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metabolic diseases
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Obesity is increasing globally and is closely associated with a range of metabolic

disorders, including metabolic associated fatty liver disease, diabetes, and

cardiovascular diseases. An effective strategy to combat obesity involves

stimulating brown and beige adipocyte thermogenesis, which significantly

enhances energy expenditure. Recent research has underscored the vital role

of PRDM16 in the development and functionality of thermogenic adipocytes.

Consequently, PRDM16 has been identified as a potential therapeutic target for

obesity and its related metabolic disorders. This review comprehensively

examines various studies that focus on combating obesity by directly targeting

PRDM16 in adipose tissue.
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1 Introduction

Obesity is becoming a global epidemic and is closely associated with various chronic

diseases, such as type 2 diabetes, cardiovascular disorders, and hypertension (1). In recent

years, non-shivering thermogenesis in adipose tissues has emerged as a promising

therapeutic target for obesity and its related comorbidities. Adipocyte thermogenesis

occurs when white adipocytes or beige precursor cells transform into beige adipocytes in

white adipose tissue (WAT), and brown adipocytes are activated in brown adipose tissue

(BAT). This process involves increased expression of thermogenic genes and proteins, such

as uncoupling protein 1 (UCP1), which is highly expressed in beige and brown adipocytes

(thermogenic adipocytes) and can produce heat by dissipating the proton motive force

without generating adenosine triphosphate (ATP). UCP1 is the most extensively studied

mediator of thermogenesis. However, a variety of additional mechanisms have also been

identified to promote thermogenic energy expenditure in adipocytes. These include fatty

acid oxidation, creatine phosphorylation, and calcium cycling (2). These changes enhance

the adipocytes’ capacity to produce heat, thereby increasing energy expenditure and

promoting weight loss. Numerous studies have demonstrated that enhancing adipocyte
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thermogenesis can reduce fat mass and improve metabolic health

(3–6). It is noted that human brown adipose tissue is not only

present in the interscapular region of infants but is also identified in

various anatomical parts of adults (7, 8). Cold exposure or

adrenergic receptor agonists can activate brown adipocytes in

humans (9–12). The adrenergic stress response to prolonged cold

exposure has been observed to induce browning of subcutaneous

white adipose tissue (sWAT) in rodents. In contrast, in humans, ten

days of cold exposure, which resulted in the BAT activation, but did

not lead to the browning of sWAT (13). Interestingly, burn injury

can result in prolonged elevations of circulating norepinephrine

levels, which in turn leads to an increase in UCP1-positive beige

adipocytes within the sWAT. This observation has been linked to

the severe adrenergic stress response and the browning of sWAT in

humans (14). Furthermore, BAT secretes a multitude of cytokines

that facilitate communication with other organ systems, potentially

contributing to the systemic metabolic effects (15).

The mechanisms underlying adipocyte thermogenesis involve

transcriptional regulation, environmental cues, and signaling

pathways. The key transcription factor PRDM16 plays a vital role

in adipocyte thermogenesis. The PRDM protein family consists of

17 members that structurally contain a conserved N-terminal PR

(PRDI-BF1 and RIZ1 homology) domain, which is similar to the

SET (suppressor of variegation, enhancer of zeste, and trithorax)

domain found in many histone lysine methyltransferases (HMTs).

The PRDM proteins also contain a variable number of zinc finger

domains, which directly bind with DNA. PRDM proteins are

involved in various cellular processes, which include cell fate

decision (16, 17). The PRDM16 gene, which was also named

MDS1/EVI1-like gene 1 (MEL1) by Mochizuki et al., was first

discovered in patients with acute myeloid leukemia and the

myelodysplastic syndrome (18). The human PRDM16 gene

(located on chromosome 11p36.32) and the mouse Prdm16 gene

(located on chromosome 4qE2) contain 17 exons and encode a

protein with a positive regulatory (PR) domain, an inhibitory

domain (RD), two zinc finger DNA binding domains (ZF1 and

ZF2), and an acidic domain (AD) (19, 20).

Recent studies have provided comprehensive information about

the role of PRDM16 in adipose tissue. This review summarizes the

function and regulation of PRDM16 in adipose tissue and proposes

the application of this transcription factor as a potential target for

treating obesity and its related metabolic disorders. Additionally,

the review includes a summary of references that report proteins

directly interacting with PRDM16, as well as factors influencing the

expression of Prdm16 mRNA and protein. These studies have also

elucidated the physiological roles of these genes in the obesity and

its related metabolic diseases.
2 Function of PRDM16 in
adipose tissue

The physiological role of PRDM16 in adipose tissue, along with

its mechanism of action, a topic of significant interest in the field of

endocrinology and metabolism, is summarized below:
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2.1 Direct function in adipose tissue

2.1.1 Inducing brown adipocyte characteristics in
white adipocytes

PRDM16 is significantly enriched in brown adipocytes as

compared to white adipocytes. When Prdm16 is overexpressed in

white adipocytes, a robust brown fat phenotype is activated, leading

to a remarkable increase in uncoupled respiration. Conversely,

when Prdm16 is knocked down using shRNA in brown

adipocytes, the brown characteristics are significantly reduced.

Mechanistically, PRDM16 directly binds to the promoters of Ucp1

and PPAR gamma coactivator 1 alpha (Pgc1a), key regulators of

brown adipocyte thermogenic function. Additionally, PRDM16

interacts with the PGC1a transcriptional coactivator to modulate

brown fat determination and function (21).

White fat depots include subcutaneous adipose tissue and

several intra-abdominal adipose tissues, including mesenteric

adipose tissue (22). Adiposity is a major risk factor for metabolic

diseases in both humans and rodents (23–25). In contrast, the

expansion of subcutaneous adipose tissue has been suggested to

promote insulin sensitivity in both rodents and humans (26–28).

The expression levels of Prdm16 are higher in subcutaneous white

adipocytes than in other abdominal white adipocytes in mice.

Transgenic expression of Prdm16 in white fat, under the -5kb aP2

promoter/enhancer, strongly promoted the development of beige

adipocytes in subcutaneous adipose tissues but not in epididymal

adipose tissues (29). When mice with overexpressed Prdm16 were

fed on high-fat diets, increased energy expenditure, reduced body

weight gain, and improved glucose tolerance were observed (29). In

adipose-specific Prdm16 knockout mice (Adipo-Prdm16 KO),

which were generated by Prdm16lox/lox and Adiponectin-cre mice,

minimal effects on classical brown fat were noted. However, beige

adipocyte function was markedly inhibited in subcutaneous white

adipose tissue. When fed on high-fat diets, Adipo-Prdm16 KO

developed obesity, severe insulin resistance, and hepatic steatosis.

The subcutaneous adipose tissue in Adipo-Prdm16 KO mice

acquired many key properties of visceral fat, including decreased

thermogenic gene expression, increased inflammatory gene

expression, and macrophage accumulation (30). Furthermore,

adipocyte progenitor cells derived from human white adipose

tissue demonstrate beige adipocyte characteristics upon

differentiation into white adipocytes, as revealed through single-

cell RNA sequencing analysis. These cells exhibit a pronounced

enrichment of markers traditionally associated with beige

adipocytes, including PGC1a, PRDM16, and UCP1 (31). These

findings indicate that PRDM16 is essential for the formation of

beige adipocytes and enhances the health effects of subcutaneous

adipose tissue.

2.1.2 Controlling the switch of myoblasts into
brown adipocytes

Although white and brown adipocytes both contain lipid

droplets and display some morphological similarities, their

developmental origins differ markedly. Brown adipocytes share

the Myf5-positive precursor with myoblasts. PRDM16 is the key
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effector that controls the bidirectional cell fate switch between

skeletal myoblasts and brown fat cells. Loss of Prdm16 in brown

preadipocytes blocks brown adipogenesis and promotes muscle

differentiation. Conversely, ectopic expression of Prdm16 in

myoblasts induces their differentiation into brown adipocytes.

Studies have shown that the adipogenic conversion of myoblasts

to brown adipocytes by PRDM16 depends on the presence of

rosiglitazone, a specific agonist for peroxisome proliferator-

activated receptor gamma (PPARg). PPARg is the master

regulator of adipogenic differentiation (32, 33). PPARg alone can

convert myogenic cells into adipocytes, but not into brown

adipocytes; the latter requires PRDM16 expression. PRDM16

binds to PPARg, thereby activating its transcriptional function

and driving the differentiation of myoblasts into brown

adipocytes (34). In a single-cell RNA sequencing analysis of

human perivascular adipose tissue (PVAT), a brown-like fat

depot, Angueira et al. identified that preadipocytes express the

adipogenic gene PPARg, while mature adipocytes express

thermogenic genes UCP1 and PRDM16 (35).

The global homozygous Prdm16-deficient mouse died at birth.

The putative BAT from the Prdm16 knockout (KO) mice at late-

stage embryos (E17) exhibited substantially larger lipid droplets,

accompanied by lower brown adipocyte-selective gene expression

and higher skeletal myogenic gene expression. Interestingly,

embryonic BAT development in mice that selectively lacked

Prdm16 in the Myf5 lineage was normal, with no observable

discrepancies when compared with control mice. In contrast to

juvenile mice, Myf5-Prdm16 KO mice that were more than 6

months old exhibited profound morphological whitening in BAT.

However, tissue temperature dramatically dropped or oxygen

consumption was marginally raised in Myf5-Prdm16 KO mice

upon cold exposure or norepinephrine (NE) stimulation. Prdm3,

closely related to Prdm16 based on sequence and structure,
Frontiers in Endocrinology 03
compensates for the ablation of Prdm16 in embryonic brown fat

development. Prdm3 not only regulates white adipocyte

differentiation (36), but also could induce the expression of Ucp1

and Pgc1a. The double KO of Prdm3 and Prdm16 in the Myf5

lineage caused a more obvious white fat phenotype than in WT and

Prdm16 KO mice (37). The above studies suggest that PRDM16 is

crucial for determining thermogenic adipocyte fate by interacting

with PGC1a and PPARg together.
2.2 Indirect function in adipose tissue

PRDM16 not only directly regulates the formation and function

of brown and beige fat but also indirectly modulates the expression

of other genes to control obesity and its related metabolic

diseases (Figure 1).

Slit2, a 180 kDa member of the Slit extracellular protein family,

was identified as a secreted factor of beige adipocytes from aP2-

Prdm16 transgenic mice. Full-length Slit2 is cleaved to generate

several smaller fragments. The C-terminal fragment of Slit2 (Slit2-

C) is an active thermogenic moiety. Slit2-C induces the

thermogenesis of brown and beige adipocytes by activating the

PKA signaling pathway. It promotes adipose thermogenesis,

augments energy expenditure, and improves glucose homeostasis

in vivo. However, the protease that generates Slit2-C from full-

length Slit2, along with the effective surface receptor of Slit2-C,

remains unknown (38).

Aging impairs beige adipogenesis and promotes fibrogenesis (39,

40). Genetic loss of Prdm16 mimics the effects of aging, whereas

increasing PRDM16 in aged mice reduces fibrosis and restores beige

adipogenic potential. LC-MS analysis revealed that PRDM16-driven

fatty acid oxidation produces a paracrine factor, beta-

hydroxybutyrate (BHB). BHB locally or selectively accumulates in
FIGURE 1

PRDM16 promotes thermogenic adipocyte function and formation. PRDM16 coordinates with PPARg, PGC1a, EBF2, and NFIA to determine
thermogenic adipocyte fate. PRDM16 regulates the expression of other genes, thereby indirectly modulating adipose tissue function. PRDM16
promotes the secretion of SLIT2 protein in beige adipocytes, thereby inducing adipocyte thermogenesis and improving insulin sensitivity. PRDM16
induces BHB secretion, which aids the differentiation of beige adipocytes and represses adipose fibrosis. BHB: b-hydroxybutyrate.
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the inguinal WAT (iWAT) of young animals, thereby suppressing

myofibrogenesis and stimulating beige adipogenic competency in

precursor cells. BHB catabolism is mediated by BDH1 and is required

for beige fat differentiation. BHB supplementation in aged animals

reduced adipose fibrosis and promoted beige fat formation. However,

it is still unclear whether BHB would have antifibrotic or pro-beige

adipogenic effects in human adipose tissue (41).

3 Proteins resist obesity and its related
metabolic disorders by directly
interacting with PRDM16

Different types of proteins have been reported to regulate

adipocyte thermogenesis or fibrosis to combat adiposity in

adipose tissue by directly interacting with the PRDM16 protein

(Figure 2; Table 1).
3.1 Sequence-specific transcriptional
factors to determine cell fate of
thermogenic adipocytes

Although PRDM16 contains a DNA-binding domain, this domain

is dispensable for PRDM16’s role in determining the fate of

thermogenic adipocytes. The R998Q mutant allele of PRDM16

completely loses its DNA-binding ability but still retains the

capability to interact with PPARg to activate the brown fat gene

program (21). PRDM16 indirectly binds to the genome via

transcription factors that recognize specific motifs and directly binds

to DNA, including PPARg. Although PPARg can interact with

PRDM16 to convert myoblasts into brown adipocytes, its expression

levels are quite low in primary and immortalized myoblasts. The Bruce
Frontiers in Endocrinology 04
M. Spiegelman group analyzed proteomic transcriptional complexes

formed with wild-type (WT) PRDM16 or different mutant alleles of

PRDM16 and found that C/EBP-b, prior to PPARg, cooperates with
PRDM16 to initiate the conversion of myoblasts to brown adipocytes.

Forced expression of PRDM16 and C/EBP-b is sufficient to induce a

fully functional brown fat program in naive fibroblastic cells, including

in murine and human skin fibroblasts (42).

Nuclear factor I-A (NFIA) is regarded as a transcriptional

regulator of brown adipocytes, as identified through genome-wide

open chromatin analysis. NFIA and PPARg co-localize at brown

adipocyte-specific enhancers to facilitate PPARg binding to these

enhancers and drive active transcription. Overexpression of Nfia in

myoblasts promotes brown adipocyte differentiation while

inhibiting myogenic differentiation. Conversely, Nfia KO impairs

the expression of brown fat-specific genes and elevates the

expression of muscle genes. Interestingly, NFIA does not

physically bind to PRDM16, and PRDM16 is dispensable for

NFIA’s effects. NFIA and PRDM16 operate in parallel to each

other (43). Additionally, NFIA in adipocytes can down-regulate

pro-inflammatory cytokine genes to ameliorate adipose tissue

inflammation by binding to the regulatory region of the Ccl2

gene. CCL2 expression is negatively correlated with NFIA

expression in human adipose tissue (44).

Early B-cell factor 2 (Ebf2) is also a marker gene of brown and

beige adipogenic precursor cells. Ebf2-expressing precursor cells

from brown adipose tissue and white adipose tissue differentiate

into brown and beige adipocytes, respectively (45). PPARg genome-

wide Chromatin immunoprecipitation (ChIP)-Seq revealed that the

EBF DNA binding motif was highly enriched in brown adipose-

specific PPARg binding sites. EBF2 increases PPARg binding at

brown-specific sites. Conversely, it significantly reduces PPARg
binding at white-specific sites. It is important to note that EBF2 is

recruited to the Prdm16 locus before PPARg. When overexpressed
FIGURE 2

Proteins combat obesity and its related metabolic disorders by directly interacting with PRDM16. The proteins interact with PRDM16 to regulate
adipocyte thermogenesis, depending on different mechanisms. More detailed information about these proteins is listed in Table 1.
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in myoblasts or white adipose stromal cells, EBF2 recruits PPARg to
its brown-selective binding sites to drive a brown fat-specific

differentiation program. Ebf2-deficient mice typically die soon

after birth. An analysis of BAT in late-stage mouse embryos

showed that Ebf2 KO resulted in the loss of brown-specific

characteristics and thermogenic capacity in brown adipocytes and

tissue (46). Consistently, EBF2 physically interacts with the

chromatin remodeler BRG1 and the BAF chromatin remodeling

complex component DPF3 to activate brown fat identity genes (47).

Furthermore, transgenic expression of Ebf2 in adipose tissue under

the aP2 promoter/enhancer powerfully stimulates beige fat

development and protects animals against obesity (48). In human

white adipose tissue, a subtype of adipocytes with potential

thermogenic properties has been identified, characterized by the

expression of thermogenic markers PPARGC1A and EBF2 through

single-cell RNA sequencing analysis (49). While a direct interaction

between PRDM16 and EBF2 has not been reported, multiple

independent studies have confirmed that these two factors co-

localize at the brown adipocyte-specific enhancers, suggesting that

PRDM16 could potentially directly interact with EBF2 to form a

substantial transcriptional complex.
Frontiers in Endocrinology 05
3.2 Co-factors and histone modification
enzymes to determine cell fate of
thermogenic adipocytes

High-resolution liquid chromatography coupled with tandem

mass spectrometry (LC-MS/MS) showed that EHMT1, which is the

only methyltransferase with enzymatic activity on H3K9 mono- or

di-methylation, was in the PRDM16 complex (50). The PR-domain

of PRDM16 shares high homology with methyltransferase SET

domains (51). The PRDM16 complex purified from brown

adipocytes expressing the PR mutant exhibited significant

methyltransferase activity on H3, due to the presence of EHMT1.

Consistent with this, both WT PRDM16 and the PR mutant could

convert myoblasts into brown adipocytes. Loss of Ehmt1 in brown

adipocytes reduces brown fat characteristics. Conversely,

overexpression of Ehmt1 positively promotes the expression of

BAT-selective genes by stabilizing the PRDM16 protein. Adipose-

specific ablation of Ehmt1 leads to a significant reduction in BAT-

mediated adaptive thermogenesis and the development of severe

obesity and systemic insulin resistance. Notably, patients with

EHMT1 mutations develop obesity, possibly due to impaired
TABLE 1 Proteins that directly interact with PRDM16.

Protein
name

Cellular Function Physiological Fucntion Human study Reference

EHMT1
Stabilize the PRDM16 protein and
control brown adipose cell fate.

Adipose-specific knockout of Ehmt1 leads to
obesity and systemic insulin resistance.

40–50% of patients with EHMT1
mutations develop obesity.

(52, 53)

TYK2/
STAT3

Binds to PRDM16 and enhances its
stability to determine brown

fat lineage.

Tyk2 knockout mice developed obesity and
displayed insulin resistance.

TYK2 levels are decreased in
obese humans.

(60, 61)

ZFP516
Interact with PRDM16 to activate the

Ucp1 promoter in beige and
brown adipocyte.

Overexpression of Zfp516 in adipose tissue
prevents obesity and improves glucose tolerance.

None (62, 64)

LSD1
Associates with PRDM16 to repress

expression of white fat-selective genes.

Adipose-specific ablation of Lsd1 impaires
mitochondrial function and increases

fat deposition.
None. (64, 65)

Hlx
Interacts with PRDM16 to control
thermogenic gene expression and

mitochondrial biogenesis.

Transgenic expression of Hlx improves glucose
homeostasis and prevents obesity and

hepatic steatosis.

Human ortholog of Hlx induced UCP1
expression and mitochondrial biogenesis

in human adipocytes.
(67)

SOX4
Recruits PRDM16 to PPARg to elevate
the expression of thermogenic genes.

Adipose specific knockout of Sox4 mice develop
obesity with severe hepatic steatosis, insulin

resistance, and inflammation.
None (68)

YAP/TAZ
Inhibit sympathetic innervation of

beige fat by repressing the neurotropic
factor S100B.

Yap/Taz loss in adipocytes counteracts age-
associated obesity and insulin resistance.

S100B was greatly decreased while TAZ
was increased in obese human.

(74)

GTF2IRD1

Forms a complex with PRDM16 and
EHMT1 to represses adipose tissue

fibrosis in an UCP1
independent manner.

Adipocyte selective expression of GTF2IRD1
represses adipose tissue fibrosis and improves

systemic glucose homeostasis.

GTF2IRD1 expression inversely
correlates with subcutaneous WAT

fibrosis in humans.
(75)

TLE3
Disrupts the interaction between
PPARg and PRDM16 to suppress
brown-selective genes expression.

Ad-Tle3 KO improves thermogenic response, but
not affect body weight and adipose tissue mass,
possible due to a trend toward decreased activity.

Subcutaneous adipose tissue TLE3 is
increased in type 2 diabetes and

decreased in bariatric surgery-induced
weight loss.

(77, 78)

PexRAP

Interacts with PPARg and PRDM16
and inhibit brown adipocyte gene

expression and white
adipocyte browning.

Inducible PexRAP KO significantly
reduces adiposity.

None (80)
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adaptive thermogenesis. Moreover, activation of classical brown

adipocytes in the adult human perirenal depot required PRDM16-

EHMT1 complex expression (52, 53).

The Mediator complex, an evolutionarily conserved multiprotein

entity, is integral to transcriptional regulation. It facilitates this

process by directly interacting with RNA Polymerase II and

coordinating the activities of various co-activators and co-

repressors at the chromatin level (54). In adipocytes, the MED1

subunit of the Mediator complex modulates the function of key

transcription factors, including PPARg, PGC-1a, and C/EBPb, which
also interact with PRDM16 (55, 56).

PRDM16 is recruited to the chromatin in brown adipose tissue

via its DNA-binding partners, including C/EBPb and PPARg.
Notably, PRDM16 deficiency does not compromise the DNA-

binding capacity of these partners to their respective target sites;

yet the presence of MED1 at these locations is reduced. Moreover,

silencing Med1 in mature brown adipocytes results in a marked

decrease in the transcription of genes specific to brown fat. Through

its zinc finger domains, PRDM16 directly engages with MED1,

positioning it as a super-enhancer for these genes. Furthermore, this

interaction is critical for the formation of complex chromatin

structures at key gene loci specific to brown adipose tissue (57, 58).

Tyrosine kinase 2 (Tyk2) is a member of the Jak kinase family.

Numerous cytokines and growth factors activate the Jak/STAT

pathway to stimulate tyrosine phosphorylation of the STAT

transcription factors, thereby inducing the expression of early

response genes (59). Mice lacking Tyk2 become progressively

obese and exhibit abnormal BAT morphology and function.

Constitutively active Stat3 (CAStat3) and PRDM16 restore the

differentiation of Tyk2 KO brown adipocytes. Furthermore,

altered BAT morphology and function were restored, and obesity

was reversed in Tyk2 KO mice expressing CAStat3 in BAT.

Interestingly, a mutated form of Tyk2, which lacks tyrosine kinase

activity (Tyk2KD), also rescues the differentiation of Tyk2 KO

brown preadipocytes in vitro. It is important to note that Tyk2

KO mice expressing a Tyk2KD transgene in BAT display normal

brown adipocyte differentiation and resist the obese phenotype of

Tyk KO mice. Mechanistically, STAT3 binds to PRDM16 and

enhances the stability of the PRDM16 protein, thereby

maintaining brown adipocyte differentiation. Both Tyk2WT and

Tyk2KD can also interact with PRDM16 and PGC1a to regulate

brown fat differentiation (60, 61).
3.3 Co-factors to positively regulate
functions of thermogenic adipocytes

High-throughput screening using the Ucp1 promoter revealed

that ZFP516 is a transcriptional activator of Ucp1. ZFP516 directly

binds to the proximal region of the Ucp1 promoter to activate Ucp1

expression by interacting with PRDM16. Zfp516 is induced by cold

and sympathetic stimulation through the cAMP-CREB/ATF2

pathway. Ectopic expression of Zfp516 represses the myogenic

program and enhances brown adipocyte differentiation. Although

ablation of Zfp516 is embryonically lethal, BAT mass in KO

embryos is still drastically reduced. Overexpression of Zfp516 in
Frontiers in Endocrinology 06
adipose tissue (aP2-Zfp516) promotes the browning of iWAT,

increases body temperature and energy expenditure, and prevents

diet-induced obesity (62).

LSD1, a l so known as KDM1A, demethy la tes the

monomethylated or dimethylated histone H3 Lys4 (H3K4me1 or

H3K4me2), which are histone markers closely associated with

active transcription (63). Quantitative mass spectrometry is used

to identify LSD1 from nuclear extracts of primary brown adipocytes

with a PRDM16-specific antibody. The brown adipocytes from

Adipo-Lsd1-KO mice exhibited increased expression of white-

selective genes, a blunted response to norepinephrine, and

reduced flavin adenine dinucleotide (FAD) levels. It is important

to note that Adipo-Lsd1-KO mice have more fat mass and lower

energy expenditure levels. In line with this result, Ucp1-Lsd1-KO

mice also gained more body weight on a high-fat diet than control

littermates. LSD1 regulates the metabolism of brown adipocytes by

cooperating with PRDM16 and ZFP516 (64–66).

Transcription factor Hlx is highly expressed in BAT and iWAT.

It is translationally upregulated by b3-adrenergic signaling in iWAT.

The knockdown of Hlx in BAT and iWAT adipocytes had no effect

on adipogenesis but decreased Ucp1 expression and strongly

suppressed oxygen consumption. Hlx homozygous null mice are

embryonically lethal. Hlx heterozygous KO mice exhibit defects in

beige adipocyte formation in iWAT and develop glucose intolerance

and high-fat-induced hepatic steatosis. Conversely, transgenic

expression of Hlx promotes the browning of white adipocytes,

improves glucose homeostasis, and prevents obesity and hepatic

steatosis. Hlx directly interacts with PRDM16 to control BAT-

selective gene expression and mitochondrial biogenesis (67).

Whole transcriptome deep sequencing (RNA-seq) analysis of

iWAT after cold stimulation identified transcription factor SOX4 as

a new regulator of white adipocyte browning. Mice with either

Adiponectin-Cre or Ucp1-Cre deletion of Sox4 exhibited significant

cold intolerance, decreased energy expenditure, and impaired beige

adipocyte formation. These mice also developed obesity, severe

hepatic steatosis, insulin resistance, and inflammation after being

fed on a high-fat diet. ShRNA knockdown of Sox4 in beige

adipocytes reduced energy metabolism and the expression of

thermogenic genes. SOX4 recruits PRDM16 to PPARg, thereby
forming a transcriptional complex and elevating the expression of

thermogenic genes (68).

YAP and TAZ are key molecular effectors of the Hippo pathway

in mammals (69). YAP/TAZ acts as a PPARg co-repressor that

regulates adipocyte differentiation. They are required for adipocyte

survival in diet-induced obesity and promote obesity-related

adipose tissue fibrosis (70, 71). Adipocyte-specific KO of Yap/Taz

(Yapfl/fl; Tazfl/fl with AdipoqCre mice) induces S100b expression,

thereby stimulating sympathetic innervation and biogenesis of

functional beige fat in both iWAT and visceral WAT. S100b is a

neurotrophic factor that stimulates the sympathetic innervation of

thermogenic fat (72). Calsyntenin 3b was initially suggested to

enhance the secretion of S100b in adipocytes, as indicated in

reference (72). However, contrasting findings were reported in a

subsequent study, which demonstrated that Calsyntenin 3b does

not regulate S100b secretion and innervation, as detailed in

reference (73). YAP/TAZ competes with C/EBPb for binding sites
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on the ZF-2 domain of PRDM16 to inhibit S100b transcription.

YAP/TAZ disrupts the formation of the PRDM16-C/EBPb
complex, thereby acting as a brake on beige fat innervation (74).

GTF2IRD1, a cold-inducible and BAT-enriched transcriptional

factor, interacts with both PRDM16 and EHMT1 to form a

transcriptional complex that represses adipose tissue fibrosis in an

UCP1-independent manner. Repressed adipose tissue fibrosis was

observed in transgenic mice, where variant 5 of Gtf2ird1 is driven by

the aP2 promoter/enhancer in adipose tissues. This repression was

accompanied by improved systemic glucose homeostasis,

independent of body weight loss. Deleting Gtf2ird1 promoted

fibrosis in a cell-autonomous manner. GTF2IRD1 represses the

transcription of transforming growth factor b-dependent pro-

fibrosis genes by recruiting PRDM16 and EHMT1 to their

promoter/enhancer regions. Additionally, GTF2IRD1 expression

inversely correlates with human subcutaneous WAT fibrosis. The

EHMT1-PRDM16-GTF2IRD1 complex plays a crucial role in

repressing obesity-associated adipose tissue fibrosis and

enhancing systemic glucose homeostasis (75).
3.4 Co-factors to negatively regulate
functions of thermogenic adipocytes

Transducin-like enhancer protein 3 (TLE3) is an adipogenic

coregulator that functions synergistically with PPARg to stimulate

adipogenesis (76). TLE3 counteracts the brown fat program by

competing with PRDM16 for interaction with PPARg. TLE3 and

PRDM16 reciprocally regulate BAT- and WAT-selective gene

expression. In aP2-Tle3 transgenic mice, impaired fatty acid

oxidation and adipocyte thermogenesis were observed compared to

control mice. Conversely, mice lacking Tle3 in adipose tissue (Adipo-

Tle3 KO) exhibited enhanced thermogenesis in inguinal white adipose

depots and were protected from age-dependent deterioration of brown

adipose tissue function (77). In humans, TLE3 expression in

subcutaneous adipose tissue is increased in type 2 diabetes and

decreased following bariatric surgery-induced weight loss (78).

PexRAP synthesizes ether-linked phospholipids that are

potential partial agonists for PPARg and also promotes white

adipogenesis (79). Homozygous KO of PexRAP in mice resulted

in embryonic lethality. To overcome this, Rosa-CreER mice were

used to generate tamoxifen-inducible global PexRAP KO (PexRAP-

iKO) animals. In PexRAP-iKOmice, enhanced adipocyte browning,

increased energy expenditure, and decreased adiposity were

observed. Similar to TLE3, PexRAP disrupts the formation of the

PRDM16-PPARg complex by interacting with PPARg, thereby
inhibiting white adipocyte browning (80).
4 Proteins combat obesity by directly
regulating Prdm16 expression in
adipose tissue

The amounts and stabilization of PRDM16 protein are critical

in controlling the formation and function of thermogenic
Frontiers in Endocrinology 07
adipocytes and in combating obesity. The upstream regulation of

PRDM16 has been extensively investigated at both transcriptional

and post-transcriptional levels (Figure 3; Table 2).
4.1 Transcriptional level regulation

Inhibitor of differentiation 1 (Id1) is a helix-loop-helix

transcription factor with a significant role in cell proliferation and

differentiation (81). In aP2 promoter-driven Id1 transgenic mice,

there was a propensity for high-fat diet-induced obesity, along with

reduced BAT thermogenesis and energy expenditure. Id1

suppresses BAT thermogenesis by binding to PGC1a and

repressing its transcriptional activity. The absence of Id1

enhances the expression of beige genes in WAT. Additionally, the

differentiation of thermogenic genes is increased in embryonic

fibroblasts of Id1-deficient mice. At the molecular level, Id1

directly binds to EBF2 and suppresses its transcriptional activity,

leading to the down-regulation of Prdm16 expression (82).

The zinc finger transcriptional coregulator 423 (ZFP423) is a

transcriptional factor crucial for preadipocyte determination (83). It

suppresses the fate of thermogenic adipocytes, with Zfp423 mRNA

being significantly more abundant in white adipocytes compared to

brown adipocytes. Inducible deletion of Zfp423 in the adipocytes of

adult mice leads to the accumulation of beige adipocytes in the

iWAT depot. This loss of Zfp423 is associated with increased energy

expenditure and relatively lower diet-induced weight gain.

Conversely, overexpression of Zfp423 converts BAT to a more

unilocular, white adipocyte-like phenotype, suppressing the

expression of thermogenic genes. Zfp423-deficient adipocytes can

be converted to beige adipocytes in a cell-autonomous manner.

ZFP423 recruits the NuRD corepressor complex to EBF2-bound

thermogenic gene enhancers, including Prdm16. Conversely,

deletion of Zfp423 induces a coregulator switch from the NuRD

complex to the BAF complex on EBF2, resulting in a shift in PPARg
occupancy to thermogenic gene enhancers (84, 85).

T-box 15 (Tbx15) belongs to a phylogenetically conserved

family, which has a similar characteristic sequence in the DNA

binding domain and is involved in various developmental processes

(86). Tbx15 is highly expressed in brown adipose tissue and iWAT,

minimally expressed in visceral white adipose tissue. In mice,

siRNA knockdown of Tbx15 in brown and inguinal adipose

stromal cells impaired their differentiation into mature adipocytes

(87). Paradoxically, overexpression of Tbx15 in 3T3-L1

preadipocytes blunted their differentiation into adipocytes (88). In

vivo, the heterozygous deletion of Tbx15 resulted in glucose

intolerance and obesity when the mice were fed on high-fat diets

(89). Furthermore, Adipo-Tbx15 KOmice displayed increased body

weight gain and decreased whole-body energy expenditure in

response to high-fat diets. In humans, TBX15 expression is

strongly downregulated in visceral adipose depots of overweight

and obese individuals (90). TBX15 could directly bind to the

Prdm16 promoter to enhance its transcription and participate in

adipocyte browning induced by the adrenergic signaling

pathway (91).
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Androgens play a crucial role in regulating body fat distribution

and function. Their excess is significantly correlated with body mass

index, abdominal obesity, and insulin resistance (92, 93). Using the

Prdm16 luciferase knock-in reporter mouse model, it has been

observed that the androgen receptor (AR) shows the strongest

negative correlation with Prdm16. Activation of androgen-AR

signaling suppresses Prdm16 expression and reduces the beiging

process in beige adipocytes. Adipocyte-selective ablation of Ar

promotes beige adipogenesis, whereas its adipocyte-specific

overexpression inhibits the browning of white adipocytes. A sex

dimorphism in Prdm16mRNA expression is also evident in human

WAT, with female individuals exhibiting higher expression levels

than males. Additionally, an analysis of a recent single-nuclei RNA

sequencing dataset from human visceral adipose tissue indicates a

trend toward increased PRDM16 expression in female adipocytes
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compared to male adipocytes (49). ChIP analysis reveals that AR

directly binds to the intronic region of the Prdm16 locus, negatively

regulating its expression (94).

Notch receptors (Notch1-Notch4) are activated by binding to

Dll or Jag family ligands, followed by cleavage to release the Notch

intracellular domain (NICD). NICD then binds with the Rbpj

transcriptional complex to activate the transcription of

downstream targets, including Hes (95). Adipose-specific

inactivation of Notch1 triggers the browning of white adipocytes

and elevates the expression of thermogenic genes. In contrast,

adipose-specific activation of Notch1 (N1ICD) inhibits the

browning of white adipocytes and is associated with higher

expression levels of Hes1 and Hey1 compared to WT mice.

Overexpression of the transcriptional repressor Hes1 in adipose

stromal cells of WT mice results in lower levels of Prdm16 and
FIGURE 3

Factors promote adipocyte thermogenesis and resist obesity by directly regulating Prdm16’s expression. Transcriptional factors EBF2, PPARg, and
TBX15 promote the transcription of Prdm16 mRNA. ZFP423 and ID1 inhibit Prdm16 mRNA transcription by binding with EBF2, while HES1 and AR
repress its transcription. AMPKa and SIRT5 enhance Prdm16 mRNA transcription through epigenetic regulation. At the post-transcriptional level,
METTL3 stabilizes Prdm16 mRNA through m6A modification. Various microRNAs regulate the stability of Prdm16 mRNA by targeting its 3’
untranslated region (3’UTR). At the post-translational level, the interaction between PPARg and EHMT1 with PRDM16 enhances its stability. PIN1
promotes the degradation of PRDM16 via the ubiquitin-proteasome system. CBX4 sumoylates PRDM16, preventing its degradation. The CUL2–
APPBP2 complex reduces PRDM16 protein stability by catalyzing its polyubiquitination. BCAA promotes the acetylation of PRDM16, disrupting its
interaction with PPARg. More detailed information about these factors is provided in Table 2.
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Pgc1a. At the molecular level, the Notch target HES1 can directly

bind to the promoters of Prdm16 and Pgc1a, repressing their

expression and thereby inhibiting thermogenic gene programs (96).

AMP-activated protein kinase (AMPK) indirectly regulates

BAT thermogenic function by influencing the hypothalamus and

the adrenergic nervous system (97). It directly regulates brown

adipogenesis by elevating a-ketoglutarate (aKG) production and

promoting DNA demethylation in the Prdm16 promoter of

progenitor cells. Prdm16 is enriched with CpG sites surrounding

its transcription start site (TSS) (98). Active DNA demethylation,

essential for initiating its expression, is mediated by the ten-eleven

translocation hydroxylases (TETs) (99). The TET catalytic reaction

requires aKG, a key metabolite of the Krebs cycle, thereby linking

metabolism to epigenetic modifications (100). Ablation of AMPKa1
reduces the activity of isocitrate dehydrogenase 2 and cellular aKG
levels, leading to an increase in 5-methylcytosine (5mC) and a

decrease in 5-hydroxymethylcytosine (5hmC) in the Prdm16

promoter. Consequently, AMPKa1 knockout suppresses brown

adipogenesis, while its activation promotes brown adipogenesis

(101). L-theanine, a non-proteinogenic amino acid, enhances
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AMPKa phosphorylation, to increase aKG levels and to activate

DNA demethylation on the Prdm16 promoter. When L-theanine

was administered to high-fat diet-fed mice, it resulted in increased

energy expenditure, reduced obesity, and improved glucose

tolerance and insulin sensitivity (102).

SIRT5, a member of the sirtuin family, is essential for brown

adipocyte differentiation and the expression of brown adipogenic

genes. Knockdown of Sirt5 reduces intracellular aKG
concentrations while elevating H3K9me2 and H3K9me3 levels at

the promoter regions of Pparg and Prdm16 loci. This inhibits the

expression of Pparg and Prdm16, thereby impairing adipocyte

thermogenesis. Sirt5 deficiency in mice reduces the browning

capacity in iWAT and leads to insulin resistance and obesity

(103). Other sirtuins contribute to adipocyte function by

modulating other genes. For example, SIRT1 facilitates the

browning of white adipose tissue by deacetylating PPARg (104).

SIRT2 impedes adipocyte differentiation by deacetylating FOXO1

(105). SIRT3 is known to regulate mitochondrial function and

thermogenesis in brown adipocytes, enhancing the expression of

PGC1a (106).
TABLE 2 Regulatory factors on the expression of PRDM16.

Protein
name

Cellular Function Physiological Fucntion Human study Reference

EBF2
Recruits PPARg to its brown-selective

binding sites including Prdm16.

Ebf2 overexpression increases
mitochondrial function and protect

animals against weight gain.

SNP (rs10503776) in exon 11 of EBF2 is
highly associated with an increase in mean

BMI in humans.
(46, 85)

TBX15
Bound directly to the Prdm16 promoter

to promote its transcription.

Tbx15 AKO mice displayed increased
body weight gain and decreased

insulin senstivity.

TBX15 expression is strongly down-regulated
in visceral adipose depots of obese humans.

(87, 90, 91)

AR
Directly binds within the intronic region
of Prdm16 locus to reduce its expression

Adipose-specific knockout of Ar and WT
mice showed similar food intake and

body weight

PRDM16 mRNA expression in human WAT
of female individuals exhibits increased

expression than males.
(94)

Notch1
Notch target Hes1 can bind directly to the

promoters of Prdm16 to repress
its xpression.

Notch mutants improves insulin
sensitivity and resists high fat diet–

induced obesity
None (96)

AMPKa
Increases DNA demethylation in the

Prdm16 promoter to promote
its expression.

AICAR, an AMPK acitivator, reduces
visceral fat weight in mice.

None (101, 102)

SIRT5
Decreases H3K9me2 and H3K9me3 levels
at promoter regions of Prdm16 to increase

its expression.

Sirt5 KO mice exhibited more fat mass
and impaired glucose tolerance.

None (103)

METTL3
Decreases m6A modification and

expression of Prdm16.
BAT-specific deletion of Mettl3 promotes
obesity and systemic insulin resistance

None (110)

CBX4
Sumoylates PRDM16 at Lys 917 to block

its ubiquitination and augments
its stability

Heterozygous mice has significantly
increased iWAT mass and deteriorated

glucose tolerance.
None (120)

PIN1
Binds to and promotes the degradation

of PRDM16.

Deficiency of Pin1 in adipocytes protects
against obesity, hepatic steatosis, and

insulin resistance.
None (124)

CUL2/
APPBP2

Determines PRDM16 protein stability by
catalysing its polyubiquitination.

Adipocyte-specifc deletion of Cul2–
Appbp2 counteracts obesity, insulin

resistance and dyslipidaemia.

APPBP2 gene is associated with waist–hip
ratio adjusted for body mass index

(125)

BCAT2
Acetylates PRDM16 at K915 to disrupt

the interaction between PRDM16
and PPARg

Loss of Bcat2 in adipocytes protects mice
against obesity and insulin resistance

Cold-induced BAT thermogenesis promotes
systemic BCAA clearance in humans.

(126)
frontiersin.org

https://doi.org/10.3389/fendo.2024.1458848
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mao et al. 10.3389/fendo.2024.1458848
4.2 Posttranscriptional level regulation

Methyltransferase-like 3 (METTL3), a key RNAmethyltransferase,

is highly expressed in BAT and plays an essential role in postnatal BAT

development and maturation. RNA m6A modification is one of the

most prevalent mRNAmodifications in eukaryotes. It can be catalyzed

by m6A writer proteins such as METTL3, recognized by m6A reader

proteins, and removed by m6A eraser proteins (107). RNA m6A

modification regulates most RNA processing steps, including mRNA

splicing, stability, and translation efficiency, which further modulate

other biological processes (108, 109). Deletion of Mettl3 driven by the

Ucp1 promoter severely impairs the maturation of BAT by reducing

m6A peaks and the expression of Prdm16, Pparg, and Ucp1. This

significantly reduces BAT-mediated adaptive thermogenesis and

promotes high-fat diet-induced obesity and systemic insulin

resistance (110).

Non-coding strands of RNA, including microRNAs, regulate

gene expression at the transcriptional level (111). Prdm16 mRNA

expression is controlled by several miRNAs, including miR-133 and

miR-199a/214, which directly target the 3’ untranslated region (3’

UTR) of Prdm16 and negatively regulate its expression. These

microRNAs are potential therapeutic targets for inducing brown

or beige adipocyte lineage differentiation, thereby increasing energy

expenditure and reducing fat mass in obese individuals. Inhibition

of miR-133 leads to the differentiation of precursors in BAT and

skeletal muscle stem cells into mature brown adipocytes, increasing

whole-body energy expenditure, improving glucose tolerance, and

impeding the development of diet-induced obesity (112, 113).

Conversely, overexpression of the miR-199a/214 cluster

suppresses the differentiation of brown adipocytes, while

knockdown of this cluster increases thermogenic gene expression

in beige adipocytes (114). Overexpression of miR-149-3p promotes

a visceral-like switch during inguinal preadipocyte differentiation

(115, 116). The KH-type splicing regulatory protein (KSRP), an

RNA-binding protein, enhances the expression of miR-150 in

iWAT, attenuating the expression of brown fat genes (117).

Taken together, Prdm16 mRNA expression is regulated by

various microRNAs to facilitate the expression of brown-selective

genes and resist obesity.
4.3 Post-translational level regulation

PRDM16 protein is short-lived and rapidly degraded, making

the increase of its lifetime in adipose tissue a promising strategy for

combating obesity. Several studies have shed light on the regulation

of PRDM16 protein stabilization in adipose tissue.

The full agonist of PPARg, rosiglitazone, induces the expression
of brown fat genes such asUcp1 in primary adipocytes differentiated

from the stromal-vascular fraction (SVF) of iWAT, but not in those

from epididymal WAT. Prdm16 mRNA expression is significantly

higher in iWAT than in epididymal WAT. ShRNA knockdown of

Prdm16 blunts the effects of the PPARg agonist-induced browning
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of inguinal white adipocytes. Conversely, transgenic expression of

Prdm16, together with rosiglitazone, synergistically induces the

expression of thermogenic genes and the emergence of UCP1-

positive multilocular adipocytes in vivo. The white-to-brown fat

conversion induced by rosiglitazone is partly regulated through the

enhanced stability of PRDM16 protein and inhibition of the

ubiquitin-proteasome pathway (118).

CBX4, a Polycomb group protein, acts as a SUMO E3 ligase for

PRDM16 and mediates its sumoylation. The expression of Cbx4 is

enriched in brown adipose tissue and is induced by acute cold

exposure. CBX4 sumoylates PRDM16 at lysine 917, preventing its

ubiquitination-mediated degradation and enhancing its stability

mediated by EHMT1. Homozygous Cbx4 knockout mice die

almost immediately after birth (119). Heterozygous Cbx4

knockout reduces PRDM16 protein levels, impairs white

adipocyte browning, significantly increases iWAT mass, and

deteriorates glucose tolerance and cold tolerance. Furthermore,

fat-specific Cbx4 knockdown or overexpression through

adenovirus injection remodels iWAT, decreasing or increasing

adipocyte thermogenesis by down-regulating or up-regulating

PRDM16 protein levels, respectively (120).

Pin1 is a unique enzyme associated with the phospho-serine or

phosphor-threonine-proline-containing motif of numerous

substrates where it controls their functions and stability (121). Pin1

expression in adipose tissue is markedly increased by obesity. As a

result, Pin1 KOmice are highly resistant to diet-induced obesity (122,

123). Adipocyte-specific Pin1 KO (adipo-Pin1 KO) promotes

thermogenesis, resists high-fat diet-induced obesity, and improves

glucose tolerance. At the molecular level, PIN1 binds to PRDM16 and

promotes its degradation through the ubiquitin-proteasome system,

suppressing non-shivering thermogenesis (124).

Cullin–RING member 2 (CUL2) functions as a scaffold protein

by interacting with an E2 enzyme, elongin B (ELOB), elongin C

(ELOC), and a substrate-specific receptor (amyloid precursor

protein-binding protein (APPBP2)). APPBP2 directly interacts

with PRDM16. CUL2–APPBP2 is an ubiquitin E3 ligase that

determines PRDM16 protein stability by catalyzing its

polyubiquitination, without altering its mRNA expression.

Inhibiting CUL2–APPBP2 sufficiently extended the half-life of the

PRDM16 protein and promoted the biogenesis of beige adipocytes.

Adipocyte-specific deletion of Cul2 or Appbp2 counteracted diet-

induced obesity, glucose intolerance, and insulin resistance while

promoting adipocyte thermogenesis (125).

Branched-chain amino acids (BCAAs), including leucine,

isoleucine, and valine, are converted to branched-chain keto acids

(BCKAs) by BCAT1 (BCATc, cytosolic branched-chain

aminotransferase) or BCAT2 (BCATm, mitochondrial branched-

chain aminotransferase). Adipose tissue Bcat2 KO mice exhibit

increased iWAT browning and thermogenesis, and have an

increased ability to resist high-fat diet-induced obesity. BCKA

supplementation rescues Bcat2 KO mice from high-fat diet-

induced obesity. Moreover, telmisartan, an anti-hypertension

drug and direct inhibitor of BCAT2, enhances WAT browning

and reduces adiposity. Mechanistically, acetyl-CoA derived from
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BCKA promotes acetylation of PRDM16 at K915, thereby

disrupting its interaction with PPARg. This prevents iWAT

browning and BAT thermogenesis (126, 127). Furthermore, BAT

actively utilizes BCAA in the mitochondria for thermogenesis and

enhances systemic BCAA clearance in both mice and humans upon

cold exposure. A BAT-specific defect in BCAA catabolism can

attenuate systemic BCAA clearance and thermogenesis, which lead

to diet-induced obesity and glucose intolerance (126). Additionally,

BAT catabolize BCAA in the mitochondria, serving as nitrogen

donors for the biosynthesis of non-essential amino acids and

glutathione. This process which helps to reduce oxidative stress

and increase hepatic insulin signaling is independent of BAT

thermogenesis (128).
5 Discussion and prospectives

The activity and expression of PRDM16 in adipose tissue are

closely associated with adipocyte thermogenesis and resistance to

obesity, as evidenced by these distinguished studies. Consequently,

directly targeting PRDM16 proteins in thermogenic adipose tissue

emerges as a potential strategy for combating obesity and related

metabolic disorders. Interventions that increase the expression of

PRDM16, reduce its degradation, or stabilize the PRDM16 protein

could enhance the formation and function of brown and beige

adipocytes. Numerous studies have reported that various drugs can

alleviate obesity and diabetes by modulating the expression and

function of PRDM16. For example, resveratrol is known to activate

adipocyte thermogenesis and counteract obesity induced by a high-

fat diet by upregulating the expression of PRDM16 (129). Similarly,

rutaecarpine has been shown to promote adipocyte thermogenesis

via the AMPK-PRDM16 signaling pathway (130). A comprehensive

summary of studies focusing on drugs targeting PRDM16 is

available in another review (131).

Humans with active BAT exhibit a healthier body fat distribution,

characterized by reduced visceral adipose tissue and increased

subcutaneous adipose tissue. Additionally, these individuals

demonstrate improved metabolic profiles, including lower levels of

blood glucose and lipids, as well as decreased liver fat accumulation.

A significant association between the presence of BAT and enhanced

cardiometabolic health has also been observed in overweight or obese

individuals (132, 133). Exposure to mild cold has been shown to

activate adrenergic receptor signaling pathways, which in turn

enhance glucose and fatty acid uptake, as well as oxidative

metabolism within human BAT (134, 135). Oral administration of

mirabegron, a b3 adrenergic receptor agonist approved for the

treatment of overactive bladder, has the potential to activate

human BAT and augment whole-body energy expenditure (136,

137). Despite this, significant weight loss in obese patients following

mirabegron treatment has not yet been conclusively demonstrated

(138). In human subjects, the most efficacious stimulation of adipose

tissue has been observed with higher doses of mirabegron (139).

However, potential cardiovascular side effects may restrict the clinical

use of such dosages (140).

Obesity arises from an energy imbalance, characterized by

excessive energy intake or insufficient energy expenditure. To
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combat obesity, one approach is to enhance energy expenditure,

including the promotion of adipocyte thermogenesis. Another

strategy involves reducing energy intake. Glucagon-like peptide-1

(GLP-1) receptor agonists, such as liraglutide and semaglutide, have

proven effective in resisting obesity and improving hyperglycemia,

insulin sensitivity, and blood pressure by inhibiting food intake, as

demonstrated in both preclinical and clinical studies. Interestingly,

in preclinical experiments, liraglutide and semaglutide have also

shown the ability to induce adipocyte thermogenesis, evidenced by

elevated expression of UCP1 and PRDM16 proteins and

improvements in insulin sensitivity (141, 142). However, the

administration of GLP-1 receptor agonists in humans does not

appear to significantly contribute to weight loss through increasing

adipocyte thermogenesis. Clinical trials have shown that once-daily

liraglutide administration in individuals with obesity and type 2

diabetes reduces body weight and decreases resting energy

expenditure, but does not alter the proportion of fat within brown

adipose tissue (143). Similarly, once-weekly semaglutide

administration in individuals with obesity reduced food intake

and fat mass without changing resting energy expenditure (144).

Therefore, while GLP-1 receptor agonists may promote adipocyte

thermogenesis in rodents, their role in this mechanism in humans

remains to be clearly defined (145).

To date, no clinically approved drugs effectively increase

adipocyte thermogenesis for the treatment of obesity. Compared

to b3 adrenergic receptor agonist and GLP-1 receptor agonist,

PRDM16 protein could represent a novel and promising

therapeutic approach for combating obesity and its associated

metabolic disorders. However, unlike these agonists, PRDM16 is

not a direct drug target. Therefore, alternative pathways must be

modulated to regulate the expression and function of PRDM16 in

adipose tissue. Furthermore, Prdm16 is not exclusively expressed in

thermogenic adipocytes like Ucp1; it is also expressed in various

other tissues including skeletal and cardiac muscle. Prdm16 has

been implicated in the regulation of hematopoietic and neural stem

cell maintenance, cardiac development, and other pathological

conditions (146–149). In the absence of PRDM16, there is an

increase in reactive oxygen species and apoptosis within

hematopoietic stem cells. Global mutations in PRDM16 are

associated with cleft palate, altered craniofacial development, and

impaired cardiac development. In humans, PRDM16 mutations

have been identified as a cause of cardiomyopathy. Brown

adipocytes share a common precursor with myocytes, and

PRDM16 is a pivotal effector in the conversion of myoblasts into

brown adipocytes. Therefore, further studies are warranted to

examine the potential effects of drugs targeted at PRDM16 on

muscle development and function in vivo. In summary, it is still a

long way to combat obesity and its related metabolic disorders by

targeting PRDM16 protein in thermogenic adipose tissue.
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