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Investigation of risk signatures
associated with anoikis in thyroid
cancer through integrated
transcriptome and Mendelian
randomization analysis
Xiang-Yi Chen1†, Jia-Ying Lai1†, Wen-Jun Shen1, Dawei Wang2,3*

and Zhi-Xiao Wei1*

1Department of Nuclear Medicine, The First Affiliated Hospital of Guangxi Medical University,
Nanning, China, 2Department of Medical Engineering, Medical Supplies Center of PLA General
Hospital, Beijing, China, 3Department of Nuclear Medicine, The Sixth Medical Center of PLA General
Hospital, Beijing, China
Background: Anoikis is intricately associated with the malignant progression of

cancer. Thyroid cancer (THCA) is themost common endocrine tumor, metastasis

is closely related to treatment response and prognosis of THCA. Hence, it is

imperative to comprehensively identify predictive prognostic genes and novel

molecular targets for effective THCA therapy.

Methods: Differential expression analysis and weighted gene co-expression

network analysis (WGCNA) were utilized to mine differentially expressed

anoikis-related (DE-ARGs). Then, the prognostic genes were identified and a

risk signature was constructed for THCA using univariate Cox analysis and least

absolute shrinkage and selection operator (LASSO) method. Furthermore, the

associations between risk signature and immune infiltration, immunotherapy, as

well as potential mechanisms of action were determined using multiple R

packages and Wilcoxon test. Finally, Mendelian randomized (MR) analysis was

conducted to investigate the causal relationship between the prognostic genes

and THCA.

Results: In total, six prognostic genes (LRRC75A, METTL7B, ADRA1B, TPD52L1,

TNFRSF10C, and CXCL8) related to anoikis were identified, and the

corresponding risk signature were constructed to assess the survival time of

THCA patients. Immunocorrelation analysis demonstrated the anoikis-relevant

risk signature could be used to evaluate immunotherapy effects in THCA patients,

and the infiltration of immune cells was correlated with the degree of risk in

THCA patients. According to two-sample MR analysis, there was the significant

causal relationship between CXCL8 and THCA (odds ratio [OR] > 1 & p< 0.05), and

the increase of its gene expression would lead to an increased risk of THCA.

Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR)

confirmed the upregulated expression patterns of these prognostic genes in

THCA tissues.
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Conclusion: In conclusion, we constructed the risk signature related to anoikis

for THCA, which might have important clinical significance for improving the

quality of life and treatment effect of THCA patients.
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1 Introduction

Thyroid cancer (THCA) is a prevalent malignancy of the

endocrine system and ranks as the ninth most common cancer

worldwide (1). THCA, primarily originating from follicular cells,

constitutes approximately 95% of THCA (2). The prognosis of

THCA patients depends on factors such as tumor size, age, degree

of metastasis, among which tumor size closely correlates with poor

prognosis (3). In the United States alone, around 44,000 new cases

of THCA are diagnosed annually. Among patients with highly

differentiated THCA, about 54% have a low risk of recurrence and

can be effectively treated through surgery (1). Despite having a

favorable prognosis overall, once it progresses to locally advanced

stages or metastatic radioiodine refractory (RAIR) which exhibits

relatively poorer outcomes that significantly impact patient survival

rates. Therefore, we believe that identifying novel genes associated

with THCA not only plays a crucial role in pathological diagnosis

but also provides valuable insights for treatment selection.

Anoikis is a form of cellular apoptosis triggered by the loss or

improper attachment (4). Normal epithelial cells rely on

extracellular matrix (ECM) contact for survival and proliferation,

whereas cancer cells can bypass this requirement (4). Consequently,

anti-anoikis mechanisms are essential for invasive metastasis and

dissemination of cancer cells (4). Simultaneously, numerous studies

have unveiled the association between anoikis and THCA. For

instance, Lee JJ et al. discovered that galactin-3 inhibitors

suppressed resistance to anoikis and invasion in THCA cells (5).

Jensen K et al. demonstrated that inhibiting the gap junction

pathway could enhance sensitivity to anoikis stimuli in THCA

cells (6). Tang M et al. also identified anoikis-related gene CDKN2A

as a predictor of prognosis and immune response while mediating

proliferation and migration in THCA (7). Other investigations have

revealed that MicroRNA-363-3p inhibits anoikis in human THCA

by targeting integrin a6 (8), suggesting a close relationship between

anoikis and malignant progression of THCA. Therefore, it is crucial

to authenticate predictive genes for effective therapy against THCA.

In order to further investigate the role of anoikis-related genes

(ARGs) in the occurrence and development of THCA, we utilized

sample information from the TCGA dataset to conduct a

comprehensive analysis on survival-associated genes. Through

bioinformatics analysis, we successfully identified six prognostic
02
genes for THCA, namely LRRC75A, METTL7B, ADRA1B,

TPD52L1, TNFRSF10C, and CXCL8. Additionally, the risk

signature was constructed to accurately predict patients’ survival

time. To elucidate the causal relationship between these prognostic

genes and THCA risk, a two-sample Mendelian randomization

(MR) analysis was performed using genome-wide association

studies (GWAS) data from the OpenGWAS database. The results

revealed a significant causal association between CXCL8 and

THCA. Collectively, our findings provide a solid foundation for

future research on THCA and offer new insights into personalized

treatment strategies.
2 Materials and methods

2.1 Data acquisition

A total of 497 cases of THCA and 56 control cases were

gathered from the UCSC Xena database (https://xenabrowser.net/

datapages/). Among these, 496 THCA samples were accompanied

by survival information and comprehensive clinical characteristics,

encompassing age, M/N/T stage, and stage, etc. A set of 338 ARGs

were acquired from the published literature (9). Additionally, the

GWAS data for THCA and eQTL GWAS data for ARGs in MR

analysis were all collected from the OpenGWAS database (https://

gwas.mrcieu.ac.uk/). The THCA’s GWAS dataset, namely ebi-a-

GCST90018929, consisted of 1,054 cases with THCA and 490,920

control cases (European), encompassing a total of 24,198,226

single-nucleotide polymorphisms (SNPs).
2.2 Differential expression analysis and
construction of the WGCNA network

“DESeq2” package (v1.36.0) (10) was utilized to mine the

differentially expressed genes (DEGs) between THCA and

control cases in the TCGA-THCA dataset with log2fold change

(FC) > 1 and adj.p< 0.05. To identify key module genes

associated with ARGs in THCA, the ssGSEA algorithm in the

“GSVA” package (v1.44.5) (11) was utilized to calculate ARG

scores for THCA and control specimens in the TCGA-THCA
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dataset. Subsequently, depending on the gene expression matrix

of all samples within the TCGA-THCA dataset and ARG score

(clinical trait), a co-expression network was established using

“WGCNA” package (v1.70-3) (12). The samples in the TCGA-

THCA dataset were subjected to clustering analysis in order to

identify and exclude any outlier samples, thereby ensuring the

accuracy of subsequent analyses. Afterthat, in order to maximize

the adherence of gene interactions to a scale-free distribution, we

employed the expression matrix encompassing all genes as input

data and conducted computations to determine the optimal soft

threshold. By calculating gene adjacency and deriving a

coefficient of dissimilarity based on gene similarity, a

systematic clustering tree of genes was acquired. Finally, all

samples were treated as individual traits and subjected to

Pearson correlation analysis with modules obtained from

WGCNA analysis in order to identify the module gene

exhibiting the highest correlation. The intersection of DEGs

and key module genes was performed using the “ggvenn”

package (v0.1.9) for visualization, resulting in a set of

differentially expressed ARGs (DE-ARGs).
2.3 Functional enrichment analysis for
DE-ARGs

The protein-protein interaction (PPI) network of DE-ARGs was

established through the STRING database (https://www.string-

db.org/). Subsequently, “clusterProfiler” package (v4.7.1.001) (13)

was employed to perform GO and KEGG enrichment analyses on

the DE-ARGs, aiming to mine shared functions and associated

pathways among genes.
2.4 Screening of prognostic genes and
construction of the risk signature

Subsequent analysis involved performing univariate Cox

regression using “survival” package (v3.4-0) (14) on DE-ARGs

within THCA samples from TCGA-THCA dataset. Genes that

met the criteria of hazard ratio (HR) ≠ 1 and p< 0.05 were

categorized as survival-associated genes. These genes then

underwent proportional hazards (PH) assumption testing. The

genes that met the PH assumption (p > 0.05) were further

integrated into a LASSO regression analysis using the “glmnet”

package (v4.1-6) (15). Optimal model fit was achieved when the

lambda value was minimized, identifying the prognostic genes for

this study. The THCA samples in TCGA-THCA dataset were

randomly allocated to the training set and the internal validation

set at a ratio of 7:3 for constructing the risk signature. Based on the

prognostic genes and coefficients obtained from the LASSO

analysis, the risk score for each THCA sample was calculated

according to the formula below:

Risk score = Coefficient1*Gene1 + Coefficient2*Gene2 +…

+ Coefficientn*Genen
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Following the calculation of risk scores for each THCA patient,

they were categorized into high-risk and low-risk groups via the

median risk score. Subsequently, the Kaplan-Meier (K-M) curves

for survival analysis between these two risk groups were plotted

using “survminer” (v0.4.9) (14) package, followed by a comparison

of survival differences through log-rank test. Besides, the receiver

operating characteristic (ROC) curves for the risk signature were

drawn by “survivalROC” package (v1.0.3) (16), with survival times

of 1, 3, and 5 years as the time points. To further assess the

generality of the risk signature, we validated it using the same

method as described above in the internal validation set.
2.5 Independent prognostic analysis

The nomogram was generated using the “rms” package (v6.3-0)

(17), and then calibration curves were built to estimate the accuracy

of nomograms in predicting 1/3/5-year survival in THCA patients.

In order to assess the relevant between prognostic genes and clinical

characteristics, we integrated the clinical information (including

age, T/M/N stage, and disease stage) of THCA patients obtained

from the TCGA database to examine the differences in prognostic

gene expression among different clinical features.
2.6 Immune infiltration analysis

The infiltration of immune cell types in patients with THCA

was estimated with CIBERSORT (https://cibersort.stanford.edu/),

and the Wilcoxon test was employed to make comparisons between

the high- and low-risk groups. To investigate the association

between tumor immune evasion and risk score, we calculated and

compared the TIDE scores of THCA samples through TIDE’s

official website (http://tide.dfci.harvard.edu/) and Wilcoxon test,

respectively. In addition, Spearman correlation analysis was

employed to examine the relationship between TIDE and

risk scores.
2.7 Functional enrichment analysis for
prognostic genes

Using “h.all.v7.4.symbols.gmt” obtained from the MSigDB

database (http://www.broadinstitute.org/msigdb) as the reference,

we employed “GSVA” package (v1.44.5) (11) to calculate scores for

various pathways enriched in high- and low-risk groups (p< 0.05).

Subsequently, we utilized the “limma” package to identify

significantly different pathways between THCA samples in two

risk groups. Moreover, the “psych” package (v2.2.9) (18) was

utilized for the analysis of Spearman correlation between the risk

score and all genes. Depending on risk score and coefficient serving

as ranking criteria, gene set enrichment analysis (GSEA) was

conducted by the “clusterProfiler” package (|NES| > 1 & adj.p<

0.05). The “c2.cp.kegg.v2023.1.Hs.symbols” gene set obtained from

the GSEA website (http://www.gsea-MSigdb.org/gsea/MSigdb) was

served as the background gene set.
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2.8 Drug sensitivity analysis

The oncoPredict package (v0.2) (19) was utilized to calculate

the IC50 values of 198 chemotherapeutic/targeted therapy drugs

provided by GDSC database (https://www.cancerrxgene.org/) on

THCA samples. Subsequently, we conducted a comparative analysis

of the IC50 values for 198 drugs between two distinct groups.
2.9 Study design of MR analysis

Using a two-sample MR analysis, we examined the causal

relationship between prognostic genes and THCA. Therefore, the

selection of effective instrumental variables (IVs) should adhere to

three crucial assumptions: (1) IVs must exhibit strong associations

with exposure; (2) IVs must be independent of confounding factors;

and (3) The association between IVs and outcome should be solely

mediated by exposure factors.
2.10 MR analysis of THCA and
prognostic genes

The extract_instruments function in the TwoSampleMR

package (v0.5.7) (20) was utilized to identify IVs (SNPs) that

exhibited significant correlation with prognostic genes (exposure

factors), employing a screening criterion of p< 5*10-8. Subsequently,

the clump parameter was set to TRUE, and IVs in linkage

disequilibrium (LD) were removed by adjusting the parameters as

follows: r2 = 0.001; kb = 100. To address potential issues arising

from IVs exhibiting significant correlation with THCA (outcome),

we employed the harmonise_data function in the TwoSampleMR

package to standardize effect equiele and effect size. MR analysis was

performed using 5 algorithms (MR egger, weighted median, inverse

variance weighted [IVW], simple mode, and weighted mode).

Notably, the primary outcome considered was based on IVW

results, where a P< 0.05 indicated a significant causal relationship.

Finally, ensuring accuracy in directionality was crucial and achieved

through utilizing the TwoSampleMR package to conduct Steiger

directivity analysis.
2.11 Sensitivity analysis

A sensitivity analysis was undertaken to assure the robustness of

MR analysis. Initially, heterogeneity was evaluated using Cochran’s

Q statistic and its corresponding p value. Then, the MR egger

intercept was examined to investigate potential horizontal

pleiotropy. It is worth noting that if p< 0.05 in egger intercept, it

necessitates reconsideration of the study design. Furthermore, to

demonstrate reliability in our analysis results, a stepwise

elimination process was employed where each SNP was gradually

removed and its impact on outcome variables assessed. This leave-

one-out sensitivity analysis approach served as an additional

validation for our findings.
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2.12 THCA patients and tissue specimens

A total of 15 pairs of THCA tumor and corresponding adjacent

normal tissues were collected from First Affiliated Hospital of

Guangxi Medical University between August 2024 and September

2024. Samples were snap-frozen and stored at −80°C until used in

real-time qPCR (RT-qPCR) experiments. The Research Ethics

Committee of The First Affiliated Hospital of Guangxi Medical

University approved this study, which was consistent with the

Declaration of Helsinki.
2.13 RNA Isolation, cDNA Synthesis, and
RT-qPCR

Total RNAs were isolated by Triquick Reagent (Trizol Substitute,

Solarbio, China). RNA (1 mg), quantified by NanoDrop2000 (Thermo

Fisher Scientific), was reversely transcribed to cDNA using the first-

strand cDNA synthesis kit (Monad, China). Quantitative PCR was

applied using the SYBR Green dye (Yeasen, China) on Real-Time

PCR System (Agilen, United States). All primers were synthesized by

Sangon Biotech and their sequences were listed in Supplementary

Table S1. ACTB served as an internal control. The 2-DDCt method was

used to determine the relative expression between cancer and normal

tissue for each selected prognostic gene.
2.14 Statistical analysis

This study was statistically analyzed using the R software

package (v4.2.1). Various variables, including expression

quantity and infiltration ratio, were evaluated for differences

between groups using either the Wilcoxon test or t-test.

The significance of discrepancies between groups was

typically defined by a p value or adj.p value below 0.05, unless

otherwise specified.
3 Results

3.1 Identification of DE-ARGs in the TCGA-
THCA dataset

Through differential expression analysis, a set of 3,772 DEGs

were detected in the TCGA-THCA cohort, comprising 1,611 down-

regulated and 2,161 up-regulated genes. The volcano plot displayed

all DEGs, while the heat map depicted the top 80 genes with the

most significant up-regulation and down-regulation between

control and THCA samples (Figures 1A, B, Supplementary Table

S2). The ARG scores in THCA samples and healthy control samples

were compared using the Wilcoxon test, revealing statistically

significant differences (p< 0.05, Figure 2A). To screen out genes

with high ARG correlation, we constructed a WGCNA network

based on ARG scores. Depending on the results of the cluster

analysis, no outlier samples were identified in the TCGA-THCA
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dataset, indicating its suitability for conducting WGCNA analysis

(Figure 2B). When the R2 value approached the threshold of 0.85

(red line) and the average connectivity in the graph on the right

tends towards 0, it indicated that the network was approaching a

scale-free distribution (Figure 2C). Consequently, we determined

the optimal soft threshold (b) to be 8. Furthermore, the minimum

number of genes was set to 100 according to the standard of the

hybrid dynamic tree cutting algorithm, resulting in a total of 14

modules obtained (Figure 2D). Among the 14 modules, MEbrown

exhibited the strongest association with ARGs score (cor = 0.89 &

p< 0.001) (Figure 2E). Consequently, MEbrown module was

identified as the pivotal module in this study, encompassing a

total of 1,443 genes and designated as the key module gene. Finally,

570 DE-ARGs were acquired by overlapping 3,772 DEGs and 1,443

ARGs-related genes (Figure 2F).
3.2 Investigation of potential action
mechanism for DE-ARGs

Based on the functional enrichment analysis, wound healing,

developmental growth involved in morphogenesis and pathways

associated with nervous system function, such as axon extension,

synapse organization, axonogenesis, were enriched by DE-ARGs

(Figure 3A). Moreover, they were also associated with ECM-

receptor interaction, transcriptional misregulation in cancer, cell

adhesion molecules, p53 signaling pathway according to KEGG

pathways (Figure 3B). In order to investigate potential interactions

among DE-ARGs, we constructed a PPI network. The network

comprised a total of 405 nodes and 1,371 interaction pairs, revealing

a highly intricate interplay between 570 ARGs (Figure 3C).
3.3 Risk signature based on six prognostic
genes for THCA

After performing univariate Cox regression analysis, a total of

40 survival-associated genes were identified (HR ≠ 1 and p< 0.05)
Frontiers in Endocrinology 05
(Supplementary Table S3). These genes were subsequently

subjected to tests for the PH assumption, which they all satisfied

(p > 0.05) (Supplementary Table S4). According to LASSO

regression analysis, six prognostic genes (LRRC75A, METTL7B,

ADRA1B, TPD52L1, TNFRSF10C, and CXCL8) were used to

construct the risk signature with the best performance

(Figure 4A). The THCA samples in the training set were ranked

based on their risk scores, and a risk curve was plotted (Figure 4B).

This curve demonstrated a higher number of deceased samples in

the high-risk group compared to the low-risk group, indicating that

the mortality rate was lower among low-risk THCA patients.

Additionally, Figure 4C displayed expression levels of prognostic

genes in both high and low-risk groups, in which LRRC75A,

METTL7B, ADRA1B, TPD52L1, and TNFRSF10C were low

expressed in high-risk group, and CXCL8 showed an opposite

trend. The K-M curves revealed a statistically significant disparity

in the survival rates of patients with THCA between the high- and

low-risk groups (p< 0.05), with the high-risk group exhibiting a

higher mortality rate (Figure 4D). The area under the curve (AUC)

values of the ROC curve were 0.938, 0.890, and 0.863 at 1, 3, and 5

years, respectively, indicating a strong ability for predicting survival

time (Figure 4E). Furthermore, the risk signature constructed by the

prognostic gene in the internal validation set exhibited consistent

findings with those observed in the training set, thereby providing

further evidence of its validity and universality (Supplementary

Figure S1A–D).
3.4 Risk score was an independent
predictor of THCA

Based on the clinical correlation analysis, the expression levels

of CXCL8 exhibited significant variations among different subtypes

of N stage (0/1) and T stage (1/2/3/4), while METTL7B

demonstrated differential expression between the TNM stages (I/

II/III/IV) and T stage (1/2/3/4), and TPD52L1 displayed alterations

at M stage (0/1) (Supplementary Figure S2A–E, Supplementary

Table S5). To demonstrate the clinical value of the risk score more
FIGURE 1

Differential expression analysis in the TCGA-THCA dataset. The volcano map (A) and heat map (B) of differentially expressed genes (DEGs) between
thyroid cancer (THCA) and control groups.
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directly, we constructed a nomogram model that mapped the risk

score onto the total number axis to determine patients’ overall

scores and subsequently derive their corresponding predicted

survival probabilities (Figure 5). Meanwhile, the calibration curve

of the nomogram demonstrated its excellent predictive capability

(Supplementary Figure S2F).
3.5 Relevance of prognostic genes and
immune environment

To investigate the correlation between risk signature and the

immune microenvironment in THCA patients, an analysis of
Frontiers in Endocrinology 06
immunoinfiltration was conducted. Figure 6A exhibited the

proportion of immune infiltration cells in the high- and low-risk

groups. The high-risk group exhibited significantly elevated

expression of activated dendritic cells, eosinophils, monocytes,

neutrophils, and activated memory CD4 T cells among the total of 9

kind of differential immune cells. Conversely, the low-risk group

demonstrated highly expressed M2 macrophages, resting mast cells,

resting NK cells, and gamma delta T cells (Figure 6B). Correlation

analysis revealed that CXCL8 displayed the strongest positive

correlation with resting dendritic cells (cor = 0.5) (Figure 6C).

What’s more, the TIDE scores presented significant disparities

between the low- and high-risk groups, with the latter demonstrating

a heightened likelihood of immune evasion (Figure 6D). Additionally,
FIGURE 2

Identification of the differentially expressed anoikis-related genes (DE-ARGs) by constructing the WGCNA network. (A) Discrepancies in ARG scores
between THCA and control samples. ****p<0.0001. (B) The cluster diagram of all samples in the TCGA-THCA dataset. (C) Selection of the optimal
soft threshold (power). (D) Genes were divided into different modules through hierarchical clustering. Different colors represent different modules.
(E) Correlation heat map between module genes and ARGs. (F) The venn diagram of 570 DE-ARGs.
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there was a positive correlation observed between the risk score and

TIDE score (Figure 6D). Therefore, the risk signatures related to

anoikis can be utilized for evaluating immune infiltration and

immune evasion in patients with THCA.
3.6 Exploration of potential functions of
prognostic genes

To determine the pathways for which prognostic gene

enrichment differed between high- and low-risk groups, we

conducted GSEA and GSVA enrichment analyses. Figure 7A

displayed the pathways exhibiting significant disparities between

two risk groups, highlighting the most prominent distinction where

TNFA, IL2 STAT5, KRAS, P53, IL6 JAK STAT3 signaling

pathways, inflammatory, and apoptosis were significantly

inhibited while oxidative phosphorylation, fatty acid metabolism,

and adipogenesis is significantly activated (Figure 7B). According to
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the results of GSEA, risk score was associated with chemokine, T

cell receptor, and nod like receptor signaling pathways, cytokine

receptor interaction, and hematopoietic cell lineage (Figure 7C).
3.7 Comparison of drug sensitivity
between groups

Based on the data from GDSC database, the IC50 values of 107

drugs exhibited significant variations between two risk groups (high

and low), implying potential divergent therapeutic effects in

patients at different stages of tumor progression. For the purpose

of demonstration, we presented the top10 drugs exhibiting

significant differences in Figure 8, including ABT737_1910,

AZD3759_1915, Erlotinib_1168, etc. In conclusion, our findings

suggested that the risk score played a beneficial role in predicting

drug effectiveness.
FIGURE 3

Functional enrichment analysis of DE-ARGs. The GO terms (A) and KEGG pathways (B) notably enriched by DE-ARGs. (C) The PPI network of
DE-ARGs.
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3.8 Causal effect of prognostic genes
on THCA

To investigate the causal relationship between prognostic genes

and THCA, we conducted a two-sample MR analysis, utilizing

prognostic genes as exposure factors and THCA as the outcome.

Unfortunately, no GWAS IDs were found for ADRA1B, TPD52L1,

and TNFRSF10C, hence they were excluded from MR analysis.

According to the results from IVW method, only CXCL8

demonstrated a causal relationship with THCA and was identified
Frontiers in Endocrinology 08
as a risk factor for THCA [odds ratio (OR) = 1.1520, 95%

confidence interval (CI): 1.0333-1.2843, p = 0.0108]. There was

no significant causal association between LRRC75A or METTL7B

and THCA (p > 0.05) (Table 1, Figure 9A). The Steiger direction

check was confirmed as TRUE, indicating the presence of correct

causation and the absence of reverse causation (Supplementary

Table S6). The MR analysis included a total of 27 SNPs, all of which

exhibited F value exceeding 10, indicating their suitability as strong

IVs (Table 2). Meanwhile, the risk effects of the estimated exposure

factors at each SNP site were combined to predict the diagnostic
FIGURE 4

Identification of prognostic genes and construction of the risk signature. (A) Identification of optimal log(Lambda) in the LASSO regression analysis,
along with their corresponding genes and coefficients, as well as the proportion of residuals explained by the model. (B) Risk score distribution,
patient survival time, and status. (C) The heat map illustrates the expression of prognostic genes. (D) Kaplan-Meier (K-M) survival curves for high- and
low-risk groups. (E) Receiver operating characteristic (ROC) curves showing the predictive efficiency of risk scores. AUC, area under the curve.
FIGURE 5

Creation of the nomogram based on the risk score.
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efficacy on THCA within the forest plot. As depicted in Figure 9B,

IVW analysis revealed that the impact values of CXCL8 on THCA

were all greater than 0. In order to assess the randomness of the

analysis, a funnel plot was constructed by combining the b
Frontiers in Endocrinology 09
coefficient and standard error (SE) for each IVs (Figure 9C). The

distribution of IVs in the plot appeared slightly uneven, which could

be attributed to heterogeneity and potential bias resulting from a

limited number of IVs. Consequently, a subsequent test for
FIGURE 7

Functional enrichment analysis of prognostic genes and risk score. (A) Heat map of pathways exhibiting significant disparities between two risk
groups in GSVA enrichment analysis. (B) The barplot of top20 pathways with significant differences. Blue represents inhibition, orange represents
promotion, and gray represents not significant. (C) The results of GSEA enrichment analysis for risk score.
FIGURE 6

Immune infiltration analysis. (A) Estimated proportion of 22 immune cell types in the samples from high- and low-risk groups. (B) Comparison of the
proportion of immunoinfiltrating cells in samples from high- and low-risk groups. ns, not significant; *p<0.05; **p<0.01; ****p<0.0001. (C) Heat map
illustrating the correlation between prognostic genes and immune cells. (D) Differences of TIDE scores between high- and low-risk groups and
correlation with risk score.
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heterogeneity was conducted, yielding the p value greater than 0.05,

indicating it had no impact on the overall findings (Supplementary

Table S7). Moreover, the horizontal pleiotropy test conducted on

CXCL8 indicated a p value exceeding 0.05, suggesting the absence of

any significant horizontal pleiotropic effects (Supplementary Table

S8). The absence of any confounding factors was found in this

study, thereby further enhancing the robustness of our analysis.

Additionally, there were no abnormal SNP results observed in

relation to the leave-one-out analysis (Figure 9D). In summary,

these findings suggested a significant causal relationship between

CXCL8 and THCA, indicating that upregulation of CXCL8

expression was associated with an increased risk of THCA.
3.9 Verification of prognostic genes
expression by qPCR

The expression of the six prognostic genes was then verified in

tumor and normal samples by qPCR. Consistent with the

prediction, the results showed that the expression levels of the

selected genes were remarkable elevated in THCA patients (p<

0.01) (Figure 10).
4 Discussion

The incidence of THCA is steadily increasing recent decades,

making it the most prevalent endocrine cancer with relatively low

mortality rates, partly due to overdiagnosis over world (21, 22).
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However, almost 10% of THCA exhibit recurrent or metastatic

disease, the early appropriate treatment and accurate diagnosis of

metastatic TCHA is still challenging (23, 24). When cells fail to attach

to the ECM or adhere in inappropriate locations, they undergo a

specific form of apoptosis known as anoikis. If the anoikis process is

not properly executed, it may result in the rapid proliferation of cells

in ectopic sites. This dysregulation of anoikis has become a hallmark

of cancer cells, contributing to their metastasis to distant organs (25,

26). Metastasis, particularly to the lungs and bones, is the primary

cause for worsen survival (27). Therefore, constructing risk signature

associated with metastasis can offer valuable insights for disease

management and early intervention for THCA.

In this study, we identified a total of 3,772 DEGs between normal

and tumor samples from the TCGA-THCA dataset. After

intersecting with ARGs, we obtained 570 DE-ARGs. Functional

analysis revealed that these DE-ARGs primarily enriched in P53

signaling pathway, focal adhesion, transcriptional dysregulation, and

proteoglycan pathways in cancer, highlighting the pivotal role of

ARGs in tumorigenesis. Subsequently, utilizing univariate Cox

regression, PH assumption test and LASSO analysis techniques, we

further identified six prognostic genes: LRRC75A, METTL7B,

ADRA1B, TPD52L1, TNFRSF10C, and CXCL8. The PCR results

showed that all six prognostic genes were significantly overexpressed

in THCA tissues. Notably, these findings were consistent with the

differential expression analysis, with each gene exhibiting a log2FC

greater than 1. These findings confirm our initial conclusions and

underscore the importance of these genes in the context of THCA.

Leucine-rich repeat-containing protein 75A (LRRC75A) is a

LRRC-rich protein belonging to the LRRC superfamily, yet its
FIGURE 8

Top10 chemotherapeutic drugs exhibiting significant differences in IC50 values between high- and low-risk groups (top10).
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functionality remains largely unknown (28). However, based on

scRNA-seq profiling, Miura T et al. have suggested that LRRC75A

may positively regulate VEGF expression and serve as a potential

biomarker for predicting BM-MSC angiogenesis under ischemic

conditions (28). Notably, some effective therapeutic drugs for

THCA act through the angiogenesis pathway involving VEGFR2,

the receptor of VEGF (29). Several studies have demonstrated the

high expression of Methyltransferase-like 7B (METTL7B) in

THCA, which is consistent with our findings. It is suggested that

METTL7B may promote TGF-b1-induced epithelial-mesenchymal

transition (EMT), thereby enhancing the migration and invasion of

THCA cells (30, 31). Adrenoceptor alpha 1B (ADRA1B) belongs to

the adrenergic receptor alpha1 (ADRA1) subfamily, and adrenergic

receptor antagonists have been reported to play a role in treating

various cancers such as prostate and breast cancer, besides its

significant upregulation in THCA samples (32–34). Therefore, we

conclude that ADRA1B plays a crucial role in the occurrence and

progression of THCA; however, further investigation is required to

elucidate its underlying mechanism. Tumor protein D52-like 1

(TPD52L1) belongs to the TPD52 family; previous research has

shown that TPD52 can act as a novel regulator of LKB1-AMPK

pathway by negatively regulating AMPK activity and thus affecting

cancer cell metabolism (35). As early as 2014, Andrade BM’s team
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proposed that AMPK regulated iodide and glucose uptake in

normal thyroid cells and was highly activated in THCA (36, 37).

However, immunohistochemical analysis revealed no activation of

the AMPK pathway in adenoma tissue compared to non-tumor

tissue from the same patient (36). Nevertheless, we still hypothesize

that TPD52L1 may be involved in the development of THCA

through its regulation of the AMPK pathway, and further

investigation into its mechanism is urgently needed. Additionally,

TNF receptor superfamily member 10C (TNFRSF10C) inhibits

intracellular signaling pathways for apoptosis, and its high

methylation is significantly associated with an increased risk in

CRC patients (38). Although the precise role of TNFRSF10C in

THAC remains unclear, further investigation is needed to explore

the potential link between the significantly inhibited TNF-a/NF-kB
signaling pathway identified in GSVA analysis and TNFRSF10C as

one of the decoy receptors for TNF-associated apoptosis-inducing

ligand (TRAIL). C-X-C motif chemokine ligand 8 (CXCL8 or IL-8)

is a chemokine that exerts autocrine or paracrine regulation on

tumor proliferation, invasion, and migration. It has been implicated

in various cancers such as breast cancer, prostate cancer, lung

cancer, and others (39). The relationship between CXCL8 and

thyroid gland was confirmed as early as 1992. Experimental

evidence has demonstrated that the presence of CXCL8 is
TABLE 1 Mendelian randomization (MR) analysis of prognostic genes on THCA.

Outcome Exposure Gene Method
Number
of SNPs

Beta SE P value OR or_lci95 or_uci95

ebi-a-
GCST90018929
(Thyroid cancer)

eqtl-a-
ENSG00000169429

CXCL8

MR Egger

27

0.2930 0.0945 0.0047 1.3405 1.1138 1.6133

Weighted
median

0.1814 0.0795 0.0226 1.1989 1.0258 1.4011

Inverse variance
weighted
(fixed effects)

0.1415 0.0555 0.0108 1.1520 1.0333 1.2843

Simple mode 0.2480 0.1269 0.0616 1.2814 0.9992 1.6434

Weighted mode 0.1885 0.0803 0.0268 1.2074 1.0316 1.4131

eqtl-a-
ENSG00000181350

LRRC75A

MR Egger

10

-0.0691 0.3049 0.8263 0.9332 0.5133 1.6965

Weighted
median

-0.1283 0.1945 0.5094 0.8796 0.6008 1.2877

Inverse variance
weighted
(fixed effects)

-0.2014 0.1527 0.1872 0.8175 0.6060 1.1029

Simple mode -0.1708 0.3114 0.5966 0.8430 0.4579 1.5519

Weighted mode -0.1050 0.2245 0.6512 0.9004 0.5799 1.3980

eqtl-a-
ENSG00000170439

METTL7B

MR Egger

6

0.4188 0.2482 0.1668 1.5202 0.9346 2.4727

Weighted
median

0.2058 0.1365 0.1317 1.2285 0.9401 1.6053

Inverse variance
weighted
(fixed effects)

0.1749 0.1291 0.1756 1.1911 0.9248 1.5342

Simple mode -0.1276 0.2755 0.6627 0.8802 0.5130 1.5103

Weighted mode 0.2749 0.1552 0.1367 1.3165 0.9711 1.7846
f

SNPs, single-nucleotide polymorphisms; SE, standard error; OR, odds ratio; CI, confidence interval.
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FIGURE 9

Mendelian randomization (MR) analysis between CXCL8 and THCA. (A) Scatter plot of the effect of single-nucleotide polymorphisms (SNPs) on
CXCL8 (exposure) and THCA (outcome). (B) The forest map illustrates the impact of each SNP of CXCL8 on THCA. (C) MR-Egger regression funnel
plot for CXCL8 on THCA. (D) MR leave-one-out sensitivity analysis for the effect of CXCL8 on THCA.
TABLE 2 The list comprises SNPs of CXCL8.

beta pval samplesize se Chr SNP
effect_
allele

other_
allele

eaf r2 F

0.0863023 7.41E-13 25646 0.0120337 2 rs10187424 C T 0.420816 0.002001505 51.42952458

-0.467891 3.66E-26 19193 0.0442212 4 rs79628591 C T 0.0183072 0.005799087 111.9394266

-0.18639 2.70E-09 19726 0.0313339 4 rs75479897 A G 0.037387 0.001790601 35.38117695

-0.241996 5.72E-12 3989 0.0351416 4 rs80084562 G A 0.029456 0.011748349 47.3975084

0.251005 2.56E-11 20823 0.0376319 4 rs4694182 C A 0.97441 0.002131976 44.48470741

-0.344598 2.68E-12 4750 0.0492755 4 rs78470580 A G 0.0147564 0.010191102 48.88555231

-0.477385 3.75E-27 20197 0.0442355 4 rs188703534 A G 0.0182892 0.005733392 116.4535276

-0.247371 4.35E-12 3757 0.03572 4 rs142254266 A G 0.0284802 0.012604471 47.93397171

0.226612 4.54E-79 25646 0.0120364 4 rs6851997 G A 0.392856 0.013633001 354.436724

-0.24557 6.63E-11 6617 0.0376139 4 rs77213195 G A 0.0256185 0.006400357 42.61108602

-0.605328 2.22E-53 25143 0.0393574 4 rs115264016 G A 0.0230215 0.009320619 236.5343275

-0.200047 8.07E-15 1926 0.0257586 4 rs114787652 T A 0.0563344 0.030364884 60.25156896

0.627988 6.58E-179 24595 0.0220191 4 rs1951703 C T 0.925346 0.032012992 813.3327223

-0.250272 5.17E-18 2101 0.0289345 4 rs138863160 C T 0.0440267 0.034385114 74.74445002

-0.599117 8.28E-51 24449 0.0399627 4 rs75606860 T C 0.022332 0.00910916 224.7388283

-0.213024 2.41E-13 1926 0.0290866 4 rs79454658 T C 0.0436137 0.027094766 53.58212564

-0.426675 1.35E-27 24173 0.0391966 4 rs6446943 G T 0.0234126 0.004878018 118.4845345

(Continued)
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FIGURE 10

The results of qPCR for prognostic genes. **p<0.01; ***p<0.001.
TABLE 2 Continued

beta pval samplesize se Chr SNP
effect_
allele

other_
allele

eaf r2 F

-0.253516 5.99E-17 2614 0.0303057 4 rs141328282 T C 0.039977 0.026072528 69.92455281

-0.626673 4.33E-57 24954 0.039355 4 rs1247657 T C 0.0229965 0.010058919 253.5404897

-0.26234 3.35E-14 20757 0.0345908 4 rs114426411 C T 0.0304098 0.002763385 57.51299289

-0.0750399 4.75E-10 25531 0.0120507 5 rs56330463 C T 0.582097 0.001516467 38.77268896

-0.321043 9.87E-34 19697 0.0265204 6 rs149110519 T C 0.0526158 0.007384941 146.5285223

0.0713426 6.34E-09 25531 0.0122848 7 rs2158799 G C 0.625845 0.00131923 33.72311334

0.180296 1.75E-43 25317 0.0130393 7 rs56388170 T G 0.289189 0.007495213 191.1742164

-0.0870547 2.12E-11 25531 0.0129985 10 rs11189181 G A 0.297492 0.001753751 44.85015488

-0.195535 2.18E-14 23798 0.0255963 12 rs35979828 T C 0.0571059 0.002446192 58.35232007

0.243392 1.42E-95 25531 0.0117337 17 rs7210990 A C 0.481977 0.016573593 430.2378514
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essential for inducing EMT in THCA cells (40). Recent studies have

further revealed higher levels of IL-6 and CXCL8 in THCA tissues

compared to normal tissues, which aligns with our findings (41).

Furthermore, GSEV result spot that tumor promotive signal such

KRAS, EMT and IL-6/JAK/STAT3 are restricted under anoikis-

related condition. Neoplastic diseases involve constant interactions,

adaptations, and evolutions between tumor cells at different stages,

involving surrounding normal cells, immune cells, integrity with

sequential activation tumorigenesis signa-pathways (42, 43). During

the early stages of tumor detachment from extracellular matrix

environment, types are linked to promote progression (growth/

infiltration into surrounding tissues) that could be summarized

among T stage category. Subsequently, when overwhelming

metastasis was aroused, the EMT-related and other pathways is

initially activated by detachment from the extracellular matrix into

circulation (lymph or blood circulation), triggering activation of

anoikis-related signal-pathways. Our findings demonstrate that

EMT and anoikis are two sequential and independent procedures

promote tumorigenesis. This is also the main reason for further MR

analysis after the construction of the prognostic signature contained

anoikis-related genes.

The risk signature was constructed based on prognostic genes,

and the THCA samples were stratified into high- and low-risk

groups. The prognosis of patients in the low-risk group exhibited

significantly better outcomes compared to those in the high-risk

group. Utilizing the ROC curve analysis, we observed that the risk

signature demonstrated a robust predictive ability for 1, 3, and 5-year

survival probabilities in THCA patients. Furthermore, we developed a

nomogram model incorporating risk scores to further elucidate the

clinical significance of these risk signatures. In our clinical correlation

analysis, we found that risk scores varied to different extents across

distinct clinical characteristics. Consequently, can risk scores be

employed to differentiate between subtypes of THCA patients? If

feasible, this study would provide valuable insights for staging

diagnosis and personalized treatment strategies for THCA patients;

thus, warranting further investigation.

It is widely acknowledged that immunotherapy holds great

promise as a treatment modality for various tumors. To identify

personalized treatments for patients with different risk levels of

THCA, we conducted an analysis on the disparities in the immune

microenvironment between these two groups. Our immunoinfiltration

analysis revealed significant discrepancies in the proportions of

infiltration among nine types of immune cells, including M2

macrophages, NK cells, and diverse T cells. Shi ZY et al. (44),

discovered a correlation between CD4 T cell count and clinical

treatment efficacy, as well as adaptability and recovery potential in

THCA patients; this correlation exhibited a negative trend. In our

findings, we observed that the proportion of activated memory CD4 T

cells were significantly higher in the high-risk group compared to the

low-risk group. On the one hand, M2 macrophages have obvious

immunosuppressive function to mediate immune escape and promote

the proliferation and metastasis of THCA; on the other hand, it can

also secrete VEGF and EGF to promote tumor microangiogenesis (45).

Through the calculation and comparison of TIDE scores, we observed

significant disparities between high- and low-risk groups, with samples

from the former exhibiting a higher likelihood of immune escape.
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Moreover, there was a positive correlation between risk score and TIDE

score. Consequently, we posit that aberrant infiltration of immune cells

may foster the progression of THCA, thereby offering a theoretical

foundation for exploring THCA immunotherapy.

However, our research has certain limitations. Firstly, the samples

we analyzed were obtained from public databases with a small sample

size and limited clinical information, which may restrict the extent to

which our risk model can be researched and validated in terms of its

clinical value. Secondly, although the expression of these six hub

genes had been verified by clinical samples, further studies are needed

to confirm the role of these prognostic genes in THCA. Moreover,

additional investigation is urgent to uncover mechanisms of anoikis

and its association with THCA.

5 Conclusion

In conclusion, we employed bioinformatics methods to screen six

prognostic genes (LRRC75A, METTL7B, ADRA1B, TPD52L1,

TNFRSF10C, and CXCL8) associated with anoikis for THCA.

Utilizing these prognostic genes as a basis, we developed a risk

signature to accurately predict the prognosis of THCA patients and

made predictions regarding potential functions and targeted drugs.

Significantly advancing the field of research on THCA prognostication

is our novel integration of MR with transcriptome analysis in order to

identify prognostic genes exhibiting significant causal relationships. Of

particular interest is our discovery through MR analysis that there

exists a substantial causal relationship between CXCL8 and THCA;

indeed, CXCL8 emerges as a major risk factor for this disease. This

finding not only provides a theoretical foundation for further

exploration into the association between ARGs and THCA but also

offers an innovative target for enhancing prognosis and facilitating

precise and effective treatment strategies for individuals afflicted by

this condition.
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