addison’s disease (APS type 1 or 2),

possible or probable in case of presence of autoantibodies and/or

autoimmune disease other than autoimmune Addison’s disease

(297). Interestingly, in terms of phenotype, it has been described

that autoimmune oophoritis presents as a distinct clinical entity

compared to women with idiopathic POI: the former were found to

have significantly larger, and possibly multifollicular ovaries in

association with elevated inhibin B values (281, 298).
3.3 Iatrogenic causes

Iatrogenic causes account for 6-47% of POI cases (2); they can

in turn be distinguished into surgical forms, post-chemotherapy, or

following radiotherapy (whether local or external, with exposures

greater than 1 Gray). Also, common iatrogenic causes that lead to

POI in the process of treating non-malignant gynecological diseases

include uterine artery embolization and pelvic surgery for ovarian

cysts, endometriosis, and ovarian torsion; in particular, it has been

shown that excision of bilateral endometriosis can lead to POI in

2.4% of cases (299). Female survivors of childhood, adolescent, and

young adult cancer, have an increased risk of POI, with a

cumulative incidence of approximately 8% by age 40 years (300,

301). The effects of chemotherapy depend on the type, previous

ovarian reserve, dosage, and age at administration (302, 303).

Treatments with evidence of causing POI include alkylating

agents in general, cyclophosphamide, procarbazine, and

radiotherapy to which the ovaries were potentially exposed, in a

dose-dependent manner (300, 304). Indeed, for at-risk pre- and

peripubertal survivors the monitoring of growth and pubertal

development and progression is strongly recommended. Whereas,

for postpubertal women who were treated with alkylating agents

and/or radiotherapy to which the ovaries were potentially exposed,

is strongly recommended detailed menstrual history and physical

examination, with specific attention paid to POI symptoms (300).

Laboratory assessment should be performed only on the basis of

clinical indication or when the patient desires valuation of potential

future fertility, at least annually (300).
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3.4 Other acquired causes

In 1% of the cases, POI may be related to toxic, metabolic or

infectious causes (2). Regarding POI associated with a history of

infectious diseases, there is some evidence to suggest that women

affected with HIV experience menopause at an earlier age (305) and,

although gonadal function is relatively understudied, data found

that HIV-positive women were more likely to have lower levels of

AMH, largely explained by lower CD4 counts (306). The parotitis

virus that causes mumps and results in mumps oophoritis can lead

to ovarian failure in 2-8% of cases; however, this tends to be

transient in most affected women and normal ovarian function

resumes after recovery (299). Anecdotal reports described other

viral and microbial infections, such as tuberculosis, varicella,

cytomegalovirus, malaria and shigella as causes of POI (2).

Association with environmental and toxic causes is also

described. Exposure to phthalates and bisphenol-A present in

plastic production and other environmental pollutants has been

suggested as a possible risk factor POI; these toxins have been

shown to increase follicular depletion and accelerated atresia of

preantral follicles resulting in an earlier onset of menopause (307).

A 2024 meta-analysis described that environmental pollutants pose

a serious threat to human and animal reproduction. Such

substances, including persistent organic pollutants, heavy metals,

phthalic acid esters, polycyclic aromatic hydrocarbons, cosmetic

and pharmaceutical products and cigarette smoke, are indeed

significant risk factors for POI, with pooled OR of 2.331 (308).

Also, preclinical studies speculated that environmental pollutants

lead to POI via improper hypothalamic-pituitary-gonadal axis

functioning, changed follicular mRNA/hormones, reduced

ovarian volume and obvious follicle atresia (308). Moreover, a

relation between cigarette smoking and early menopause has been

described, although no direct causal relation has been confirmed

(295). However, women who are prone to POI should be advised to

stop smoking (309).
4 Clinical presentation and diagnosis

Typically, POI may present as menstrual irregularities or

secondary amenorrhea, associated with infertil ity and

hypoestrogenism symptoms, such as hot flushes and night sweats,

vaginal dryness and dyspareunia, diminished libido and sleep and

mood disorder. They generally are more pronounced than those

typical of climacteric, especially in acquired forms with sudden

onset. In those cases with early onset it may occur as primary

amenorrhea with varying degrees of pubertal development,

eventually associated with gonadal dysgenesis. Associated

symptoms and clinical findings can be variable due to

intermittent production of ovarian hormones. In fact, it is worth

emphasizing that it may be associated with intermittent resumption

of ovarian activity in over 25% of women (310, 311). Estimates of

the likelihood of spontaneous pregnancy vary widely in the

literature, but from the available data it appears that about 5% of
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women with POI will conceive naturally. Most of these conceptions

will occur within a year of diagnosis, but pregnancies have been

reported many years later (312). Despite the clinical marks, studies

report that up to 70% of women with POI have ovarian follicles

remaining in the ovary (262, 263), one-half demonstrated ovarian

follicle function and, remarkably, 16% of these women achieved an

ovulation (263). From a biochemical point of view, POI results in

hypergonadotropic hypogonadism, which represents the diagnostic

cornerstone. European Society of Human Reproduction and

Embryology (ESHRE) guideline recommended that in case of

oligo/amenorrhea for at least 4 months diagnosis is confirmed by

two elevated FSH tests (>25 U/L), 4–6 weeks apart (309), performed

on precocious follicular phase (day 2–3 of the cycle) if menstrual

flows are still present. Elevated FSH must be associated with low

estradiol level, to rule out the possibility of gonadotropins pre-

ovulation peak. In addition, another useful marker is represented by

the serum anti-Mullerian hormone (AMH) levels. It is a hormone

produced by granulosa cells of growing follicles (<8 mm in

diameter) (313, 314), whose concentration reflects the number of

follicles remaining in the ovary (315). It has emerged as the current

best biomarker of the primordial follicle pool constituting the

ovarian reserve (316), and it is known that AMH declines before

the menopause in advance of elevated FSH concentrations (317).

AMH generally results in low/undetectable (318–320), although

there are still no defined cut-offs for diagnosis (6). A small number

of studies that have investigated the value of AMH in the diagnosis

of POI, demonstrating a progressive decline in women across the

stages of deteriorating ovarian function to POI, although data

estimated that AMH is detectable in approximately 6% of the

POI population (321–323). The largest study to date suggested

that an AMH of ≤ 0.25 ng/ml (1.78 pmol/l) was diagnostic of POI

with high sensitivity and specificity (323). Furthermore, it was

reported that AMH concentrations were lower in women who

experienced primary amenorrhea than in those with secondary

amenorrhea (324). A transvaginal ultrasound scan can also be

helpful in estimating ovarian status. The ovaries can be found to

be compact and small, and up to 50% of primary amenorrhea cases

may have gonadal dysgenesis with “streak” ovaries. However, as

mentioned above, it is not uncommon to detect evidence of ovarian

function (262) (pre-antral, antral follicles or pre-ovulation follicles

and/or ovarian corpus luteum). Thus, ultrasound findings can be

misleadingly reassuring regarding ovarian function and fertility

prognosis (325), but may also be useful in revealing any

remaining ovarian activity. Ovarian reserve can be assessed

sonographically by antral follicle count (AFC), that would be

expected to be low in POI and usually correlate with AMH levels.

Occasionally relatively normal AFCs are seen despite low AMH

levels, however, AMH appears to be a stronger predictor of ovarian

response (316). Unfortunately, because of the above, when the

biochemical criteria of POI are met, the ovarian reserve is found

to be already substantially reduced or follicular dysfunction is

present with impaired responsivity to FSH (262, 263),

consequently, the chances of fertility preservation are severely

diminished (323). For this reason, the identification of early

diagnostic markers to identify women at high risk of developing

POI, enabling effective fertility planning, is of great interest.
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However, while it has been postulated that AMH may be of value

in assessing family members of a proband with POI (326), current

evidence showed low discriminatory performance of AMH in

menopause prediction in young women (316, 322, 327). Once the

diagnosis of POI has been confirmed, it is important to carry out

investigations to establish the origin of POI. After ruling out

possible acquired causes by means of a thorough medical history,

autoimmune and genetic causes should be sought in the first

instance. ESHRE guidelines recommend routine screening for the

presence of thyroid autoantibodies and 21OH-Abs in every case of

POI. Screening for anti-ovarian antibodies is not recommended.

Screening beyond Hashimoto’s and Addison’s diseases is not

routinely performed (309). On the other hand, in patients with

multiple autoimmune diseases or Addison’s disease it should be

advisable to consider screening for early detection of POI. Also,

measurement of fasting blood glucose or glycosylated hemoglobin

levels should be performed (2).
4.1 Genetic diagnosis

Turner Syndrome (45,X), mosaicisms of X chromosome, the

partial loss of critical terminal regions of the long arm of the X, and

X-autosomal translocations are well-known chromosomal

abnormalities causing POI that could lead to either primary or

secondary amenorrhea (328). Besides, one of the major genetic

alterations implicated in POI is being a carrier for the FMR1 gene

premutation. In women, this condition defines a higher risk (>20%)

of developing the premature exhaustion of ovarian function, which

can also be associated with other symptoms (i.e. ataxia, psychomotor

developmental disorders, and cardiovascular pathologies).

Additionally, premutated alleles are mitotically and meiotically

unstable and could lead to the expansion to full mutation allele

during the maternal transmission and cause the Fragile X syndrome

in male offsprings of the next generation. The prevalence of

premutated FMR1 allele in the general female population is

estimated to be around 1:250 and even higher among different

ethnic groups (329). Investigating the FMR1 premutation is of

primary importance in patients with POI because the chance of

evolving to the full mutation (>200 repeats) in the subsequent

generation is close to 100% for expansions >100 repeats (330).

Fragile X syndrome is characterized by dysmorphism, severe

intellectual disability and autism in males. Therefore, first-level tests

for the clinical and genetic evaluation of POI are high-resolution

karyotype (that we suggest as first-line genetic test in PA and in SA

cases <30 years of age) on 2 independent cultures by analyzing at least

30 metaphases (at 400–550 band resolution), according to the

International System of Chromosome Nomenclature 2020 (ISCN

2020) (331), which can be extended to 100 in case of mosaicism and

eventually replicated on a cutaneous biopsy, and the molecular

analysis of the FMR1 gene; its involvement is highly unusual in PA

cases while more frequent in SA cases >25 years of age. In case of

negative or uncertain results for both FMR1 and karyotyping,

Comparative Genomic Hybridization arrays could be performed to

identify undetected chromosomal duplications/deletions or low level

mosaicism (<10%). The further genetic screenings should be guided
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by the presence of clinical features suggestive of a specific syndrome.

In the absence of any syndromic phenotype, ad-hoc target Next

Generation Sequencing (NGS) panels of candidate genes can be used

to identify single nucleotide variants potentially pathogenic. Within

the NGS strategies, the analysis of families with POI and large POI

series through whole exome sequencing or whole genome sequencing

can be used to identify new variants and novel genes involved in the

pathogenesis of the disorder and their application is considerably

improving our understanding of the molecular basis of ovarian

functions and dysfunctions (332). NGS has shed light on the role

of oligogenicity as a significant contributor to the genetics of POI

(105, 332). Discerning true oligogenicity from digenicity or rare,

potentially deleterious variants associated with POI remains a

significant challenge. Oligogenicity refers to the involvement of

multiple genes in a phenotype, while digenicity specifically involves

interactions between two genes. In the context of POI, understanding

these genetic complexities is crucial for accurate diagnosis and

counselling. Another significant challenge in the genetic diagnosis

of POI is the huge number of variants of unknown significance that

emerge from NGS. It is likely that several heterozygous VUS can

predispose to POI in the context of an oligogenic or multifactorial

origin. In the future, efforts should be directed toward a more precise

genotype-phenotype correlation and the resulting causative

relevance. These challenges are further complicated by the complex

gene network involved in POI, as well as the environmental

component. Further, in the same family, the occurrence of

members affected by POI or early menopause could be observed,

due to incomplete penetrance. Investigating the genetics of the

pathogenesis of POI is essential to deepen ovarian physiology and

to solve the pathogenic mechanisms involved. As we uncover novel

pathogenic variants, genetics can serve as valuable tools for precise

diagnosis, predicting POI risk in families, and furnishing improved

genetic and reproductive counselling that help women to plan

their fertility.
5 Clinical management and
long-term consequences

POI has a multisystem impact with profound physical and

emotional implications; as such, its optimal management should be

handled by a multi-disciplinary team. Of course, the effects of the

condition on quality of life depend on the age of onset, the

underlying cause and inter-individual variability. Age at

menopause has been shown to have an additive effect on all-cause

mortality and an independent predictor of subsequent

cardiovascular outcomes (333–336). In particular, regardless of

etiology, POI increases the long-term risk for cardio-metabolic

disease (337): in this metanalysis emerges that compared to

women with menopause at age >45 years, women with POI had a

higher risks of type 2 diabetes (RR: 1.32, 95% CI: 1.08–1.62),

hyperlipidemia (RR: 1.21, 95% CI: 1.05–1.39), coronary heart

disease (RR: 1.52, 95% CI: 1.22–1.91), stroke (RR: 1.27, 95% CI:

1.02–1.58) and total cardiovascular event (RR: 1.36, 95% CI: 1.16–

1.60). In fact, hypoestrogenism exerts several deleterious effects on

many contributor factors, including lipid profile, insulin resistance,
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centripetal obesity, chronic inflammation, hypertension,

vasoconstriction, endothelial dysfunction, and autonomic nervous

system dysfunction. It is interesting to note that in this large

Chinese study (338)the Authors found that POI increased the risk

of total and cancer-specific mortality (HR (95%CIs): 1.29 (1.08–

1.54) and 1.38 (1.05–1.81), respectively), while decreasing incidence

of breast cancer (OR (95%CI): 0.59 (0.38–0.91)), but they didn’t

find any statistically significant association of POI with either

mortality or morbidity related to CVD. Similar results were

observed when HRT users were excluded from the analysis

Nonetheless, in many of the reported studies women who used or

had used HRT were excluded from analysis or data on HRT use was

not available. Thus, data are lacking to demonstrate whether the

results were independent of HRT. However, cardiovascular

protection seems to be related to exposure time (339), with the

greatest reduction in CVD incidence in women who used HRT for

at least 10 years and within 1 year of diagnosis (336), and type of

HRT (340). Given the well-characterized cardiometabolic and bone

impact of POI, optimal management of this condition should

include baseline assessment of insulin resistance and lipid profile.

Monitoring of these parameters should be dependent on

comorbidity, personal and family history; however annual

assessment of cardiovascular risk markers may be appropriate,

although evidence on cost-effectiveness is currently lacking (6).

Women with POI have a significantly lower bone mineral density

(BMD) (341–343) and a 1.5- fold greater risk of fracture compared to

women who experience menopause at the typical age (344), with an

estimated prevalence of osteoporosis of approximately 8–27% (342,

345, 346), mainly due to insufficient acquisition of peak bone mass (in

those with primary amenorrhea or early onset) and increased bone

resorption associated with estrogen deficiency (347), with greater loss

of trabecular bone than cortical bone. Identified risk factors for low

BMD included young at onset of irregular menses and delay in

diagnosis greater than one year and/or lack of compliance with HRT.

Indeed, the most important risk factors contributing to BMD loss in

POI are the degree and duration of estrogen deficiency. Also, it may

contribute the presence of comorbidities and risk factors related to

the specific etiology, e.g. women with Turner Syndrome have

additional contributors to bone loss, skeletal fragility and falls risk;

including genetic abnormality, coeliac disease, hearing impairment

and visuo-spatial abnormalities (348, 349) while autoimmune

conditions associated with POI may also directly contribute to

bone loss. Dual-energy X-ray absorptiometry (DEXA) examination

should be performed at diagnosis in all young patients with

amenorrhea lasting more than 6 months as a result of

hypoestrogenism (309). The frequency of bone densitometry

should be evaluated according to the presence of other risk factors

for osteoporosis, BMD at baseline, and its change with time (6),

however in women with POI with low BMI, and treatment initiated, a

repeat DEXA scan in 2–5 years to monitor response is recommended

(309, 348). Nevertheless, DEXA has some limitations in the context of

patients with POI: it can generally not be used until peak bone mass

has been achieved; it does not differentiate between cortical bone and

trabecular bone; it does not provide any information on bone quality

or geometry; it underestimates BMD in women with short stature,

such as Turner syndrome (TS) (345, 350). However, it has been
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proposed that Z score<−2 should be used to define low bone mass in

pre-menopausal women, though, maintaining the use of T- score<

−2.5 to diagnose osteoporosis in young adults suffering from chronic

disorders known to affect bone metabolism (351). In the absence of

more specific tools, trabecular bone score (TBS) could be is a

promising adjunct to DEXA for guiding the evaluation of POI-

related bone health (343).

Mental health sequelae can be explained primarily by estrogen

deficiency, along with the denial or difficulty faced by diagnosed

women in accepting the loss of fertility (312, 352). It has been

demonstrated major prevalence of anxiety and depression in

women with POI (353). Such psychological distress may not only

negatively influence the treatment outcomes of these patients, but it

can also cause social life disruption and issues in the affective and

relational area and even social isolation (354, 355).

The inadequate levels of estrogen present in POI also result in

symptomatic vulvovaginal atrophy and urinary incontinence,

collectively defined as genitourinary syndrome of menopause

(GSM). GSM is associated with symptoms such as dryness,

itching, burning, irritation, decreased discharge, dysuria, urinary

frequency and urgency, and recurrent urinary tract infections (356).

Furthermore, women with GSM report low sexual desire, reduced

orgasmic function and dyspareunia (357, 358). Sexual dysfunction

and hypoactive sexual desire disorder (HSDD) can be attributed as

well as the synergistic effect of estrogen and androgen deprivation

related to reduced stimulation of sexual responses (359)). Personal,

family, and psychosocial factors may further determine the severity

of sexual impairment (360). In women diagnosed with POI, GSM

and HSDD have a more detrimental effect on sexual function, body

image and overall quality of life compared to women who

experienced physiologic menopause (361, 362). However, some

evidence showed that the arousal and lubrication domains are the

most influential factors of sexual function among women with POI,

while the desire domain played the lowest role. Additionally, GSM-

related symptoms have a greater impact on quality of life compared

to vasomotor symptoms, likely due to the fact that genitourinary

symptoms deteriorate if not treated whereas vasomotor symptoms

usually improve over time (363).

Education on a well-balanced diet with adequate physical

activity in order to maintain an adequate weight, avoiding

smoking and minimizing alcohol consumption is particularly

important (6). Calcium and vitamin D supplementation are

equally important. Women with inadequate dietary intake should

take supplementary elemental calcium intake (diet and

supplements) is approximately 1200 mg/day (350).
5.1 Hormonal replacement therapy

Women with POI experience symptoms due to low estrogen

levels; however, whereas in the case of women who have gone

through menopause at a physiological age HRT is aimed at

alleviating symptoms due to hypoestrogenism, in women with

POI HRT ’s fundamental purpose should be to restore

physiological estrogen levels, in line with patients’ age. Indeed,

women should be informed that HRT may play a role in primary
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prevention of long-term consequences (309, 340, 364, 365).

Estrogen replacement therapy has, therefore, multiple goals: to

induce the development of secondary sexual characteristics

(including uterine growth) in prepubertal girls with primary

amenorrhea, alleviate typical vasomotor symptoms (VMS),

urogenital problems due to vulvovaginal and bladder atrophy,

mood/cognit ive problems, reduced energy levels and

musculoskeletal pain, and, finally, reduce long-term complications

such as cardiovascular disease and osteoporosis. To optimize the

achievement of the therapy, the choice of treatment regimen is

therefore crucial. Among available formulations, hormone

preparations based on 17b-estradiol are preferable because they

are more physiological, safe, and effective than those based on

ethinyl-estradiol and conjugated equine estrogens (366), especially

when administered transdermally. The primary advantage of

transdermal administration is that it bypasses the hepatic first-

pass effect, reducing liver exposure to supraphysiologic doses of

estrogen and the resulting increase in pro-coagulant factors, SHBG,

triglycerides, and markers of inflammation (367), worsen insulin

resistance, particularly in obese women who have an increased risk

profile at baseline (368). Unfortunately, there are no products

specifically designed for the long-term treatment of young women

with POI, thus formulations marketed for the treatment of

climacteric disorders in postmenopausal women or estro-

progestin combinations for contraceptive purposes (COCs) are

commonly used. The still widespread use of COCs (367) could

certainly offer the advantage of greater patient acceptance, however,

mounting evidence shows that its use has a less favorable impact on

bone and cardiovascular health, as well as on uterine development.

More physiological regimens should therefore be preferred, and

synthetic estrogen-containing formulations should be avoided (328,

340, 366, 369, 370); even though the use of COCs containing

estradiol valerate as HRT in POI is also off-label and requires

further research. However, it must be recognized that much of the

current evidence on HRT is not gained from studies specifically

conducted on women with POI, but comes from extrapolations on

data available for physiological menopausal women or from non-

randomized controlled studies. Treatment with 17b-estradiol
should be continuous to avoid periods of hypoestrogenism (371).

Recommended doses should be generally higher than those used in

postmenopausal replacement therapy (6), with the rationale of

restoring estrogenic values typical of childbearing women, as a

dose-response effect of estrogen regarding cardiovascular and bone

benefits has also been suggested (340, 372, 373). HRT maintains or

increases BMD at the lumbar spine, femoral neck and total hip, with

the magnitude of response dependent on the POI etiology or HRT

regimen used, being physiological estradiol more beneficial than

synthetic estrogens (346, 374, 375). In particular, in the only one

long-term, prospective, double-masked, controlled study on HRT in

women with POI data showed that physiologic HRT (estradiol

patch 100 mcg/d and cyclical oral medroxyprogesterone acetate 10

mg/d for 12 days of month) restored bone mineral density to

normal over three years, being well tolerated and increasing

estradiol levels to those of a control group of women with normal

ovarian function (376). Higher estrogen doses (2 mg oral or 100–

150 mcg/d transdermal estradiol) have been found to be superior in
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increasing BMD compared with lower doses or COCs (369, 377). In

addition, transdermal estradiol was found to be associated with a

better impact on BMD than oral estradiol (378, 379). However, to

date studies available on the optimal regimen for women with POI

are still lacking and future properly designed trials should aim to

compare results to the validated regimens (376). HRT regimens

must be individualized, carefully balancing benefits, risks, and side

effects. It may be necessary to start with lower doses to test tolerance

and increase the dose until the optimal dosage is reached. Examples

of the dosages to be used are given in Table 4.

Treatment with progestin is necessary in women with uterus to

prevent endometrial hyperplasia and minimize irregular bleeding.

Micronized natural progesterone, taken orally or vaginally, has

demonstrated greater safety than traditional synthetic progestins

(such as medroxyprogesterone acetate) regarding breast cancer risk,

metabolic impact, and thromboembolic events (380, 381) and,

therefore, is the first choice recommended by the most recent

guidelines. Dihydrogesterone, commonly used in oral preparations

in fixed combination, has similar metabolic and mammary benefits.

HRT regimen can be either combined sequential, with the

introduction of progesterone in the second phase of each cycle

(for 12 to 14 days), or combined continuous, with progesterone

taken at lower doses but throughout the entire month. In the

former, if the estrogen dose is sufficient to thicken the

endometrial mucosa, there are menstrual-like flows induced upon

discontinuation of progestin. The continuous combined scheme

results in almost complete atrophy of the endo-uterine mucosa

resulting in absence of bleeding in most cases. Endometrial

protection seems to be greater for continuous administration

(382), however, the risk of breast cancer appears to be increased

with the latter in postmenopausal women (383). The choice

between the two types of administration also depends on the

patient’s preference. It is worth mentioning that it should be

advisable to opt for a sequential combined regimen if the woman

plans a pregnancy or if fertility treatment with egg donation is

planned before long. It is also important to be aware that if doses of

estrogen higher than standard are prescribed it may be necessary to

adjust the progestin dosage using higher doses, depending on the

clinical findings and the pattern of bleeding. Finally, the use of

levonorgestrel-medicated intrauterine dispositive (IUD) can be

suggested (in combination with transdermal or oral estrogens),

especially if contraception is needed or in cases of irregular vaginal

bleeding. It provides durable endometrial protection, with the

advantage of resulting in negligible systemic concentrations of

progestin and, therefore, fewer side effects than systemic therapy
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(384). The use of COCs should be considered if the patient is likely

to have residual ovarian reserve and desires contraception. COCs

provide contraception, menstrual cycle control and relief from VMS

and other symptoms. Occurrence of VMS during the use of

ethinylestradiol COCs that may be alleviated switching to an

estradiol-containing COCs. VMS in the pill-free week can be

managed by eliminating the placebo (385). In recent years, an

estetrol-based contraceptive has also become available, appearing to

have more favorable effects on metabolism and blood pressure

(386). Women can transition toward HRT if contraception is no

longer required, opting for a combined sequential therapy.

However, these regimens do not suppress ovulation, therefore

women with enduring ovarian function may frequently

experience symptoms of estrogen excess including mastalgia and

erratic bleeding due to their underlying ovarian function (385).

COCs therapy can be also switched when the risk of an unwanted

pregnancy is highly unlikely, typically >2 years after diagnosis (6). It

is worth mentioning that some Authors proposed that, taking into

account that inappropriate follicle luteinization due to the tonically

elevated serum LH levels is recognized to be a key mechanism of

follicular disfunction (262, 263), a trial of physiologic HRT, by

reducing LH levels, may improve follicle function and increase the

chance of ovulation and spontaneous pregnancy in some women

with POI (387).

Concerning patient with primary amenorrhea, puberty should be

induced or progressed with 17b-estradiol, preferably in the

transdermal form, starting at the age of 12 with a low dose of

approximately 10% of the adult replacement dose and increased

every 6 months over a 2 to 3-year period (309, 328, 388, 389). After

about 2 years of unopposed estrogen, or if more than one episode of

significant breakthrough bleeding occurs, it is necessary to introduce

a progestin to induce withdrawal bleeding. The progestin should not

be added until there is substantial breast development, because

premature initiation of progestin therapy can compromise ultimate

breast growth, other than uterine maturation (328). Indeed, uterine

maturation is a prerequisite for patients who want to carry on a

pregnancy. Unfortunately, more than half of the patients with

hypogonadism undergone to pubertal induction were found to

have a suboptimal uterine outcome (390), and the risk appears to

be greater in girls who had received pelvic irradiation (fibrotic

damage to the uterine structure) or with Turner’s Syndrome (96).

Emerging data showed that progestins, hampering further changes in

uterine volume and breast development, should be introduced only in

the presence of a concomitant adequate 17b-estradiol dose and an

appropriate clinical response (96). Overall, the approach must be
TABLE 4 Formulations and regimens for hormone replacement therapy.

Estrogen therapy Progestin therapy

Formulations Doses Formulations Sequential regimens* Continuative regimens**

Estradiol valerate mg (tablets) 2 - 4 Micronized progesterone mg (caps) 100+ 200+

Estradiol mcg/24 (patchs) 50 - 150 Dydrogesterone mg (tablets) 5+ 10+

Estradiol/Estradiol emiidrate
mg (gel)

1 - 3
Medrossyprogesterone acetate

mg (tablets)
2.5+ 5+
*given for 14 day per month, **given every day.
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individualized, depending on the specific characteristics,

circumstances and desires of patients. When hypogonadism is

diagnosed late, or it develops after spontaneous pubertal start,

estrogen dosing regimens can progress more rapidly, especially for

those in which final height is not a concern (389, 391, 392).

Guidelines (309, 328, 393) recommend that replacement therapy

continue at least until the average age of menopause (51 years).

Thereafter, the risk-benefit ratio and individual symptomatology

should be evaluated on an individual basis. However, it should be

taken into account in clinical practice that a number of women with

POI have received inadequate treatment previously or have had

prolonged interruptions in therapy, and therefore should be

encouraged to continue for longer.

HRT is indicated in all women with POI, except where specific

contraindications exist. The only absolute contraindication is in the

patients surviving an estrogen-dependent cancer in young age. A

personal history of breast cancer contraindicates the use of hormone

replacement therapy (6, 309, 394). However, it should be noted that

the risk of breast cancer with long-term use of estro-progestin therapy

in POI is not higher than that of the age-matched general population

(395–397). The use of HRT for the management of menopausal

symptoms in carriers after risk-reducing bilateral salpingo-

oophorectomy (rrBSO) is controversial since data from the few

available studies are conflicting: guidelines approach this issue

differently, with some recommending offering HRT while others

suggest considering and discussing individually risks and benefits

with the patients (398, 399). Regarding other tumor types, whose

treatments may also lead to POI, HRT is indicated in most conditions

but potentially harmful in some hormone-dependent malignancies

(e.g., uterine sarcomas, ovarian cancer, meningioma or ER+/PR+

gastric carcinoma). Indeed, in some cancers or their subgroups, the

risk of HRT may outweigh the potential benefits and careful

individualized decision making is needed (e.g., some ovarian

cancers) (394, 400). It also is worth mentioning that an increased

thromboembolic risk is not an absolute contraindication to HRT but

requires more caution. Women with a history of prior thrombosis or

thrombophilic disorder should be evaluated by a hematologist before

starting HRT. Screening for thrombophilic disorder should be

performed only in patients with a personal or family history of

thromboembolic events. Transdermal estradiol is the preferred route

of administration for women at increased thromboembolic risk (309).

Some clinical conditions, where there is a relative contraindication for

postmenopausal contraceptive or replacement therapies, such as

migraine, hypertension, or obesity, are not contraindications for

HRT in POI. Even in these cases, transdermal administration is

preferred for its lower hepatic effect (6, 309).

Once HRT has been established, women with POI should be

clinically monitored once a year, to check compliance, satisfaction,

side effects, and whether the regimen or route of administration needs

to be changed. No routine monitoring tests are required but may be

prompted by specific symptoms or concerns (309). Monitoring

estrogen levels may be useful to assess the appropriateness of

therapy, having as a target the average values typical of women of

childbearing age (100-150 pg/mL) (328, 373, 401). However, there is

currently no consensus on the usefulness of this practice. Likewise,

there is no indication for monitoring FSH, although it has been
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shown to correlate with bone loss. Still, available data showed that

serum FSH levels in women on physiological hormone replacement

therapy were still significantly higher than control levels (376). Also,

markers of bone turnover (BTMs) could potentially be used to

monitor adequacy of the HRT dose, as decreases in BTM are

observed in clinical trials of HRT in women with POI; however,

this is not establish in current guidelines (309, 346).
5.2 Other therapies

If genitourinary symptoms persist despite systemic HRT, low-

dose vaginal estrogen or prasterone can be additionally administered

(6, 402). In addition, some women with POI may benefit from

androgen replacement, as it is recognized that the levels of women

with POI have lower androgen levels than age-matched controls

(403), possibly adversely affecting sexual desire and function and

physical performance. Nonetheless, data showed that the addition of

physiological transdermal testosterone replacement did not provide

additional benefit in BMD increase (376). Currently, the only

indication for testosterone use in women is postmenopausal

hypoactive sexual desire disorder (404). However, the lack of

licensed treatment options that can easily provide the required

physiological dose of 5 mg/day of testosterone makes it challenging

to use this therapy.

Non-hormonal pharmacological options are indicated for the

alleviation of vasomotor symptoms in cases where HRT is

contraindicated (405, 406). Low doses of antidepressants drugs are

effective for the relief of hot flashes are lower than those commonly

used for the treatment of depression, with onset of relief generally

occurring. Paroxetine mesylate (7.5 mg per day) is the only

nonhormonal treatment for vasomotor symptoms that has been

approved by the FDA. Trials have shown a similar reduction in

vasomotor symptoms with low doses of oral estradiol (0.5 mg per

day), venlafaxine XR (75 mg per day), and escitalopram (10 to 20 mg

per day) (407). Neurokinin 3 receptor (NK3R) antagonists, as

Fezolinetant, have recently been developed as novel therapeutic

agents for the amelioration of VMS through their action on NK3

receptors within the hypothalamus and consequent regulation of the

thermoregulatory center. Fezolinetant has demonstrated significant

reductions in VMS frequency and severity, improving transform

patients’ quality of life (408, 409). In order to alleviate genito-urinary

symptoms, vaginal moisturizers and lubricants can be used.

Bisphosphonates should be avoided in this young population

because of the potential desire for pregnancy and the possible need

for long-term use with associated reduction in bone turnover.

However, bisphosphonates may be necessary if HRT is

contraindicated or considered if there is high risk of fracture

despite optimal hormone therapy (6, 345, 348, 350).
5.3 Fertility preservation and
future prospective

Fertility preservation techniques have made great advancement in

the last years. While embryo and oocyte cryopreservation are now
frontiersin.org

https://doi.org/10.3389/fendo.2024.1464803
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Federici et al. 10.3389/fendo.2024.1464803
considered as established techniques, several positive data are now

available on ovarian tissue cryopreservation (OTC), and new

innovative technique like in vitro maturation of oocytes and in vitro

activation are beginning to be explored with success. Nevertheless, in

women with overt POI, the opportunity for fertility preservation is still

missed, due to the loss of most of the reproductive material (410). In

this case, recent guidelines still report oocyte donation as the only

realistic therapeutic option for a pregnancy (6, 202, 309). Indeed, the

possibility of preserving fertility strongly depends on an early diagnosis.

However, current guidelines do not recommend specific indication on

fertility preservation in patients with genetic risk of POI (202). The

ESHRE guideline for female fertility preservation (410) recommend

individualized counselling for women with a poor ovarian reserve

(AMH <0.5 ng/ml and AFC <5) as the value of fertility preservation is

unclear, adding, nevertheless, that OTC should not be offered to most

of these patients considering the poor success rate. Still, more studies

are needed to guide counseling and decision-making in patients

seeking these services despite a poor ovarian reserve (411). For girls

diagnosed with TS, karyotype-based management has been proposed:

Oktay et al. suggest fertility preservation in patients with monosomal

karyotype 45, X (in whom the ovarian reserve may be exhausted within

the first few years of life) as soon as the diagnosis is made, even in

childhood. For mosaic patients, on the contrary, it is proposed to delay

fertility preservation to the post menarche age, if possible, based on

ovarian reserve monitoring (328, 412). Same Authors state that ovarian

reserve can be exhausted if AMH < 0.1 ng/ml, AFC 0 at ultrasound,

and FSH > 30 IU/L, whereas it can be considered severely diminished if

AMH < 1.1 ng/ml, AFC < 7, and FSH 12–30 IU/L, although evaluation

should always be individualized (413). Cryopreservation of ovarian

tissue and subsequent ovarian transplantation is identified by several

authors as the most appropriate technique for prepubertal girls at risk

of POI. This technique has been recently recognized as an established

technique in cancer patients (414). Nonetheless, given the limited

evidence existing, it should still be considered experimental in patients

with idiopathic POI (412, 415, 416). However, given the frequent

familiarity for POI and the improved sensitivity of NGS in identifying

heritable predisposing variants in a woman with idiopathic POI, we

propose the investigation of the carrier status in the young female

relatives of an index case. The OTC could then be proposed only to the

young relatives carrying the predisposing variant at the preclinical stage

of POI, when FSH and AMH levels are still in the normal range and the

ovarian reserve is still intact or not completely exhausted.

It is hopeful that in the future, it will be possible to associate to the

OTC technique the in vitro maturation (IVM) and activation (IVA)

of small antral follicles retrieved ex vivo from the taken ovarian tissue

(202, 417–422). In this view, knowledge of underlying molecular

processes of POI can be particularly useful: in fact, patients who

harbor a defect in genes involved in the initial phases of ovarian

reserve development will more likely present clinically ovarian

dysgenesis or reduced pool of primordial follicles, while for

mutations that impair the most advanced stages of follicle

development, the presence of a residual follicular pool could be

assumed. Moreover, specific clinical and ethical issues concerning

possible association with syndromic clinical conditions need to be

taken into consideration. However, to date, there are no established
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treatments to increase the chance of conception, although many

approaches have been investigated. Several approaches involve the

use of mesenchymal stem cells (MSC) (423), from a variety of sources

including bone marrow, placenta and umbilical cord, that had shown

to have efficacy in animal models of POI (424). Another approach

involves the use of Platelet-rich Plasma (PRP), an autologous blood

derivative with high concentration of growth factors (GFs) that can

act in a paracrine manner, mediating tissue regeneration and

homeostasis. According to preliminary data in animal models of

POI, intraperitoneal or intraovarian administration of PRP is

demonstrated to increase ovarian cortex volume, AFC and ovarian

function, with recently emerging data from few clinical studies in

women with POI support the efficacy of PRP in ovarian rejuvenation

(425, 426). As mentioned, activation of primordial follicles (IVA)

through physical or chemical manipulation of key regulatory

pathways (notably the phosphoinositide 3-kinase (PI3K)/AKT/

mammalian target of rapamycin (mTOR) and Hippo pathways) is

also being developed (418–422). The latter two techniques appear to

be quite effective in achieving IVF conception, with rates of 4% and

7%–8% respectively (426). However, currently, much of the clinical

data are uncontrolled, and mostly in women with a reduced ovarian

reserve rather than POI. Further studies are needed to substantiate

the preliminary claims of success of these approaches (415, 426, 427).

Lastly, another thrilling area of current research which may change

the course of fertility preservation treatments is human in vitro

gametogenesis (IVG). IVG is the process of generating gametes in a

dish, starting from pluripotent stem cells. Induced pluripotent stem

cells (iPSCs) can be used to reproduce in vitro the process of gamete

formation. iPSCs can be derived from any differentiated somatic cell,

such as skin fibroblasts or peripheral blood mononuclear cells, and can

be reprogrammed to acquire the ability to differentiate into various cell

types, including germ cells. In the last decade, researchers have

successfully reproduced in vitro the entire process of oogenesis, and

also spermatogenesis, starting from pluripotent stem cells of mice

(mPSCs). Briefly, mPSCs were first induced to obtain mouse

primordial germ cell-like cells (mPGCLCs). The mPGCLCs were

further differentiated into oogonia, which were then induced to enter

meiosis and produce functional oocytes, either through in vivo

transplantation or through in vitro culture. In particular, the second

method takes advantage of the generation of cell aggregates, defined

reconstituted ovaries (rOvaries), obtained by mixing the culture of

mPGCLCs with somatic cells from mouse embryonic ovaries, which

provide structural and hormonal support for the development of

mature and functional oocytes. Moreover, efforts have been made to

promote the growth and differentiation of mPGCLCs independently of

ovarian somatic cells. The resultant oocytes were fully competent and

after in vitro fertilization, produced live and fertile offspring (428, 429).

The translation of the approach used in mouse IVG has been

attempted to induce human PGCLCs (hPGCLCs) from hPSCs,

pursuing various methods. The process of hPGCLC specification has

been elucidated, revealing the involvement of essential transcription

factors, driving specific hierarchical actions, and unique regulatory

networks, different from those governing mPGCLC specification.

Through culturing hPGCLC with mouse embryonic ovarian somatic

cells, defined xenogeneic rOvaries (xrOvaries), hPGCLCs went through
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epigenetic reprogramming and differentiated through still unknown

mechanisms into early oocytes, thus establishing the framework for

human IVG (430). IGV provides a new tool for studying mammalian

reproduction and prefigures applications in the field of reproductive

medicine, enhancing diagnosis and modeling infertility (431). The

application of human IVG for reproductive purposes is a possibility, it

could be used to produce healthy gametes from patient- or donor-

derived iPSCs and used for in vitro fertilization or assisted

reproduction. This could be beneficial for couples unable to conceive

due to fertility issues, genetic diseases, or other conditions. However,

the actual low efficiency of the technique, the need of a source of cells

equivalent to embryonic gonadal somatic cells in humans and other

species, the genetic and epigenetic quality of iPSCs and the resultant

gametes, and the risks of genetic abnormalities or diseases in offspring

are challenges that researchers are required to solve in coming years

(432). Nevertheless, IVG retains great potential for future applications,

but inevitably implicates ethical and social considerations.
6 Conclusion

POI is a heterogeneous disorder, which can be acquired or

congenital, although most of the cases remain idiopathic. It is a

common cause of infertility in women in which X chromosome and

autoimmune abnormalities play a prevalent pathogenic role. POI has a

multisystem impact with profound physical and emotional

implications; as such, its optimal management should be handled by

a multidisciplinary team. Once it occurs, POI is relatively easily

diagnosed since it is characterized clinically by persistent amenorrhea

with typical symptoms and hormonally by a hypergonadotropic

hypogonadism. Nonetheless, the real challenges are the certification

of the underlying ethological cause and the identification of markers

that can allow an early diagnosis or, even more important, its

prediction. Patients with POI need HRT to restore physiological

estrogen levels of the different tissues and organs, in line with

patients’ age, and thus avoid the consequences of an early and

prolonged hypoestrogenism. While therapeutic approaches in this

respect are quite well consolidated, fertility preservation is still a

matter of frontier and although recent advancement, hopefully in the

future years we will assist novel and important perspectives and

options. Moreover, it is critical to improve the educational health

resources to raise women’s awareness, health related behaviors and

informed decision making, bridging the gap between scientific

knowledge and health care provided. The use of the internet and
Frontiers in Endocrinology 22
social media, correctly managed by the competent professionals, could

be instrumental for this purpose (433).
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GALT GALACTOSE-1-PHOSPHATE URIDYLYLTRANSFERASE
SMC1B STRUCTURAL MAINTENANCE OF CHROMOSOMES 1B
GATA4 GATA-BINDING PROTEIN 4
SMC3 STRUCTURAL MAINTENANCE OF CHROMOSOMES 3
GDF9 GROWTH/DIFFERENTIATION FACTOR 9
SOHLH1; SOHLH2 OOGENESIS SPECIFIC BASIC HELIX-LOOP-HELIX 1

AND 2
GGPS1 GERANYLGERANYL DIPHOSPHATE SYNTHASE 1
SOX9 SRY-BOX 9
GJA4 connexin37 GAP JUNCTION PROTEIN, ALPHA-4
SPATA22 SPERMATOGENESIS-ASSOCIATED PROTEIN 22
GNAS GUANINE NUCLEOTIDE-BINDING PROTEIN
SPO11 SPO11 IN IT IATOR OF ME IOT IC DOUBLE -

STRANDED BREAKS
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HARS2 HISTIDYL-tRNA SYNTHETASE 2
Frontiers in Endocrino
SRY SEX REVERSAL 1
HELLS HELICASE, LYMPHOID-SPECIFIC
STAG3 STROMAL ANTIGEN 3
HFM1 HELICASE FOR MEIOSIS 1
STAR STEROIDOGENIC ACUTE REGULATORY PROTEIN
HOP2/PSMC3IP PSMC3 Interacting Protein
STRA8 STIMULATED BY RETINOIC ACID 8
HORMAD1 HORMA DOMAIN-CONTAINING PROTEIN 1
SYCE1 SYNAPTONEMAL COMPLEX CENTRAL ELEMENT

PROTEIN 1
HSD17B4 17-BETA-HYDROXYSTEROID DEHYDROGENASE IV
SYCP1/SYCP2/SYCP3 SYNAPTONEMAL COMPLEX PROTEIN 1/2/3
logy 33
IHO1 INTERACTOR OF HORMAD1 1
TOPOVIB-Like TOPOISOMERASE VI-B LIKE
INHA INHIBIN ALPHA
TP63 TUMOR PROTEIN p63
INSL3 INSULIN-LIKE 3
TWNK TWINKLE mtDNA HELICASE
LARS2 LEUCYL-tRNA SYNTHETASE 2
WRN WERNER SYNDROME
LHCGR LUTEINIZING HORMONE/CHORIOGONADOTROPIN

RECEPTOR
WT1 WILMS TUMOR TRANSCRIPTION FACTOR 1
LHX8 LIM homeobox 8
XRCC4 X-RAY REPAIR CROSS COMPLEMENTING 4
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