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Obesity is a major modifiable risk factor leading to neuroinflammation and

neurodegeneration. Excessive fat storage in obesity promotes the progressive

infiltration of immune cells into adipose tissue, resulting in the release of pro-

inflammatory factors such as cytokines and adipokines. These inflammatory

mediators circulate through the bloodstream, propagating inflammation both in

the periphery and in the central nervous system. Gut dysbiosis, which results in a

leaky intestinal barrier, exacerbates inflammation and plays a significant role in

linking obesity to the pathogenesis of neuroinflammation and neurodegeneration

through the gut-brain/gut-brain-liver axis. Inflammatory states within the brain can

lead to insulin resistance, mitochondrial dysfunction, autolysosomal dysfunction,

and increased oxidative stress. These disruptions impair normal neuronal function

and subsequently lead to cognitive decline and motor deficits, similar to the

pathologies observed in major neurodegenerative diseases, including

Alzheimer’s disease, multiple sclerosis, and Parkinson’s disease. Understanding

the underlying disease mechanisms is crucial for developing therapeutic strategies

to address defects in these inflammatory and metabolic pathways. In this review,

we summarize and provide insights into different therapeutic strategies, including

methods to alter gut dysbiosis, lifestyle changes, dietary supplementation, as well

as pharmacological agents derived from natural sources, that target obesity-

induced neuroinflammation and neurodegeneration.
KEYWORDS

obesity, metabolic dysfunction, neuroinflammation, neurodegeneration, body-brain
interactions, therapeutic targeting
1 Introduction

Obesity is a metabolic syndrome characterized by lipid accumulation and is commonly

associated with low-grade inflammation due to increased infiltration and activation of

innate and adaptive immune cells such as macrophages, dendritic cells, mast cells,

neutrophils, B cells, and T cells, within peripheral tissues such as adipose tissues (1, 2)
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and can contribute to neuroinflammation (3, 4). Under obesity

conditions, excess free fatty acids (FFAs) decrease the lipid storage

capability of adipose tissue, resulting in hypertrophic adipocytes

and overproduction of adipokines and cytokines such as tumor

necrosis factor (TNF), interferon-g, interleukin (IL)-1b, IL-6 and

IL-18 triggering systemic inflammation (5, 6). Circulating

inflammatory factors can further propagate peripheral

inflammation and activate macrophages in other organs such as

the liver and pancreas, as well as trigger brain inflammation (5, 7)

(Figure 1A). Obesity condition can further increase BBB

permeability, making the brain more vulnerable to inflammation

(8). Neuroinflammation is characterized by the activation of

microglia and astrocytes (9, 10), along with the release of

proinflammatory and neurotoxic mediators within the brain.

Initially a protective mechanism, excess neuroinflammation can

lead to neuronal dysfunctions (1, 4) and neurodegenerative diseases

such as Alzheimer’s (AD), multiple sclerosis, and Parkinson Disease

(PD) (11, 12), which currently do not have effective treatments.

Understanding the underlying mechanisms governing the

pathogenesis of obesity-induced neuroinflammation and

neurodegeneration holds the key to discovering novel therapeutics and

providing more effective treatments. While body-brain interaction

including the gut-brain/gut-liver-brain axis involves the orchestration

of multiple organs and cell types (13, 14), a central disease mechanism
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lies in the crosstalk of inflammation (e.g., cytokines/adipokines

production/circulation and gut dysbiosis) and metabolic

dysregulations (e.g., insulin resistance, mitochondrial dysfunction,

reactive oxygen species (ROS) production, and autolysosomal

impairments) (Figure 1B). Metabolic dysfunctions are predominant in

obesity and neurodegenerative diseases. Obesity can impair insulin

signaling that is crucial for hepatic, pancreatic, and neuronal function

(15). Inflammatory factors trigger pathways that inhibit insulin receptor

(IR) and insulin receptor substrate (IRS) phosphorylation, leading to

insulin resistance in the body and brain (16, 17). Under obesity

conditions, there are higher levels of mitochondrial fragmentation

(18, 19), overproduction of ROS (20), and higher oxidative stress that

can further impair mitochondria (21). The autolysosomal pathway is

crucial for clearing cellular debris and damaged organelles. Impaired

function can lead to excess lipid accumulation, damaged mitochondria,

increased ROS production, and inflammation, contributing to obesity in

both the body and brain (22, 23). Additionally, obesity-induced gut

dysbiosis can increase the intestinal permeability, leading to a “leaky gut”

and increased secretion of lipopolysaccharides (LPS), which can further

trigger inflammation (24). These factors collectively propagate

inflammation throughout the body including the brain (14) (Figure 2A).

In this review, our goal is to summarize and provide insights into

therapeutic strategies that can mediate obesity-induced

neuroinflammation and neurodegeneration through the body-brain
FIGURE 1

Body-brain interaction under obesity conditions. (A) Obesity-induced inflammation arises from the adipose tissues and is propagated across different
peripheral organs in the body through immune response or macrophage activation. The communication and interaction between the body and the
brain are mediated by inflammatory factors such as tumor necrosis factor (TNF) or lipopolysaccharides (LPS) and hormones or metabolites such as
orexin-A (OX-A) and thyroid hormone (TH). Overnutrition will lead to neuroinflammation and neurodegeneration in the brain, which could also, in
turn, regulate appetite and satiety as well as the extent of obesity. (B) Several key disease mechanisms of obesity-induced neurological disorders
include insulin resistance, mitochondrial dysfunction, and gut dysbiosis. Created in https://BioRender.com.
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axis. In particular, we will focus on a variety of therapies including (1)

small molecules and biologics that modulate inflammatory and

metabolic pathways, (2) approaches to alter gut microbiota to

remedy gut dysbiosis, (3) effect of exercise and diet interventions, (4)

vitamins and supplements, and (5) natural products and derivatives

(Figure 2B). We will further provide future perspectives on emerging

therapies as well as the need to further dissect body-brain interaction

through precision and personalized medicine such as through the use

of multi-omics to resolve heterogeneity in specific cell types

contributing to the disease pathogenesis of neuroinflammation and

neurodegeneration through different axes of body-brain interactions.
2 Crosstalk between inflammation and
metabolic dysfunctions

2.1 Alterations of inflammatory
signaling pathways

Inflammatory cytokine receptor signaling such as tumor

necrosis factor (TNF) and TNF receptor 1 (TNFR1) (25, 26) as

well as pattern recognition receptor signaling such as

lipopolysaccharide (LPS) and toll-like receptor 4 (TLR4) (27) play

key roles in mediating inflammation in the body-brain interaction.

Stimulation of both signaling pathways lead to the activation of
Frontiers in Endocrinology 03
nuclear factor kappa B (NF-kB) transcription factor that could

increase the expression of proinflammatory cytokines and

chemokines, and also induces activation of immune cells which

propagate inflammation between the peripheral and central

nervous systems (25, 26). Administration of a soluble TNF

inhibitor (XPro1595) to mice fed on high-fat high sugar diet

(HFHS) ameliorated liver metabolic disturbances and gut

lipocalin-2 levels. In addition, it decreased insulin signaling

impairment in the brain, and attenuated glial activation related

neuroinflammation and cognitive deficits associated with HFHS

diet (28). A TLR4 inhibitor (TAK-242) inhibited inflammation in

the adipose tissue but exerted no significant effects on body weight,

adiposity, and a range of metabolic measures. In the brain, obese

mice treated with TAK-242 exhibited a significant reduction in

microglial activation, improved levels of neurogenesis, and

inhibition of soluble amyloid beta (Ab) levels (29). Recently

developed receptor-specific inhibitors for TNFR1 (30–33) and

TLR4 (34, 35) may also hold promise to mediate obesity induced

inflammation. The crosstalk between inflammation and metabolic

dysfunction, such as the interaction between TNF-TNFR1 and LPS-

TLR4 pathways with insulin signaling impairment (23, 28),

mitochondrial dysregulations (36, 37), and autolysosomal defects

(22, 38, 39), may provide more insights to the pathogenesis of

obesity-induced neuroinflammation and neurodegeneration

through body-brain interaction.
FIGURE 2

Therapeutic strategies for the treatment of obesity-induced neuroinflammation and neurodegeneration. (A) Major disease mechanisms for
therapeutic targeting include the inhibition of inflammatory pathways, improvements in metabolic functions, and alterations of gut microbiota
profiles. (B) Therapeutic strategies include the administration of natural products and supplements, dietary and lifestyle changes, as well as bariatric
surgery and fecal microbiota transplantation. These treatments will lead to functional restoration of peripheral organs and the brain, along with
improvements in cognitive functions and motor activities. Created in https://BioRender.com.
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Biological molecules such as fibroblast growth factor 21 (FGF21),

which is a stress-inducible endocrine hormone predominantly

secreted by the liver (40), regulates metabolic homeostasis and

possess anti-inflammatory properties (41). FGF21 activates nuclear

factor erythroid 2-related factor 2 (Nrf2) pathway and suppresses NF-

kB signaling, thereby reducing oxidative stress (42). Treatment of

recombinant human FGF21 (rFGF21) in HFD mice reduced body

weight, improved glucose metabolism and insulin resistance in the

body, and resulted in reduced expression of inflammatory cytokines

TNF and IL-1b. It also suppressed microglia activation in the

hippocampus, thereby reducing neuroinflammation and cognitive

dysfunction and anxiety-like behavior (43). Treatment with FGF21 in

HFD rats improved peripheral insulin sensitivity, hippocampal

synaptic plasticity, increased dendritic spine density, restoration of

brain mitochondrial function, and reduced apoptosis in brain cells,

collectively mitigating cognitive decline (44). nOrexin-A (OX-A) or

hypocretin-1, a neuropeptide expressed mainly in the brain

hypothalamus as well as in several peripheral tissues such as in the

intestinal villi has been shown to regulate inflammatory responses

(45). Loss of orexin leads to increased microglial activation, increased

pro-inflammatory TNF and the mitochondria-associated enzyme

immune responsive gene-1, and cognitive decline, which is

worsened upon feeding with HFD (46). In microglial under

palmitic acid treatment, OX-A addition reduced pro-inflammatory

markers TNF, IL-6, and inducible nitric oxide synthase (iNOS), and

reduced hypothalamic neuronal cell death (47). The neuroprotective

effect of OX-A is mediated through PKC and PI3K signaling

pathways, as well as upregulation of somatostatin receptors,

vasoactive intestinal peptide, and endothelin-1 (48). OX-A has also

been shown to attenuate peripheral inflammation in the gut and

reduce the transport of inflammatory mediators such as LPS from the

body to the brain, hence decreasing the propagation of

neuroinflammation (49). In sum, TNF inhibitors, rFGF21 and OX-

A biological molecules play important roles in attenuating both

peripheral inflammation and neuroinflammation.
2.2 Restoration of metabolic functions

Obesity-induced neuroinflammation contributes to insulin

resistance, and promotion of insulin signaling attenuates

neuroinflammation and neurodegeneration (50). Restoration of

insulin signaling pathway such as through the usage of anti-

diabetic drugs is a strategy to alleviate obesity-induced

neurodegeneration (51). Glucagon-like peptide 1 (GLP-1) targeting

drugs are insulin sensitizers that have shown promise in clinical trials

with AD and PD patients (52, 53). GLP-1 exhibits pleiotropic effects

owing to the widespread expression of GLP-1 receptors (GLP-1R)

across multiple organs, brain regions such as the hypothalamus and

amygdala, and various cell types, including microglia and astrocytes.

These receptors play key roles in regulating appetite, reward

processing, emotional responses, and neuroprotection (52, 53).

GLP-1 modulation increases IR and IRS phosphorylation thus

improving brain insulin signaling and reducing long term

depression. In addition, GLP-1 reduces microglial activation,

reactive astrogliosis, thereby attenuating neuroinflammation and
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neurodegeneration (52, 53). GLP-1R agonists, approved for the

treatment of type 2 diabetes and obesity, have demonstrated

neuroprotective effects in neurodegenerative diseases through

suppressing neuroinflammation (52). Vildagliptin is an inhibitor of

dipeptidyl peptidase-4 (DPP-4), an enzyme that degrades glucagon-

like-peptide 1 (GLP-1), and has been used to rescue insulin resistance

in pancreatic b-cells with lipid overload (54). Treatment with

vildagliptin on HFD rat significantly elevates neuronal GLP-1 level,

increased brain insulin signaling and attenuated cognitive

impairment (55). In another study comparing combined

administration of vildagliptin and energy restriction to vildagliptin

only, it was shown that HFD rats with combined administration

showed decreased body weight, visceral fat, plasma insulin, and

reduced total plasma cholesterol levels. Moreover, the brain insulin

sensitivity, mitochondrial function, hippocampal synaptic plasticity

and cognitive function were restored (56). Dapagliflozin is sodium-

glucose co-transporter 2 inhibitor that has also shown effects in

restoring insulin sensitivity and neuroprotection in obesity-induced

insulin resistance. In a study comparing the effects of Vildaglipti and

Dapagliflozin, it was shown that single treatment of either drug

resulted in improved brain mitochondrial function, insulin signaling,

apoptosis and prevented cognitive decline. Dapagliflozin showed

greater efficacy in enhancing peripheral insulin sensitivity, reducing

weight gain, and improving hippocampal synaptic plasticity

compared to vildagliptin. Notably, the combination of these drugs

exhibited superior efficacy in improving brain insulin sensitivity and

reducing oxidative stress than either drug alone. These findings

suggest that a combination of both drugs could represent a

promising therapeutic approach for neuroprotection in obese

insulin-resistant conditions, although further studies are needed to

fully understand their synergistic mechanisms (57). Metformin, a

widely used drug for insulin resistance, has been shown to restore

insulin signaling in the liver of obese mice. Additionally, it enhanced

insulin signaling in the hippocampus of HFD-fed mice and improved

their cognitive function (58). Obesity-induced inflammation and

insulin resistance downregulate mitochondrial fusion and

upregulate fission, thereby impairing mitochondrial function and

exacerbating neurodegeneration. Hence, targeting mitochondrial

dysfunction is a viable strategy. In HFD mice, a combined

approach consisting of both mitochondrial division inhibitor 1

(Mdivi-1) and mitochondrial fusion promoter (M1) exerted

neuroprotection through balancing mitochondrial dynamics,

reducing ROS production and depolarization of mitochondrial

membranes, thereby improving mitochondrial function (59). The

administration of Mdivi-1 and M1 also reduced Ab aggregation, tau

hyperphosphorylation and ameliorated BBB breakdown due to

obesity (59). Other studies also demonstrated the beneficial effects

of Mdivi-1 in reducing expression of mitochondrial fission protein

Drp-1 in palmitate treated hippocampal neural stem cells of rats (60)

and HFD rats (61). Garlic extract (Allium sativum) decreased body

weight, visceral fat, plasma cholesterol, and MDA levels in HFD rats,

and improved brain mitochondrial function, insulin signaling and

cognitive functions in HFD rats (62). More evidence is required to

strengthen the notion of crosstalk between inflammation and

metabolic dysfunctions (63, 64) and how this interplay leads to the

pathogenesis of neuroinflammation and neurodegeneration through
frontiersin.org
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body-brain interaction under obesity conditions. While the interplay

between inflammation and insulin signaling impairment (65, 66) or

mitochondrial dysfunction (67, 68) have been established, the link

between inflammation and autophagy or lysosomal defects are

emerging pathogenic mechanisms that warrant more investigations

(22). Several HFD mouse models have illustrated impairments in

autolysosomal functions including lysosomal acidification defects

(69, 70), together with indications of inflammation. There are

further evidence connecting autolysosomal dysfunction and

neuroinflammation (22, 71, 72) although this has not yet been

established in the HFD rodent models and is an area for

future investigations.
3 Modulation of gut-brain/gut-liver-
brain axis

3.1 Alteration of gut microbiota

Gut microbiota is closely linked to brain function via the gut-

brain/gut-liver-brain axis, and alterations in microbiota during

obesity can lead to neuronal impairment (13). In addition,

disruption of the gut barrier leads to more bacteria or their

metabolites entering the liver, which contributes to hepatic

disorders and influence neural signaling through the gut-liver-brain

axis (13). Hence, balancing the microbiota plays an important role in

at tenuat ing obes i ty- induced neuro inflammat ion and

neurodegeneration. Biotics, including probiotics, prebiotics,

synbiotics, and paraprobiotics, have been tested in both animal and

human trials. These studies have shown a link between gut microbes

and immune biomarkers, resulting in improved overall health (73).

Treatment with gut commensal Akkermansia muciniphila reduced

TNF, IL-1b and IL-6 expression in the hippocampus, and reduced

hippocampal microgliosis in HFD mice, thereby restoring neuronal

development and synapse plasticity (74). Akkermansia muciniphila

subtype (A. muciniphilasub) produced short chain fatty acids and

improved the spatial memory and blood glucose control in HFDmice

(75). Oral supplementation with probiotic Clostridium butyricum

greatly reduced inflammatory cytokines within the hippocampus of

HFD and fiber deficient mice, improved neuronal and synaptic

functions and reduced plasma LPS levels, which can be a key

mediator in propagating inflammation along the gut-brain axis

(76). Probiotic Lacticaseibacillus rhamnosus LB1.5 supplementation

on HFD mice lowered inflammatory cytokines IL-6 and glial

activation in the cerebral cortex (77). Other supplementations of

Lactobacillus paracasei (78) and Bifidobacterium infantis (79) into

obese mice also demonstrated effects in reducing neuroinflammation

(i.e., IL-6, TNF, and CD11b levels) (79) and increasing neuronal and

synaptic functions through increasing the levels of synaptosomal

associated protein 25 (78), brain-derived neurotrophic factor (BDNF)

and postsynaptic density protein 95 (PSD95) (78, 79). Lactobacillus

paracasei also reduced inhibitory phosphorylation of IRS to reduce

insulin resistance within obese mouse brains (78).

Probiotics including Lactobacil l i , Streptococci , and

Bifidobacteria, has been shown to reduce the development of liver

and brain-related diseases through the gut-liver-brain axis (80, 81).
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In a study exploring the supplementation of prebiotic

(Xyloolidosaccharide), probiotic (Lactobacillus paracasei HII01),

or synbiotics in HFD mice, all of the three supplementations

reduced microglial activation, reduced ROS production, and

attenuated brain mitochondrial dysfunction and restored

cognitive function (82). Synbiotics have demonstrated efficacy in

modulating the immune system and addressing neurological

disorders linked to impaired liver function through the gut-liver-

brain axis (83). In individuals with obesity, supplementation with

probiotics containing Lactobacillus acidophilus, Bifidobacterium

lactis, Bifidobacterium longum, and Bifidobacterium bifidum has

been shown to increase the abundance of beneficial gut bacteria,

such as Bifidobacterium and Lactobacillus, and reduce systemic

inflammation (84).

Postbiotics are metabolites and bioactive compounds produced

by beneficial bacteria in the gut that can potentially influence brain

health by mitigating neuroinflammation and slowing

neurodegeneration through the gut-brain axis (85). The

secondary metabolites of probiotic bacteria are short-chain fatty

acids, vitamins, proteins and enzymes, organic acids like propionic

acid and 3-phenyl lactic acid, and intracellular polysaccharides.

Gut-derived postbiotics have been shown to restore BBB

permeability (86, 87). Propionate was found to rescue LPS-

induced impairment in the permeability of brain endothelial

monolayers by reducing oxidative stress (88). In other studies,

butyrate and propionate improved BBB integrity by regulating the

organization of the actin cytoskeleton and increasing the interaction

between actin and tight junction protein ZO-1, and also restored

inflammation induced mitochondrial dysfunction (89). In addition,

gut microbiota-derived metabolites, including SCFAs, secondary

BAs, indoles, and PUFAs increase the secretion of neuroprotective

GLP-1 (90, 91).

The microbiota diversity within the gut can be affected by the

type of food that was consumed. Western diet enriched in high

amounts of fat and sugars adversely alters gut microbiota

contributing to obesity-induced neurodegenerative states (92),

whereas consumption of diets rich in fruits and vegetables can

reverse altered microbiota states (93). For instance, consumption of

kimchi (94) and supplementation of b-glucan (95) reduced

neuroinflammation and decreased gut permeability in obese mice.

Kimchi further demonstrated effects in reducing BBB permeability

(94). Specifically, b-glucan decreases the number of bacteria related

to neurodegeneration in obese mice, increased PSD95 and

synaptophysin levels, thereby improving synaptic function and

memory (95). b-glucan mimics have also been shown to have

anti-inflammatory properties (96). The supplementation of

anthocyanins increased species of gut bacteria that produces

tryptophan, a precursor for kynurenic acid that can exert anti-

inflammatory properties (97). Furthermore, microbiota accessible

carbohydrate (98), leucine-restricted diet (99) and intermittent

fasting (100) also exhibited anti-neuroinflammatory effects,

improved synaptic and neuronal function (98–100), reduction in

LPS levels (99), and improvement in gut permeability (98–100). In

particular, leucine-restriction reshaped the structure of gut

microbiota, through downregulating the Firmicutes/Bacteroidetes

ratio, reducing the relative abundance of inflammation-related
frontiersin.org
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bacteria and increasing short-chain fatty acid producing bacterial

genera including Alistipes, Allobaculum, Odoribacter, and

Olsenella (99).
3.2 Bariatric surgery and fecal
microbiota transplantation

Surgical and other medical interventions could also reverse gut

dysbiosis induced by obesity which can eventually benefit the brain.

Roux-en-Y gastric bypass (RYGB) done on HFD rats reduced

hypothalamic inflammation as seen by lowered cytokine levels

and glial cells activation (101). Furthermore, BV2 microglial cells

treated with plasma of HFD rats that underwent RYGB had lower

inflammatory states compared to those that was treated without

surgery (101). The lowered LPS levels and improvement in gut

permeability after RYGB further proves the beneficial effect of

bariatric surgery in attenuating obesity-induced neuronal damage

via the gut-brain axis (101). Another study shows that two different

types of bariatric surgery, RYGB and biliary diversion to the ileum,

illustrate positive correlation in reducing neuroinflammation

compared obese mice (102). Furthermore, gene encoding for

protein-tyrosine phosphatase 1B, which is a negative regulator of

insulin signaling, was lowered after RYGB surgery (103). There is

also improved glucose uptake and increased level of GLP-1, which is

a positive regulator of insulin signaling, after duodenum-jejunum

bypass, showing the beneficial effect on insulin signaling within the

brain together with improved memory (104). A meta-analysis of

existing datasets has shown improved cognition in obese patients

with gastric by-pass (105), demonstrating the efficacy of this

approach in human subjects.

Transplanting feces containing beneficial microbiota, or fecal

microbiota transfer (FMT), from healthy donors to the intestinal

tract of recipients (106) is another approach to restore gut dysbiosis

(107). HFD mice that obtained fecal transplantation from mice that

underwent exercise showed improved cognitive behavior, increased

BDNF and tropomyosin receptor kinase B (TrkB) levels and

reduced astrogliosis (108). Furthermore, the number of beneficial

bacteria, L. acidophilus, L. gasseri, Christensenellaceae, Bactroidetes,

and Oscillibacter was increased in mice with exercise, which may

also contribute to the improvement along the gut-brain axis (108).

In a study comparing the effect of FMT from RYGB donors and oral

butyrate supplementation on 24 male and female subjects with

metabolic syndrome, it was shown that the FMT from RYGB

donors increased brain dopamine transporter and serotonin

transporter binding, due to increased levels of Bacteroides

uniformis compared to oral butyrate (109). However, there was

no effect on body weight and insulin sensitivity. Under obesity,

there is increased gut permeability and gut dysbiosis, leading to the

circulation of inflammatory mediators and metabolites throughout

the body, which promotes systemic inflammation and stress. Hence,

greater emphasis on developing therapeutics that could ameliorate

obesity-induced gut dysbiosis are needed to reduce obesity-

induced inflammation.
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4 Lifestyle changes

4.1 Calorie restriction

Calorie intake, meal frequency, diet quality, and gut

microbiome interactions influence metabolic and molecular

pathways, regulating homeostasis and inflammation in normal

brain aging and CNS diseases (110). In a Brazilian longitudinal

study of adult health involving 11,737 participants, it was shown

that higher adherence to the planetary health diet was associated

with slower memory decline (93). Calorie restriction (CR) of a

reduction of 40% calories from control effectively decreased

phagocytic markers such as galectin-3, dectin-1, CD16 in the

white matter indicative of reduced microglial activation, leading

to reduced aging-associated decline in HFD mice (111). CR also

attenuated the neuroinflammatory response mediated through the

triggering receptor expressed on myeloid cells 2-phosphoinositide

3-kinases-protein kinase B (TREM2-PI3K/Akt) signaling pathway,

thereby reducing inflammatory cytokines iNOS, cyclooxygenase-2

(COX-2) and IL-1b in the prefrontal cortex and hippocampus of

HFD mice (112). Additionally, CR increased proteins crucial for

synaptic function in the brain such as BDNF, PSD95, and

synaptophysin (112). CR in the form of intermittent fasting

reduced TNF expression, decreased oxidative stress markers, and

increased autophagy in the cerebellum of HFD mice (113). In mice

lacking Sirt3, a mitochondrial deacetylase, the protective effects of

CR on oxidative stress and damage are diminished, suggesting that

the reduction in oxidative stress during CR requires Sirt3 (114). CR

has been shown to increase Sirt3 activation which lead to

mitochondrial protein deacetylation, as well as attenuate

microglial activation and neuroinflammation (115–117).

Additionally, intermittent fasting reduced HFD-induced astrocytic

apoptosis and microglial activation as well as reduced memory

deficits (118). Intermittent fasting has been used in elderly with

obesity and shown effects in improving cognitive impairments,

indicated by improved mini-mental state examination and

Montreal cognitive assessment scores (119).
4.2 Exercise and other
environmental stimuli

Exercise has various beneficial effects in alleviating obesity

induced neurodegeneration, including increasing neurotrophic

factors such as BDNF and TrkB (120–122), and improving

synaptic function (123). When HFD mice are subjected to

exercise (i.e., voluntary wheel running), there were reduced IL-1b
in the hippocampus (124). In another study using voluntary wheel

running as exercise, reduced microglial activation and

cerebrovascular and white matter damage was seen in HFD mice

(125). Additionally, reduction in inflammatory cytokines TNF, IL-

1b, and IL-6, improved mitochondrial function and insulin

signaling were seen in the hypothalamus, hippocampus and

cortex of HFD mice which underwent voluntary wheel running
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exercise compared to sedentary mice (126). HFD rats on treadmill

exercise improved aberrant brain insulin signaling, reduced

hyperphosphorylation of tau protein levels (127) and beta-

secretase 1 activity (128), reduced oxidative stress and

inflammation, and improved mitochondrial function (129). In a

study comparing between 12 weeks of aerobic exercise and 12 weeks

of resistant exercise on HFD rats, both exercise regimen reduced

neuroinflammation, oxidative stress and improved cognitive

function, with no significant difference between them (121).

Interestingly, when comparing between the effects of caloric

restriction and exercise on HFD rats, it was shown that long-term

caloric restriction (16-weeks) has the greater systemic metabolic

benefit, including improved synaptic function, neuronal insulin

signaling, neurogenesis and increased mitochondrial and

autophagic function (123). In addition to lifestyle changes, there

are a few therapeutic strategies that leverages on environmental

stimuli, such as photobiomodulation, to modulate obesity induced

neuroinflammation and neurodegeneration (130, 131). For

instance, application of near infrared light therapy over HFD

mice head reduced inflammatory cytokines TNF and IL-1b levels,

as well as reduced microglia and astrocytes activation (130). Far

infrared light has also shown effect in reducing IL-6, IL-1b, and
TNF and lower the TLR4 and NF-ĸb pathway, as well as microglial

and astrocytes activation in HFD mice (131). HFD mice with

environmental enrichment (i.e., equipped with nesting material, a

rotating wheel, plastic tubes, and toys) improved neuronal survival

and memory function in hippocampus (132, 133) and prefrontal

cortex (132).
5 Dietary supplements

5.1 Vitamin and trace elements

Supplementation with vitamins and natural dietary

supplements has been shown to exert neuroprotective effects by

reducing neuroinflammation, insulin resistance, and oxidative

stress associated with obesity. The supplementation of Vitamin D

to HFD rats reduced TNF levels in hypothalamus (134) and

hippocampus (135), IL-6 in hypothalamus and hippocampus

(136), IL-1b in hypothalamus (136) and NF-ĸb in hippocampus

(135, 137) and hypothalamus (136). Vitamin D also reduced insulin

resistance in the brains of HFD rats (134). A natural dietary

supplement (NDS) containing curcuma longa, silymarin, guggul,

chlorogenic acid and inulin was shown to reduce the activation of

astrocytes, ROS, lipid peroxidation and NF-ĸb, IL-6 and IL-1b
levels in the cerebral cortex of HFD mice, indicative of antioxidant

and anti-inflammatory effects (138). NDS also exhibited lower

levels of ROS, peroxidation, increased levels of heme oxygenase-1

(HO-1) and increased IR expression (138). Lycopene is another

dietary supplement with BBB penetrating properties that was able

to decrease IL-1b, IL-6, and NF-kB levels within the hypothalamus

of HFD rats (139). Lycopene also greatly increases activities of

glutathione (GSH), SOD and catalase (CAT) and decreases

malondialdehyde (MDA), a by-product of peroxidation caused by

ROS, and hydrogen peroxide in the cerebrum of HFD rats (139).
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Trace elements such as zinc, magnesium, iron plays an

important role in regulating neuronal function (140) and obesity

can lead to their dyshomeostasis thereby contributing to

neurodegenerative diseases (141). It has been shown that zinc

dietary supplementation can penetrate through the BBB and

reduce microglial activation in the cerebral cortex as well as TLR4

expression in the hippocampus in HFD rats, although no significant

effects was demonstrated in astrocytes (142). In another study, zinc

supplementation downregulated phosphorylated signal transducer

and activator of transcription 3 (STAT3), thereby attenuating the

Janus kinase 2/signal transducer and activator of transcription 3

(JAK2/STAT3) pathway and reduced inflammatory state in the

hippocampus (143). Interestingly, the same study show that female

HFD rats were more responsive to zinc treatment compared to male

HFD rats, suggesting the need to understand more on sex

differences and susceptibility to different treatments (143).

Supplementation of magnesium in the forms of magnesium oxide

and magnesium picolinate significantly reduced NF-ĸb levels

within the brains of HFD rats, potentially via the upregulation of

Nrf2, which is an antagonist of the NF-ĸb pathway (144).

Moreover, magnesium supplementation significantly decreased

brain MDA levels and increased antioxidant enzymes SOD, CAT,

and GSH levels in HFD rats (144). Magnesium supplementation

also increased the PI3K/Akt pathway which restored cognitive

impairments in HFD rats (144).
5.2 Polyunsaturated fats

Supplementation of eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA) as forms of omega-3 (w3) reduced
IL-1b and TNF in the hippocampus, striatum and prefrontal cortex

in HFD mice (145). w3 also reduced MDA levels in hypothalamus

and hippocampus, even though reversal of antioxidant enzymes

were not significant (145).w3 also partially reversed the impairment

in mitochondrial function (145). Another study also showed the

anti-inflammatory effects of omega-3 through the reduction of

astrocytes activation and TNF and IL-6 expression in the cerebral

cortex in HFD rats (146). Similarly, other unsaturated fatty acids

such as w9, stearic acid, flax seed and olive oil also significantly

reduced inflammatory states within hypothalamus of HFD rats and

mice (147). a-lipoic acid reduced TNF and IL-6 in HFD

ovariectomized rats (148) and abscisic acid reduced TNF and

microglial numbers in hypothalamus of HFD rats (149).

Palmitoylethanolamide is a naturally occurring fatty acid amide

and has shown effects in reducing NF-ĸb, IL-1b, and TNF in the

hypothalamus and hippocampus while reducing activation of

microglia and astrocytes in HFD mice (150). Interestingly, in a

study comparing the effects between n-6 polyunsaturated fatty acids

(PUFAs) and n-3 PUFAs, it was shown that HFD diet enriched with

n-6 PUFAs has detrimental effects on cognitive function in obese

mice through upregulat ing tol l- l ike receptor-myeloid

differentiation factor-88-nuclear factor kappa-B (TLR-MyD88-

NF-kB) inflammatory signaling pathway, while HFD enriched in

n-3 PUFAs has reduced inflammatory responses (151). In another

study comparing n-6 PUFAs and n-3 PUFAs, it was shown that the
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n-6/n-3 PUFAs ratio of 1:1 alleviated inflammatory response and

insulin resistance in HFD mice (152). Supplementation of butyrate,

a fatty acid produced during microbial fermentation, was able to

reduce TNF, IL-1b and IL-6 levels, as well as an increase in anti-

inflammatory IL-10 levels in the cerebral cortex of HFD mice (153).

Butyrate also protects against oxidative as seen by increased GSH

content, state 3 mitochondria respiration and decreased MDA

levels (153).
6 Biologically derived compounds/
bioactive compounds

6.1 Compounds derived from biological/
natural sources

Bioactive compounds found in naturally derived sources have

been shown to have a protective effect against neurodegeneration.

Anthocyanins, a class of water-soluble flavonoids widely present in

fruits and vegetables, were shown to exhibit various neuroprotective

mechanisms (154, 155). Administration of a natural anthocyanin

pigment derived from purple sweet potato storage roots to HFD

mouse was able to significantly decrease the protein expression of

inflammatory cytokines, COX-2, iNOS and NF-ĸb while increasing

anti-inflammatory cytokines in their brains. It was also able to

inhibit the activation of mitogen-activated protein kinase (MAPK)

pathway which is responsible for inflammation (154). These result

in improved locomotor activity and exploratory behavior (154).

Blackberry anthocyanin extract decreased expression of cytokines

such as TNF and IL-6 in the cortex, thymus and hippocampus of

HFD rats (155). Raspberries containing anthocyanins significantly

reduced cortical IL-6 levels in HFD mice (156). Peeled extract of

Ananas comosus (PEAC) (157) (pineapple) reduced IL-6 in brains

of HFD rats, reduced MDA levels, and lowered anxiety behaviors

and acetylcholinesterase (ACHE) activity (157). Similarly,

vegetables such as Momordica Charanti (bitter melon) decreased

expression of inflammatory cytokines and glial activation within

HFD mice brains, reduced oxidative stress, and ameliorated HFD-

associated changes in BBB permeability (158). Cynara Cardunculus

(Artichoke) leaves and Hericium Erinaceus Mycelium (mushroom)

significantly decreased expression of TNF and IL-1b within the

striatum and hippocampus of HFD (159) and HFHS fed mice (160)

respectively, leading to improved neuronal survival in the dentate

gyrus and spatial memory (160). Compounds like quercetin and

catechin in Momordica charantia, and luteolin in Cynara

cardunculus, may play a role in their protective mechanisms.

However, further investigations are needed to confirm this. The

administration of pomegranate seed oil, juice, fruit and leaves also

reduced oxidative stress within rats that were fed a high fructose

diet and led to lowered ACHE activity (161).

Green tea is known for its anti-inflammatory and antioxidant

properties, which have been studied for their potential in treating

neurodegenerative diseases (162). Polyphenol compound extracted

from green tea such as epigallocatechin gallate (EGCG) lowered

TNF levels through inhibition of the MAPK and NF-ĸb pathways
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via oral administration in mice on a high fat high fructose diet

(163). In addition, it ameliorated insulin resistance and reduced

learning and memory loss (163). Another study using an oral

administration of ECGC to inhibit JAK2/STAT3 pathway in

microglia, reducing microglial activation and the lowering of

TNF, IL-6 and IL-1b levels within the hypothalamus of HFD

mice (164). Other polyphenols derived from green tea such as

epicatechin (EC) and teasaponin have been shown to reduce

microglial activation, TNF and IL-6 levels within the

hippocampus and hypothalamus in HFD mice (165). Daidzein, a

major isoflavone from soybean, have been shown to lower IL-6

levels in a model of obesity induced neurodegeneration consisting

of human fetal hypothalamic gonadotropin-releasing hormone

neurons treated with palmitic acid (166). Quercetin, another

flavonoid, significantly decreased the levels of TNF, IL-1b and

monocyte chemoattractant protein-1 (MCP-1) and microglial

activation markers in the hypothalamus of HFD mice (167). This

was accompanied by the upregulation of HO-1, which protected

against oxidative damage and inflammation (167). Sea-buckthorn

flavonoid treatment in high-fat high fructose mice activated ERK/

CREB/BDNF and IRS-1/AKT pathways and inactivated the NF-kB
signaling (168), thereby preventing neuronal loss and memory

impairment. Another flavonoid compound isolated from sea-

buckthorn, isorhamnetin, inhibited the phosphorylation levels of

JNK, p38, and NF-kb proteins in the mouse brain, thereby

attenuating neuroinflammation and mitigated high fat high

fructose-induced cognitive impairment (169).
6.2 Compounds derived from
medicinal plants

The use of medicinal plants in traditional medicine has

consistently demonstrated beneficial effects over time (170).

Administration of dry leaf powder of Withania Somnifera in HFD

rat brains reduced the astrocytic activation in hippocampus and

piriform cortex, and microglial activation in the hypothalamus

through the attenuation of inflammatory proteins such as iNOS,

MCP-1, COX2, NF-ĸb and cytokines such as TNF, IL-6 and IL-1b
(171). Additionally, Withania Somnifera reduced insulin resistance

through increasing mRNA expression levels of IRS1 and 2 within the

hippocampus and piriform cortex (171). Similarly, Tinospora

cordifolia (herbaceous vine of the family Menispermaceae,

traditional ayurvedic medicine) and Astragalus membranaceus

(Huang Qi, traditional Chinese medicine) also demonstrated effects

in reducing glial cells activation within the hippocampus and

prefrontal cortex in HFD rats (172) and HFD fed-streptozotocin

rats) (173) respectively. Aruncus Dioicus var. Kamtschaticus (dwarf

goat’s beard) and Mori Cortex Radicis (Morus alba root cortex,

traditional Chinese medicine) protected HFD mice against

oxidative stress by increasing antioxidant enzymes (i.e., GSH, SOD

and CAT), reducing ROS and MDA levels within their brains. Both

compounds were also able to increase IRS-1/AKT insulin signaling in

the brains of HFD mice (174, 175). Curcuma Amada (Mango ginger)

administration attenuates the reduction of antioxidant enzymes levels
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together with decreasing MDA in the hippocampus of HFHS rats

(176). Additionally,Mucuna pruriens (velvet bean) have been shown

to reduce IL-6 levels in HFD rats and a reduction in depressive

behavior (177). Vigna angularis (adzuki bean) also reduce

inflammation and improve cognitive function in HFD mice (178).

Thymol, a monoterpene phenol isolated from medicinal herbs, has

exhibited neuroprotective effects through decreasing inflammatory

cytokines level TNF and IL-1b, decreasing oxidative stress, and

increasing the expression of Nrf2/HO-1 pathway (179). The

therapeutic effects of these compounds in mediating

neuroinflammation and oxidative stress have been summarized

in Figure 3.
7 Summary and future perspectives

Recent advancements in nanotherapeutics and nanomedicine

have increasingly been applied to address obesity-induced

neuroinflammation and neurodegeneration. For example, garlic

exosome-like nanoparticles have demonstrated the ability to inhibit
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both systemic and brain inflammation, enhance memory function,

and improve glucose and insulin responses in mice with high-fat diet

(HFD)-induced obesity through oral administration (180). Similarly,

gold nanoparticles administered to HFD mice have been shown to

reduce inflammatory markers and oxidative stress in the brain (181).

Other types of nanoparticles either target gut dysbiosis (180, 182, 183)

or promote autolysosomal functions in the liver and pancreas (69, 70,

184) and potentially exhibit beneficial effects to the brain via the

different axes of body-brain interactions. Some of these nanoparticles

are also able to partially cross the BBB to target the brain (70, 180,

183, 185) and can be further designed to include theranostic

functions (186, 187) as well as improve efficacy in attenuating

neuroinflammation and neurodegeneration (185). It is important to

note that therapies that do not cross the BBB can still be valuable for

testing the effects of preventing neuroinflammation and

neurodegeneration in obesity by targeting the peripheral system

alone (23). However, therapies that circulate through both the

peripheral and central systems are likely more effective, as they can

target both body-to-brain and brain-to-body pathways, offering

broader therapeutic benefits. Vagus nerve stimulation can also exert
FIGURE 3

Therapeutic effects of polyphenol/flavonoid in mediating neuroinflammation and oxidative stress. (A) The anti-inflammatory effects of polyphenol/
flavonoid arise from their ability to inhibit inflammatory signaling pathways, decrease cytokine levels, and attenuate glial activation. (B) Polyphenol/
flavonoid mediate oxidative stress by activating antioxidant response to enhance antioxidant properties and restore CNS cell functions. Created in
https://BioRender.com.
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neuroprotective effects (188) as well as control satiety which can be a

potential therapy to modulate obesity (189).

Given the involvement of multiple organs and cell types in

mediating interactions, it is crucial to dissect gene or protein level

changes in specific cell types to target the pathogenesis of

neuroinflammation and neurodegeneration under obesity conditions.

Inflammatory cells such as macrophages and brain glial cells are key

targets for modulating inflammation and its spread across organs and

cell types, which can lead to neuronal death. To advance precision and

personalized medicine, utilizing multi-omics technologies like

metabolomics and microbiome sequencing (190, 191), as well as data

mining of existing datasets (192, 193), is essential for elucidating disease

mechanisms and developing more effective targeting strategies.
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