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Zinc is an essential trace element in the human body, playing a crucial role in

cellular metabolism.Dysregulation of zinc homeostasis can lead to abnormal

cellular metabolism, contributing to diseases and closely related to tumor

development. Adequate zinc intake can maintain zinc homeostasis in the body

and support normal cellular metabolism. This review discusses the metabolic

processes of zinc in the human body and its close relationship with

tumorigenesis. It briefly describes zinc absorption, transport, storage, and

release, as well as its important role in gene expression, signal transduction,

oxidative stress, immune response, and apoptosis. It focuses on the abnormal

cellular metabolism caused by excessive or insufficient zinc, the relationship

between zinc homeostasis disruption and metabolic syndrome, and the

mechanisms involved in tumor development. It analyzes how changes in the

expression and activity of zinc transporters may lead to disrupted zinc

homeostasis in tumor tissues. It points out that zinc deficiency is associated

with various cancers, including prostate cancer, hepatocellular carcinoma,

pancreatic cancer, lung cancer, ovarian cancer, esophageal squamous cell

carcinoma, and breast cancer. The summary emphasizes that zinc

metalloproteins could serve as potential targets for cancer therapy, and

regulating the expression and activity of zinc transport proteins may offer new

methods and strategies for clinical cancer treatment.
KEYWORDS
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1 Introduction

Zinc is a vital trace element for the human body, playing a key role in protein

composition within cells and participating in metabolic processes. Zinc is involved in the

conformation and function of nuclear transcription factors, facilitating protein synthesis,

and it also acts as a component of superoxide dismutase (SOD), providing strong
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antioxidant activity. Additionally, zinc plays a role in processes such

as apoptosis and immune response (1). Dysregulation of zinc

homeostasis can lead to disturbances in cellular metabolic

functions and human diseases, with the relationship between zinc

metabolism disorders and metabolic syndrome and tumors needing

further investigation. However, there is currently no definitive

conclusion regarding the correlation between zinc metabolism

and metabolic syndrome, as existing studies show contradictory

results, and the specific mechanisms supporting their relationship

remain unclear. More research is needed to explore this issue, as

numerous studies have proposed a link between zinc homeostasis

disruption and cancer (2). This article briefly summarizes zinc

absorption, transport, and its involvement in metabolic processes

within the human body. It summarizes diseases related to abnormal

zinc metabolism and focuses on the relationship between zinc

homeostasis disruption, metabolic syndrome, and tumors. It

discusses issues and controversies regarding zinc in cancer

treatment, offering insights for cancer diagnosis and therapy.
2 Zinc absorption, transport, and
its functions

The main source of zinc in the human body is from dietary

intake, and it can also be transported from reserves in the liver,

muscles, and other tissues to other parts of the body. In the

stomach, zinc forms complexes with proteins in food under the

action of gastric acid. It is mainly absorbed in the upper part of the

small intestine through zinc transporters on the apical membrane of

intestinal epithelial cells, particularly the ZIP4 transporter. After
Frontiers in Endocrinology 02
absorption, zinc is transported into the plasma through zinc ion

channels and the ZnT1 transport protein located on the basolateral

membrane of intestinal epithelial cells, and subsequently delivered

to body tissues (3). Zinc participates in vital cellular activities (4). It

is primarily found in the liver, pancreas, muscles, bones, and

prostate, playing significant roles in human health.

Zinc is transported across membranes via transporters ZnT or

ZIP (as shown in Figure 1), with ZIP family proteins facilitating the

influx of zinc ions from the extracellular space or from intracellular

vesicles and organelles into the cytoplasm (5). Currently, at least 14

types of ZIP proteins and 10 types of ZnT proteins have been

identified in the human body, which exhibit tissue-specific

differential expression (6). These zinc transporters exhibit

structural homology as well as differences, and their varying

tissue distribution and functions have been a popular research

topic (7). Zinc binds to metallothioneins (MT) in the cytoplasm,

which consist of four subtypes; MT-1 and MT-2 are present in all

cells of the body, regulating intracellular levels and flux of zinc and

copper while detoxifying heavy metals. MTs are also involved in

nuclear transcription and play a role in immune function through

their chelation of metals (8).

Zinc homeostasis within cells is maintained by the ZIP (zinc

transporter) and ZnT (zinc transport protein) families, as well as

metallothioneins (1, 9). These proteins are all regulated during their

functions and interact with other metabolic and signaling pathways.

Once zinc ions enter the cells, they are transported to various

organelles, with a significant presence in mitochondrial

metalloproteins. Many zinc metalloproteins are secreted or reside

in organelles such as the endoplasmic reticulum, Golgi apparatus,

and secretory vesicles (1). Zinc ion signaling regulates cellular
FIGURE 1

Transmembrane transport of Zinc via ZIPs, ZnTs.
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proliferation, differentiation, ion transport, and secretory

functions (10).

Zinc exists in two forms within human cells (11). One form of

zinc is bound to proteins, serving as an essential component of

many proteins in the human body (12). It can chelate with

negatively charged parts of molecules, such as cysteine and

histidine, providing structural bridges to maintain the three-

dimensional conformation of polypeptides, known as zinc

metalloproteins or zinc metallozymes. Currently, over 3,000 types

of such metalloproteins have been identified (1). This includes

oxidoreductases, transferases, hydrolases, lyases, isomerases, and

ligases, which are involved in processes such as oxidative stress,

apoptosis, and immune responses within cells (12). The other form

is mobile zinc bound to non-protein ligands, the nature of which is

still unknown (13). This type of zinc ion forms a loose association

with non-protein ligands, known as free zinc ions, which serve as a

pool for exchangeable zinc (11).

Zinc plays a crucial role in metabolic processes such as gene

expression, signal transduction, oxidative stress, immune response,

and apoptosis. It is involved in the conformation and function of

nuclear transcription factors, such as zinc fingers and nuclear

receptors, both of which are stabilized by four coordinated zinc

ions. By stabilizing zinc finger structures, zinc executes important

functions in cells, playing significant roles in DNA replication and

repair, transcription and translation, cellular proliferation and

maturation, as well as apoptosis regulation (14). Zinc, as a

component of superoxide dismutase (SOD), exhibits strong

antioxidant activity. SOD exists in three isoenzymatic forms in

the body: copper-zinc superoxide dismutase, found in the

cytoplasm; manganese superoxide dismutase (Mn SOD), located

in the mitochondria; and extracellular superoxide dismutase (EC-

SOD), which is present in extracellular spaces and fluids (15). These

three forms of SOD work together to protect cells from the toxic

effects of excessive reactive oxygen species. Zinc also acts as a

cofactor in the formation of active thymosin (Zn FTS) released by

thymocytes (9). Zn FTS regulates the differentiation of mature T

cells in the thymus and the function of mature T cells in peripheral

blood, having less impact on B cell development compared to T cells

(16). It promotes the host defense functions of the immune system.
3 Disorders related to zinc
homeostasis imbalance

Both excess and deficiency of zinc can lead to dysregulation of

zinc homeostasis, and ultimately resulting in human diseases.

Excessive zinc intake releases soluble zinc salts in acidic gastric

fluid, which can directly irritate the gastrointestinal mucosa and

lead to ulcer formation (17). This condition manifests as symptoms

such as nausea, vomiting, decreased appetite, abdominal cramps,

and headaches (18). Excessive zinc, once absorbed into the

bloodstream, inhibits normal metabolic processes involving zinc

(19). For example, high levels of zinc in the blood can suppress the

antioxidant pathways in red blood cells, leading to oxidative

damage to the cell membranes, which increases the risk of

hemolysis, coagulopathy, and even triggers disseminated
Frontiers in Endocrinology 03
intravascular coagulation (DIC) (20). Systemic hypoxemia can

then lead to liver dysfunction, pancreatitis, coagulation-related

disorders, acute renal failure associated with tubular damage, and

neurological abnormalities (19).

Mild micronutrient deficiencies in the human body can lead to

chronic and subtle metabolic disturbances, resulting in DNA or

mitochondrial damage, which may accelerate aging and contribute

to cancer and degenerative diseases (21). Zinc deficiency is

associated with diabetes, cirrhosis, inflammatory bowel disease,

malabsorption syndrome, and sickle cell anemia (22–28). Zinc

deficiency can lead to or exacerbate issues such as immune

deficiencies, gastrointestinal problems, endocrine disorders,

neurological dysfunction, cancer, aging, and degenerative diseases

(19). Zinc deficiency affects all metabolic processes involving zinc

(Figure 2), as evidenced by several aspects: first, certain intracellular

transcription factors, hormone receptors, and many enzymes

require zinc to maintain structural integrity. Zinc stabilizes the

tertiary folding of smaller proteins, thereby contributing to the

maintenance of their functional activity (29). Zinc also plays a

structural role in ribosomes, cell membranes, and nucleic acids (30).

Zinc deficiency can lead to protein structural abnormalities and

impaired enzyme activity. Secondly, like calcium or nitric oxide

(NO), zinc acts as an intracellular and intercellular messenger,

activating intracellular signaling pathways and altering gene

expression patterns. Free or exchangeable zinc (loosely bound

zinc) can serve as a second messenger to control various

functions, including gastric acid secretion, hormone release, and

cardiac electrophysiology (31). Zinc, as a signaling molecule,

functions similarly to other neurotransmitters and possesses

neuromodulatory capabilities (32). In the immune system, zinc

plays a role in intracellular, extracellular, and intercellular signaling.

A classic sign of zinc deficiency in humans is impaired innate and

cell-mediated immune functions, characterized by thymic atrophy,

lymphopenia, reduced leukocyte function, and recurrent infections

(33). Zinc deficiency leads to abnormalities in cellular signaling and

neuromodulatory functions. Thirdly, redox reactions and

antioxidant activities become dysregulated. Zinc can directly

protect cell membranes from oxidative damage (34). Zinc can

also indirectly reduce potential free radical formation and lipid

peroxidation, as well as oxidative damage to proteins and DNA

(34). Zinc deficiency is associated with increased oxidative stress

factors and inflammatory biomarkers. Zinc supplementation can

reduce biomarkers of oxidative stress, such as thiobarbituric acid

reactive substances (TBARS) and malondialdehyde (MDA) levels

(35). Most reactive oxygen species (ROS) are produced by NADPH

oxidase (NOX), and zinc can scavenge ROS, exerting antioxidant

effects. Zinc levels influence the activity and levels of copper-zinc

superoxide dismutase (36). Zinc deficiency leads to abnormal thiol

redox status in cell membranes, resulting in increased permeability

and fragility of red blood cell membranes, as well as inactivation of

calcium channel proteins in the membranes (30). The activities of

antioxidant enzymes such as Cu/Zn superoxide dismutase, catalase,

and peroxidase are affected, leading to weakened antioxidant

defenses and accelerating the process of mitochondrial oxidative

aging (37). Fourth, the processes of cell growth, development,

proliferation, and apoptosis become dysregulated. Zinc deficiency
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affects the structure of key enzymes and transcription factors

involved in DNA repair and replication, including DNA

polymerases, DNA-dependent RNA polymerases, and reverse

transcriptases (38). Abnormal formation of zinc finger proteins,

such as transcription factors, transcriptional repressors, steroid

receptors, thyroid receptors, vitamin D receptors, and retinoic

acid receptors occurs (39). These enzyme and protein

abnormalities contribute to disruptions in cellular growth,

development, and proliferation. Zinc deficiency also promotes

apoptosis, primarily in rapidly growing tissues such as intestinal

crypt cells, the thymus, and other embryonic and fetal tissues (40).

Fifth, the metabolism of carbohydrates, lipids, and proteins, as well

as cellular respiration, becomes abnormal. Within mitochondria,

zinc inhibits mitochondrial respiration, terminal oxidation, and

ATP production by altering the function of mitochondrial enzymes

and the cytochrome electron transport chain (41). Zinc-containing

enzymes and proteins participate in the metabolism of nucleic acids,

proteins, carbohydrates, and lipids by interacting with hormone

receptors, transcription factors, and enzyme systems (19). When

zinc is deficient, the functions of the aforementioned metabolic

enzymes are hindered. Additionally, zinc deficiency affects the

regulatory roles of zinc-dependent metalloproteins or their

antioxidant membrane-stabilizing effects, leading to diminished

protection against metal toxicity and other harmful substances (42).

Currently, there is no definitive conclusion regarding the

relationship between zinc metabolism-related diseases and

metabolic syndrome. Metabolic syndrome is a cluster of

conditions associated with obesity, hypertension, hyperglycemia,

hyperlipidemia, and hyperuricemia (43). Some animal studies have

suggested that zinc nanoparticles improve obesity-induced

cardiovascular diseases by reducing blood pressure, oxidative

stress, cardiac iron accumulation, insulin resistance, and

inflammatory markers (44). Althanoon Zeina et al. also suggested

that zinc supplementation in patients with metabolic syndrome is
Frontiers in Endocrinology 04
associated with improvements in systolic blood pressure, body mass

index, and metabolic parameters, recommending the correction of

zinc deficiency in these patients (45). These studies suggest that

there may be a connection between zinc and factors associated with

metabolic syndrome. However, current research remains

controversial regarding whether there is a link between zinc

metabolism and metabolic syndrome (46). Research shows that

adequate dietary zinc consumption is linked to a decrease in the risk

of MetS (47–49). A study in China has also indicated that zinc levels

in children are indeed associated with components of metabolic

syndrome (50). A meta-analysis of observational studies by Ding J

et al. indicated that dietary zinc intake is negatively correlated with

metabolic syndrome (46). Wu Y et al. found that higher blood zinc

concentrations are associated with adverse changes in metabolic

risk factors related to metabolic syndrome, particularly concerning

BMI and LDL-c, and this relationship exhibits gender differences,

mainly affecting women (51). In Aydogdu A’s study, serum zinc

levels were significantly elevated in children with metabolic

syndrome (52). Due to limited evidence, more well-designed

prospective cohort studies are needed to clarify the relationship

between serum zinc levels and metabolic syndrome. The specific

mechanisms linking zinc to metabolic syndrome remain unclear; a

case-control study suggested that higher serum zinc levels might be

related to the number of metabolic factors, independent of BMI and

insulin resistance (48). Research on this issue is limited,

necessitating further studies to clarify the role of zinc status in the

mechanisms associated with metabolic syndrome and to determine

the optimal range of blood zinc levels in the body (51). In contrast, a

cross-sectional study conducted in Iran on the relationship between

serum zinc levels and metabolic syndrome in children and

adolescents suggested that there is no association between serum

zinc levels and metabolic syndrome in children (53). A case-control

study by Ennes Dourado Ferro F et al. also indicated that there is no

relationship between zinc nutritional status and biochemical
FIGURE 2

Graphic abstract of metabolic abnormalities caused by Zinc homeostasis disorder.
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markers of metabolic syndrome (54). In summary, current research

on the relationship between zinc metabolism and metabolic

syndrome is contradictory, and the specific mechanisms in

studies supporting their correlation remain unclear, necessitating

further investigation into this issue.
4 Zinc metabolism abnormalities
and tumor

Approximately two-thirds of tumors in the human body are

related to addictive behaviors, diet, lack of exercise, excessive sun

exposure, or infections. Zinc can protect cells from damage caused

by inflammation and oxidative stress, leading to the hypothesis that

zinc has anti-cancer properties (55). As mentioned earlier, zinc

stabilizes the structure of proteins, DNA, RNA, and ribosomes

within cells, and regulates gene expression through zinc finger

transcription factors, thereby altering the expression of different

components in the DNA damage response (DDR) (56). Zinc

deficiency is involved in various aspects of cancer cell generation

and growth. Changes in zinc ion concentration can directly and

specifically affect the activity of YY1 (YY1 is an intrinsically

disordered transcription factor, a protein regulator of gene

expression that has been shown to be related to the progression

of many cancers), leading to altered gene expression patterns and

potentially resulting in tumor transformation or progression (57).

Zinc deficiency (ZD) is present in various tumors and affects their

occurrence and progression. For instance, zinc levels in the serum

or plasma of breast cancer patients are significantly reduced (58–

61). The serum zinc levels are significantly reduced in patients with

acute leukemia (62). Similarly, serum zinc levels are also

significantly lower in bladder cancer patients, as well as in those

with esophageal squamous cell carcinoma (ESCC), malignant

prostate cancer, and ovarian cancer (63). This decrease in serum

zinc levels may be due to the increased uptake by tumor cells and

enhanced enzyme activity, leading to a higher demand for zinc in

cancerous tissues (64). Conversely, some studies have found that

higher toenail zinc levels in men are associated with an increased

risk of prostate cancer (65).
4.1 Zinc metabolic abnormalities and
tumor-related mechanisms

Disruption of zinc homeostasis is associated with tumor

development, and the role of zinc varies across different types of

cancer (66). Zinc indirectly affects tumor cells by influencing gene

expression and cell survival, and directly impacts tumor cells by

regulating the activation, function, and/or survival of immune cells

(67). Under physiological conditions, Th2 and Th1 cells

collaboratively engage in anti-tumor immunity, with cytokines

like IL-4, IL-5, and IL-6 promoting B lymphocyte antibody

synthesis and contributing to cancer prevention, and zinc is

essential for activating this series of responses (67). Zinc

deficiency disrupts processes such as oxidative stress, DNA

damage, DNA repair, cell cycle, apoptosis, metabolic changes,
Frontiers in Endocrinology 05
microRNA expression, and inflammatory factors, thereby

promoting cancer development (36). Zinc deficiency reduces the

number of T and B cells in the thymus and bone marrow, increasing

the body’s susceptibility to infections and weakening its defenses,

which results in a higher incidence of tumors. Another potential

mechanism by which zinc inhibits tumor growth is closely related to

its suppression of the activity of the nuclear transcription factor NF-

kB (68, 69). NF-kB in its active form induces the expression of

approximately 200 genes, which are related to angiogenesis,

metastasis, and cell proliferation. Zinc influences gene expression

at the nuclear level by stabilizing structures and regulating various

transcription factors, including NF-kB (69). The NF-kB
transcription factor can enhance inflammatory responses,

particularly by boosting the production of pro-inflammatory

cytokines by macrophages. Zinc ions negatively regulate NF-kB
activity through proteins like A20 with zinc finger structures and by

reversibly inhibiting phosphodiesterase (PDE), thus suppressing

inflammatory responses and cancer development. The tumor-

suppressing effect of zinc is also related to its antioxidant

properties. Established cancer cells generate large amounts of

reactive oxygen species (ROS), and the clearance of these ROS

relies on the activity of antioxidant enzymes. However, zinc can

protect healthy cells from the cytotoxic and genotoxic effects of

hydrogen peroxide, but in tumor tissues, it can exacerbate the

toxicity of H2O2, leading to oxidative stress dysregulation in cancer

cells (70). The mechanism of zinc and cancer is shown in Table 1.

Altered expression levels of zinc transporters are one of the

reasons for zinc homeostasis disruption in tumor tissues (85). For

example, current studies show that zinc levels are high in prostate

tissue cells, and this elevated intracellular zinc level facilitates the

production and secretion of citrate in prostatic fluid, as well as aids

normal cells in exerting cytotoxic effects to eliminate harmful cells.

In contrast, prostate tumor cells exhibit reduced zinc levels, which

may be due to low expression of the ZIP1 transporter protein,

leading to low intracellular zinc and consequently promoting tumor

cell proliferation (86, 87). In ER-positive breast cancer, elevated

expression levels of ZIP7 increase zinc levels in ER-positive breast

cancer cells. ZIP7 is activated by serine phosphorylation and is

involved in the pathways that promote the progression of ER-

positive breast cancer (88).
4.2 Zinc and tumor therapeutic targets

The mechanisms by which zinc homeostasis dysregulation leads

to tumors have given rise to different anticancer targets for various

cancers. Zinc transport proteins may serve as potential targets for

cancer therapy, as modulating their function or zinc levels could

offer new strategies for cancer treatment (89). Zinc transport

proteins serve as targets for cancer therapy. Messenger RNA

analysis in pancreatic cancer cells shows overexpression of ZIP4,

while other ZIP variants are downregulated. ZIP4 promotes cell

proliferation and tumor progression, and interfering with the RNA

involved in the generation of ZIP4 can inhibit tumor cell

proliferation and invasion; however, more research is needed to

further explore the related mechanisms (90). Excess zinc
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accumulates in breast tumor cells, and this excess zinc has a toxic

effect on them. Breast tumor cells increase the expression levels of

ZnT2, which transports the excess zinc into vesicles, thereby

reducing its toxic effects. Inhibiting the activity of ZnT2 in breast

tumor cells can release excess zinc from these vesicles, resulting in

cytotoxic effects on malignant breast cancer cells (91). In esophageal

squamous cell carcinoma (ESCC), ZIP6 promotes cancer cell

proliferation, invasion, and metastasis by increasing intracellular

zinc levels, thereby activating the PI3K/AKT and MAPK/Erk

pathways. Targeting ZIP6 may represent a potential strategy for

treating the aggressiveness of ESCC (92). In various tumor cells, the

expression levels of zinc transporters differ (see Table 2), and

regulating the expression or activity of these transporters could

also serve as a strategy for cancer treatment. The increased

expression of MT has been linked to the proliferation rate of

tumor cells (93), indicating that MT could be a potential target

for future cancer suppression research (93). Zinc finger proteins

(ZNFs) regulate the expression of various target genes, influencing
Frontiers in Endocrinology frontiersin.or06
tumor occurrence, progression, and patient prognosis. ZNFs are

also expected to serve as new biological markers or therapeutic

targets for malignant tumors (94).
4.3 The controversy of zinc
supplementation in tumor treatment

Zinc supplementation is beneficial for the treatment of many

tumors. Studies have found that zinc supplementation can induce

cytotoxicity in pancreatic cancer cells and reduce their invasiveness

(95). Zinc oxide nanoparticles can also promote apoptosis in liver

and ovarian cancer cells by inducing autophagy (96, 97). Metal

chelators can form stable complexes with metals, reducing the

consumption of metal ions. The antibiotic chloroquine is a metal

chelator that can chelate zinc, increasing intracellular zinc levels in

tumor cells and enhancing anti-cancer effects (98). Metal chelating

compounds (such as disulfiram, chloroquine, and dithiocarbamate
TABLE 1 Literature summary table on the relationship between zinc and cancer.

Relationship between
zinc and cancer

Zinc proteins Action mechanism Reference

Carcinogenic effect of zinc Zinc finger protein(ZNFs)

Overexpression of ZNF322A activates genes related to metastasis, tumor
stemness and angiogenesis, thereby promoting the progression of
lung cancer.

(71)

Oncogenic zinc finger protein ZNF687 activates PI3K/Akt/mTOR
signaling pathway to accelerate lung adenocarcinoma cell proliferation and
tumor progression.

(72)

Zinc finger protein CXXC5 promotes breast cancer by regulating TSC1/
mTOR signaling pathway.

(73)

GATA zinc finger protein p66b acts as a co-activator of Snail to promote
breast cancer cell migration

(74)

ZNF692 promotes proliferation, migration and invasion of osteosarcoma
cells through TNK2-mediated MEK/ERK pathway activation.

(75)

ZNF554 inhibits the progression of endometrial cancer by regulating
RBM5 and inactivating WNT/b-Catenin signaling pathway.

(76)

Zinc finger protein 263 promotes the malignant progression of non-small
cell lung cancer by up-regulating interleukin 33 and inhibiting autophagy.

(77)

The anti-cancer effect of zinc

Metallothionein(MTs)

Activation of esterase D (ESD) promotes its interaction with MT2 A,
reduces the protein level of MT2 A, up-regulates the concentration of free
zinc ions, and inhibits the migration of A549 lung cancer cells in vitro.

(78)

Metallothionein family proteins act as zinc ion regulators to synergistically
enhance the anticancer effect of cannabidiol in human colorectal
cancer cells.

(79)

Zinc finger protein(ZNFs)

Zinc finger protein ZNF575 promotes the transcription of p53 to inhibit
the growth of colorectal cancer.

(80)

The protein expression of ZNF746 is significantly increased in colorectal
cancer. ZNF746 plays an important role in the invasion and migration of
colorectal cancer (CRC) cells.

(81)

Zinc finger protein 671 plays a tumor suppressor role in colorectal cancer
by inhibiting Notch signaling pathway.

(82)

–

Zinc exerts its anti-tumor effect by acting on the central cytotoxic T cells
of cellular immunity.

(83)

Zinc deficiency promotes the proliferation, migration and invasion of
esophageal squamous cell carcinoma EC109 cells.

(84)
g
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derivatives) serve as coordination complexes targeting metals like

copper, zinc, and gold in the ubiquitin-proteasome pathway,

potentially acting as anti-cancer drugs (99). However, zinc

chelation may also produce side effects. Some studies suggest that

ferroptosis is a cell death mechanism that can be targeted for cancer

treatment, but zinc chelation may inhibit this mechanism (100).

This presents a major controversy in the use of metal chelates for

cancer treatment, and further research is needed to confirm the

impact of these side effects. The use of metal chelators should

consider the specific characteristics of the cancer being treated. The

benefits and risks of targeted therapies involving zinc in different

types of tumors still require further investigation.

The application of zinc supplementation in cancer treatment is

becoming increasingly common, but there remains significant

controversy regarding its therapeutic use and effects for some

tumors. Current studies have many shortcomings, and the benefits

and risks of zinc supplementation for cancer treatment require

further investigation. A study examining whether a combination of

antioxidant vitamins and minerals can reduce the risk of skin cancer

(SC) randomly assigned 7,876 French women and 5,141 French men

to receive either a daily antioxidant capsule (containing 20 mg of

zinc) or a matched placebo. With a median follow-up time of 7.5

years, the results indicated that zinc-containing antioxidant

supplements had differential effects on SC incidence, increasing the

risk in women but not in men (101). Taking prostate cancer, which

has been extensively studied, as an example, there is considerable

controversy regarding the therapeutic and preventive roles of zinc in

this context. Numerous experimental studies have confirmed that the

application of zinc derivatives and supplements can inhibit the

proliferation, migration, and invasion of prostate cancer cells.

However, some studies suggest that the efficacy of zinc

supplementation in any form appears to be limited (87), primarily

because malignant tumor cells with ZIP1 deficiencies cannot uptake

and accumulate zinc from increased plasma zinc concentrations.

Additionally, zinc supplementation formulations, especially those

containing cadmium and lead, may have potential contaminants,
Frontiers in Endocrinology 07
and the bioavailability of different zinc compounds (such as sulfates,

gluconates, and less commonly used citrates) varies (102). Some

research has suggested that direct intratumoral injection of zinc can

inhibit the growth of prostate cancer cells in xenograft mice (103), but

the practicality of this intratumoral administration method in

humans remains to be debated. Another controversial aspect of

zinc’s use in prostate cancer treatment is that zinc levels in

metastatic and late-stage hormone-independent prostate cancer

have not been established, and effective treatments for advanced

malignant prostate tumors and metastases are lacking. A large

prospective cohort study found that low-dose zinc supplementation

(1 to 24 mg/d) after diagnosis was associated with a reduced risk of

lethal prostate cancer in men with non-metastatic prostate cancer

(104). Conversely, another 30-year follow-up study indicated that

daily supplementation of more than 75 mg of zinc or

supplementation for more than 15 years could significantly increase

the risk of lethal and aggressive prostate cancer (102). Therefore, the

potential risks and benefits of low-dose zinc supplementation after

diagnosis, as well as the duration of supplementation, require further

investigation regarding prostate cancer survival.

In summary, the trace element zinc is involved in the formation

of intracellular proteins and plays a crucial role in cellular processes

such as gene expression, signal transduction, oxidative stress,

immune response, and apoptosis. Both excess and deficiency of

zinc can lead to metabolic abnormalities in cells, resulting in

disease; therefore, it is essential to ensure an appropriate zinc

intake to maintain zinc homeostasis and normal cellular

metabolism. Current research on the relationship between zinc

metabolism and metabolic syndrome is contradictory, and the

specific mechanisms supporting their correlation remain unclear,

necessitating further studies to explore this issue. Cancer is a major

disease impacting human health, and zinc homeostasis is closely

related to cancer; zinc deficiency can disrupt cellular immune

responses and oxidative stress, thereby promoting cancer

development. Zinc supplementation has been shown to be

beneficial for various cancers, including pancreatic, colorectal,
TABLE 2 Expression of zinc transporters in different types of cancer.

Type of cancer Expression of zinc transporters Potential tumor markers

Pancreatic cancer ZIP4 increased ZIP4

Prostate cancer ZIP1 ZIP4 decreased. MTs

ER-positive breast cancer ZIP7 increased ZIP7

non-small cell lung cancer ZIP4 increased, ZnTs decreased ZIP4

Hepatocarcinoma ZIP14 ZIP2 ZIP9 decreased ZIP14

stomach and colon cancer ZIP10 increased

ovarian cancer ZIP4 increased ZIP4

advanced kidney cancer ZIP10 increased ZIP10

cervical cancer ZIP7 increased ZIP7

Nasopharyngeal carcinoma ZIP4 increased ZIP4

bladder cancer ZnT1 increased ZnT1

oral squamous cell carcinoma ZIP4 increased
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liver, ovarian, and cervical cancers. The role of zinc in cancer varies

by cancer type, allowing for the selection of different therapeutic

targets based on specific mechanisms of action. The expression

levels of zinc transport proteins vary across different cancer cells;

thus, regulating the expression or activity of these transport proteins

is also a therapeutic approach for cancer treatment. Many studies

currently focus on zinc transport proteins as targets for cancer

therapy, but further exploration is needed. Other proteins involved

in zinc metabolism, such as metallothioneins and zinc finger

structures, may also serve as potential research directions for

future tumor suppressive targets, providing new approaches for

clinical cancer treatment.
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