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Growth hormone (GH) is the key regulator of insulin-like growth factor I (IGF-I)

generation in healthy states. However, portal insulin delivery is also an essential

co-player in the regulation of the GH/IGF-I axis by affecting and regulating

hepatic GH receptor synthesis, and subsequently altering hepatic GH sensitivity

and IGF-I generation. Disease states of GH excess (e.g., acromegaly) and GH

deficiency (e.g., congenital isolated GH deficiency) are characterized by

increased and decreased GH, IGF-I and insulin levels, respectively, where the

GH/IGF-I relationship is reflected by a “primary association”. When intra-portal

insulin levels are increased (e.g., obesity, Cushing’s syndrome, or due to

treatment with glucocorticoids and glucagon-like peptide 1 receptor agonists)

or decreased (e.g., malnutrition, anorexia nervosa and type 1 diabetes mellitus),

these changes secondarily alter hepatic GH sensitivity resulting in a “secondary

association”with discordant GH and IGF-I levels (e.g., high GH/low IGF-I levels or

low GH/high IGF-I levels, respectively). Additionally, intra-portal insulin regulates

hepatic secretion of IGFBP-1, an inhibitor of IGF-I action. Through its effects on

IGFBP-1 and subsequently free IGF-I, intra-portal insulin exerts its effects to

influence endogenous GH secretion via the negative feedback loop. Therefore, it

is important to understand the effects of changes in intra-portal insulin when

interpreting the GH/IGF-I axis in disease states. This review summarizes our

current understanding of how changes in intra-portal insulin delivery to the liver

in health, disease states and drug therapy use and misuse that leads to alterations

in GH/IGF-I secretion that may dictate management decisions in

afflicted patients.
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Introduction

The growth hormone (GH)-insulin-like growth factor I (IGF-I)

axis plays a critical role in promoting linear growth in children (1),

whereas in adults, its role is primarily of metabolic relevance (2).

Growth hormone is secreted from the pituitary gland and stimulates

IGF-I synthesis and secretion, which in turn inhibits GH secretion via

the negative feedback loop (3). The liver is the major contributor to the

circulation pool of IGF-I (4), the six IGF-binding proteins (IGFBP-1 to

-6) (5) and acid labile subunit (ALS) (6). In the circulation,

approximately 99% of the IGF-I pool is bound with high affinity to

the IGFBPs that circulate in molar excess of IGF-I, thus explaining that

less than 1% circulates as free, unbound IGF-I (7). By serving as carriers

of circulating IGF-I, the IGFBPs and ALS prolong IGF-I half-life and

modulate tissue access, thereby controlling IGF-I action (5, 8, 9).

Insulin, when secreted from pancreatic b-cells, is transported by
the portal vein directly to the liver resulting in high hepatocyte

exposure. Notably, the liver is a major target organ for the metabolic

effects of insulin and exerts a first-pass extraction of up to 85% of

insulin delivered by the portal vein (10). Additionally, because of its

ability to regulate the hepatic sensitivity to GH, intra-portal insulin

delivery has turned out to be an essential co-player for effective GH-

induced hepatic IGF-I synthesis (11–15) (Figure 1A). Indeed, one
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may consider the ability of insulin to control the hepatic GH

sensitivity to be a normal physiological response to changes in

nutrition. During fasting with decreased intra-portal insulin levels,

hepatic GH sensitivity decreases leading to decreased serum IGF-I

levels despite a compensatory increase in GH secretion. Conversely,

overfeeding increases intra-portal insulin levels that enhances

hepatic GH sensitivity to a degree where relatively low GH

secretion is sufficient to maintain ambient hepatic IGF-I synthesis

and secretion, and normal circulating IGF-I levels (7). This GH

response to nutritional changes is physiologically appropriate as it

leads to increased GH-mediated insulin resistance that prevents

hypoglycemia during fasting (16) and decreased GH-mediated

insulin resistance during periods of overfeeding (17). However,

disease states (e.g., obesity, Cushing’s syndrome, type 1 diabetes

[T1D] and anorexia nervosa) and some commonly used drugs [e.g.,

glucocorticoids and glucagon-like peptide 1 receptor agonists (GLP-

1RAs)] that impact pancreatic b-cell insulin secretion can also alter

the GH/IGF-I axis. As GH, IGF-I, and insulin continuously

modulate each other’s secretion and actions during health and

disease, a good understanding of the mechanisms behind these

interactions is of clinical importance.

This review summarizes how changes in hepatic exposure to

intra-portal insulin in health and disease states modulates the GH/
FIGURE 1

Intra-portal insulin changes in health and several disease states. (A) Normal physiological state: intra-portal insulin regulates hepatic GH sensitivity in
the generation of IGF-I; (B) T1D and anorexia nervosa: intra-portal hypoinsulinemia decreases hepatic GH sensitivity resulting in low IGF-I levels, and
due to the lack of negative feedback by IGF-I on the hypothalamus, GH levels increase; (C) Acromegaly: GH excess increases insulin resistance
causing intra-portal hyperinsulinemia that leads to increased hepatic GH sensitivity, and the combination of increased GH and hepatic GH sensitivity
leads to further increase in IGF-I levels; (D) Obesity: peripheral insulin resistance causes compensatory intra-portal hyperinsulinemia that increases
hepatic GH sensitivity resulting in high normal IGF-I levels and low GH levels; (E) Chronic liver disease: the liver fails to produce sufficient IGF-I
resulting in high GH levels due to the lack of negative feedback by IGF-I on the hypothalamus that causes a state of catabolism, lipolysis and
proteolysis, lipolysis and decreased b-cell insulin secretion; (F) Congenital isolated GHD: severe lifelong GHD results in decreased b-cell mass and
insulin secretion, and the combination of decreased GH and intra-portal hypoinsulinemia leads to markedly low IGF-I levels.
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IGF-I axis. We also discuss the relevance of kidney function,

another confounder that may alter the GH/IGF-I axis in a

manner that can replicate findings seen in acromegaly. Finally, we

briefly describe how the GH/IGF-I axis is impacted by liver disease,

weight loss, GH misuse for recreational and athletic performance-

enhancing, GH-releasing hormone (GHRH) analog use in HIV

lipodystrophy, and the alterations of the GH/IGF-I axis in subjects

with congenital isolated GH and IGF-I deficiencies.
Physiology of the GH/IGF-I axis

Physiology

Pituitary secretion of GH is under the control of GHRH

stimulation and somatostatin inhibition, both secreted from the

hypothalamus (3). Growth hormone secretion is episodic and

pulsatile, with levels varying between peaks and troughs, and very

low levels between pulses (18). Growth hormone stimulates IGF-I

synthesis and secretion, which feeds back on the pituitary to inhibit

GH secretion (19, 20). Insulin-like growth factor-I affects the

regulation of GH secretion at the hypothalamus by inhibiting the

GHRH gene expression (19) and stimulating somatostatin secretion

(20), whereas at the pituitary, IGF-I inhibits spontaneous and

GHRH-stimulated GH secretion (3). Unlike the episodic and

pulsatile nature of GH secretion, IGF-I is secreted continuously,

has a longer half-life and exhibits more stable concentrations in the

blood (21). Hence, IGF-I is utilized as a biomarker of GH secretory

status, as its levels reflect the 24-hour integrated GH secretion

(22–24).

Apart from insulin, there are other hormones that can influence

pituitary GH secretion, such as ghrelin, estrogens and androgens.

Ghrelin, a gastric peptide with potent GH secretagogue properties,

amplifies hypothalamic GHRH secretion and synergizes its

pituitary GH-stimulation effects (25). Estrogens stimulate

pituitary GH secretion, but inhibit GH action on the liver by

suppressing GHR signalling (26). Additionally, estrogens can

potentiate ghrelin action (27), while androgens enhance

peripheral actions of GH (28). Finally, pituitary GH secretion

inversely correlates with intra-abdominal visceral adiposity via

mechanisms that depend on free fatty acid (FFA) fluxes (3).
Insulin

Insulin suppresses GH secretion, but the underlying

mechanisms are not well-understood, and are postulated to occur

at several different levels. At the level of the pituitary, in vitro studies

of pituitary cells and in vivo findings in mice harvesting a

somatotroph-specific knockout of the insulin receptor have

demonstrated that insulin directly suppressed pituitary GH

secretion independent of the IGF-I receptor (IGF-IR) (29, 30). At

the level of the liver, in vitro studies using the human hepatoma cell

line (HuH7) as a model have shown that insulin stimulates GHR

protein synthesis and GHR binding of GH in a dose-dependent
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manner (31). Similarly, in vivo studies based on rodents have shown

reduced hepatic GHR expression (32) and GH binding (32, 33)

following induction of diabetes, and that insulin treatment

facilitated GH binding (33). These findings highlight the key role

insulin plays in modulating hepatic responsiveness to GH and

support the notion that insulin plays an important part in

regulating hepatic GH sensitivity via its ability to directly

influence GHR expression and GH binding. However, to the best

of our knowledge, this notion is yet to be demonstrated in humans.

Furthermore, besides regulating circulating IGF-I levels via its

impact on the hepatic GH sensitivity, insulin also inhibits hepatic

synthesis and secretion of IGF-binding protein-1 (IGFBP-1); an

inhibitor of IGF-I action (7). Thus, the relationship between insulin

and IGFBP-I is inverse (34), where IGFBP-1 is low during states of

hyperinsulinemia but elevated during states of hypoinsulinemia (35).

Because IGFBP-1 levels fluctuate throughout the day (36), this has led

to the hypothesis that IGFBP-1 links IGF-I action to nutritional

intake. However, present data indicate that IGFBP-1 serves more as a

“brake” on IGF-I action by inhibiting anabolic signaling during

nutritional depletion than an “accelerator” of IGF-I action during

overfeeding. The rationale is that under normal physiological

circumstances, the decline in IGFBP-1 from its maximally

stimulated overnight fasting level (34) to the level seen after food

intake on a molar basis is relatively modest, and only leads to minor

increases in serum free IGF-I (7, 37, 38). Another explanation is that

the molar concentrations of the other five IGFBPs far exceeds the

concentration of IGFBP-1 (39), and as they are not fully saturated, the

other five IGFBPs are fully capable of sequestering the increase in free

IGF-I secondary to the reductions in circulating IGFBP-1. However,

when IGFBP-1 levels are chronically lowered during prolonged intra-

portal hyperinsulinemia (e.g., obesity, Cushing’s syndrome and

glucocorticoid therapy), the “accelerator” effect of IGFBP-1 is at

play to increase serum free IGF-I (35, 40). Conversely, during

prolonged intra-portal hypoinsulinemia (e.g., malnutrition,

anorexia nervosa, and T1D), IGFBP-1 levels increase several-fold

(7), leading to the increased complex formation between IGF-I and

IGFBP-1 and clear reductions in free IGF-I (“brake” effect) (Figure 2).

There is also now ample evidence demonstrating that insulin

reaching the liver via the portal system plays an important role in

making the liver more GH sensitive to IGF-I generation (23, 41, 42).

Disease states of GH excess (e.g., acromegaly) and GH deficiency

(GHD) (e.g., congenital isolated GHD) are characterized by

increased and decreased GH and IGF-I levels, where the GH/IGF-

I relationship is reflected by a “primary association” (high GH and

high IGF-I for acromegaly and low GH and low IGF-I for GHD).

However, certain disease states and drug therapies can influence

intra-portal insulin levels and invariably alter the relationship

between GH and IGF-I. For instance, when intra-portal insulin

levels are increased [e.g., obesity, Cushing’s syndrome or due to

treatment with glucocorticoids and glucagon-like peptide-1

receptor agonists (GLP-1RA)] or decreased (e.g., anorexia nervosa

and T1D) in disease states, these secondary changes (“secondary

association”) alters hepatic GH sensitivity resulting in discordant

GH and IGF-I levels (high GH/low IGF-I levels and low GH/high

IGF-I levels, respectively).
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Effects of disease states on intra-
portal insulin levels and changes in
the GH/IGF-I axis

High GH and low IGF-I

Type 1 diabetes is an autoimmune disease characterized by

pancreatic b-cell destruction leading to intra-portal hypoinsulinemia.

This disease state provides an ideal model to illustrate the pivotal role of

intra-portal insulin as the key regulator of the GH/IGF-I axis. Patients

with uncontrolled T1D have high GH, low total and free IGF-I levels

(Table 1; Figures 1B, 3), and elevated IGFBP-1 levels (2, 43, 44).

Following subcutaneous insulin treatment, IGFBP-1 decreases while

serum total and free IGF-I increases (43, 44). Notably, changes in

IGFBP-1 and free IGF-I are inversely correlated (44), thereby

emphasizing the “brake” effect of IGFBP-1 on IGF-I action. The

“brake” effect of IGFBP-1 is further substantiated by Attia et al. (45),

who paused continuous subcutaneous insulin infusion (CSII) for 8

hours in patients with T1D, and found that IGFBP- 1 levels increased

by 6-fold, whereas total and free IGF-I levels decreased. Importantly,

intra-portal hypoinsulinization in T1D and its dysregulatory effect on

GH/IGF-I axis (Table 1; Figures 1B, 3) is not fully ameliorated by

conventional subcutaneous insulin administration, most likely because

subcutaneous administration of insulin cannot fully compensate for the

normal portal delivery of insulin to the liver. This notion is supported

by several clinical studies of patients with T1D. Shishko et al. (13)

reported that intra-portal insulin infusion (IPII) was superior to CSII

with regards to suppression of IGFBP-1, and normalization of IGF-I

and 24-hour GH profiles. These findings were corroborated by

Hannaire-Broutin et al. (11), who switched patients from CSII to

intra-peritoneal insulin infusion and reported improvements in serum

levels of total IGF-I and GH-binding protein (GHBP); the latter serving
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as a proxy of hepatic GHR density. These findings indicate that intra-

peritoneal insulin delivery stimulates hepatic GH sensitivity and

improves hepatic IGF-I generation. Hedman et al. (12) demonstrated

that intra-peritoneal insulin increased total and bioactive IGF-I, and

decreased IGFBP-1 levels. In a study by Frystyk et al. (46) comparing

T1D patients, who received combined kidney and pancreas

transplantation, one group received a pancreatic graft allowing portal

delivery of insulin, while the other, a graft with systemic pancreas

drainage. Despite obtaining similar hemoglobin A1c levels, serum total

and free IGF-I were elevated and IGFBP-1 were suppressed in patients

receiving a pancreas with portal drainage. In another study, when

comparing T1D C-peptide positive pre-pubertal children and adults vs

their C-peptide negative counterparts, patients with a residual b-cell
function had higher IGF-I levels despite similar glycemic control (47,

48). In alignment with these findings, the existence of residual

pancreatic b-cell function is of fundamental metabolic importance in

T1D. Collectively, these findings indicate that glycemic control does

not solely influence the GH/IGF-I axis in T1D and that small changes

in hepatic insulinization can exert more meaningful systemic effects

(49). Abnormalities in the GH/IGF-I axis have also been observed in

patients with type 2 diabetes (T2D) (50). Studies have shown that

exogenous administration of recombinant human IGF-I (51, 52) and

IGF-I/IGFBP-3 complex (53–55) improved insulin sensitivity and

decreased insulin requirements in both T1D and T2D patients.

Nevertheless, the clinical implications of high GH and low IGF-I on

long-term metabolic and vascular outcomes in patients with T2D

remain unclear.

Anorexia nervosa is a condition of severe undernutrition

characterized by GH resistance secondary to chronic nutritional

deprivation with resultant high GH and low serum levels of free,

bioactive and total IGF-I (56). Patients with the lowest BMI and fat

mass tended to have the highest serum GH levels (57, 58). The low

IGF-I levels is caused by nutritionally acquired hepatic GH resistance
FIGURE 2

The ability of intra-portal insulin to serve as an “accelerator” and “brake” on hepatic GH sensitivity and free/bioactive IGF-I. In the setting of low intra-
portal insulin levels (e.g., overnight fasting and T1D), there is a “brake” effect leading to reduced hepatic GH sensitivity, increased IGFBP-1 and
reduced free/bioactive IGF-I. In the setting of high intra-portal insulin levels (e.g., feeding and obesity), an “accelerator” effect takes place leading to
increased hepatic GH sensitivity. However, with regards to the “accelerator” and “brake” effects of insulin on serum free/bioactive IGF-I, it appears
that the ability of high intra-portal insulin levels to increase (“accelerate”) serum free/bioactive IGF-I activity is less pronounced compared to the
ability of low intra-portal insulin levels to decrease (“brake”) serum free/bioactive IGF-I activity. Two arrows indicate a marked effect, one arrow
indicates a milder effect.
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from intra-portal hypoinsulinemia (Table 1; Figures 1B, 3), resulting

in down-regulation of the hepatic GHR expression, as inferred from

reductions in circulating levels of GHBP (59), and decreased GH

binding (60). The state of hepatic GH resistance in anorexia nervosa

is further corroborated by the lack of increase in IGF-I following

administration of supraphysiological doses of exogenous GH in

women with anorexia nervosa (61), and only refeeding appears to

able to restore IGF-I levels (56, 59, 62). Therefore, in states of chronic
Frontiers in Endocrinology 05
under-nutrition, hepatic GH resistance is an adaptive response, as

high GH levels are necessary to maintain euglycemia, while low IGF-I

levels conserves energy during periods of nutritional deprivation.

Other non-insulin mechanisms of hepatic GH resistance in anorexia

nervosa have also been described, including fibroblast growth factor-

21, sirtuin 1, triiodothyronine, leptin and testosterone (63).

In the setting of chronic inflammatory disease states (e.g.,

Crohn’s disease or juvenile chronic arthritis), these diseases can
FIGURE 3

Effects of disease states and weight loss on the GH/IGF-I axis. *Weight loss induced by diet, glucagon-like peptide 1 receptor agonist therapy
and surgery.
TABLE 1 Summary of the changes in intra-portal insulin levels in different disease states, after weight loss and after drug therapy on the GH/IGF-
I axis.

Disease states GH IGF-I Intra-portal insulin Hepatic GH sensitivity

Acromegaly ↑↑ ↑↑ ↑ ↑

Chronic kidney disease* ↔/↑ ↔/↑ ↔/↑ ↔/↓

Congenital growth hormone deficiency ↓↓ ↓↓ ↓ ↓

Type 1 diabetes mellitus ↑↑ ↓↓ ↓↓ ↓

Anorexia nervosa ↑↑ ↓↓ ↓↓ ↓

Inflammatory diseases ↑ ↓ ↔/↑ ↓

Obesity# ↓ ↔ ↑ ↑

MASLD ↔/↓ ↓ ↑ ↔/↓

Obesity followed by weight loss^ ↑ ↔ ↓ ↓

Chronic liver disease and catabolic states ↑↑ ↓↓ ↓ ↓

Cushing’s syndrome ↓ ↑ ↑ ↑

Glucocorticoid therapy ↓ ↑ ↑ ↑

Growth hormone misuse for recreational and athletic
performance-enhancing¶

↑ ↑ ↑ ↑

Growth hormone-releasing hormone analogue use in HIV lipodystrophy ↑ ↑ ↔ ↔
↑, increased; ↓, decreased; ↔, unchanged.
*Dependent on the extent of renal dysfunction and age of the patient.
#GH levels tends to be low in obesity and negatively correlates with body mass index.
^Weight loss can be induced by diet, glucagon-like peptide 1 receptor agonist therapy and surgery.
¶Supraphysiological doses of GH are often used.
MASLD; metabolic dysfunction-associated steatotic liver disease.
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also disturb the physiological synergy of the GH/IGF-I axis. The

presence of insulin resistance and elevated pro-inflammatory

cytokines (e.g., tumor necrosis factor-a) induce hepatic GH

resistance (64), causing increases in GH and decreases in IGF-I

levels (Table 1). However, the GH/IGF-I axis in these disease states

generally resets itself following the resolution of the inflammatory

trigger (65).
High GH and high IGF-I

One of the most well-described primary GH disorders of high

GH and high IGF-I is acromegaly (66). In active disease, cellular

responses elicited by high GH levels can overwhelm the intracellular

mechanisms thus attenuating GH signaling (67). Additionally, the

GH stimulatory effect on the liver to increase IGF-I secretion is

accentuated by the direct GH effects in antagonizing insulin action

and suppressing the anti-lipolytic actions of insulin (68). This leads

to peripheral and hepatic insulin resistance and compensatory

intra-portal hyperinsulinemia, which results in increased hepatic

GH sensitivity that aggravates the condition further (Table 1;

Figures 1C, 3). Supportive of this notion, a proof-of-concept

study performed by Coopmans et al. (69) demonstrated that 14-

day exposure to a eucaloric very-low-carbohydrate ketogenic diet as

adjuvant treatment to first-generation somatostatin receptor ligands

decreased IGF-I without increasing GH levels in acromegaly

patients. Although measures to study insulin secretion were not

performed, this study suggested that even in the context of

uncontrolled acromegaly and insulin resistance, insulin still plays

a key role in the regulation of circulating IGF-I levels. The role of

insulin in controlling hepatic IGF-I was further illustrated in a study

of moderately obese subjects undergoing caloric restriction and

receiving GH. In this study, two groups of subjects received a

severely energy-restricted diet. In one group, most of the calories

were supplied as carbohydrate and in the other, as lipid. The

subjects receiving most of their energy as fat had a lesser IGF-I

response to GH, whereas subjects receiving the same caloric intake

as carbohydrate demonstrated greater increases in IGF-I to GH

stimulation (70, 71). When serum insulin or 24-hour urinary C-

peptide were measured, those receiving carbohydrate had higher

serum insulin levels and 24-hour urinary C-peptide. It is also

possible that in active acromegaly, chronic exposure to elevated

IGF-I levels resets IGF-IR responsiveness via the induction of IGF-

IR resistance (70), as it has been demonstrated that prolonged

stimulation with IGF-I induces functional IGF-IR resistance in vitro

through the negative feedback loop (72). Thus, in the setting of IGF-

IR resistance in the pituitary and hypothalamus of acromegaly

patients, the negative feedback loop by IGF-I may be defective

resulting in further IGF-I elevations.

Chronic kidney disease (CKD) is a condition that mimics some

components of the biochemical picture of acromegaly with high

serum GH and total IGF-I levels. The kidneys contribute to GH

degradation and as a result, GH half-life is increased in patients with

CKD due to decreased renal clearance (73) (Figure 4). Some

investigators have suggested that the uremia of CKD is associated

with decreased GH signalling contributing to the state of hepatic
Frontiers in Endocrinology 06
GH resistance (74) (Figure 4). Hence, depending on the extent of

renal dysfunction manifested by the degree of uremia and age of the

patient (75, 76), random fasting GH levels can either be increased or

normal. Impaired kidney function is also associated with increased

IGFBP levels (e.g., IGFBP-1, -2, -3, -4, and -6) (75, 77) and IGFBP-3

protease activity, which subsequently increases low-molecular-

weight IGFBP-3 fragments (78), most likely due to a

compromised renal IGFBP-clearance (Figure 4). The increase in

IGFBP-1 and -2 leads to secondary increases in circulating IGF-I

binding capacity that results in high total IGF-I, but decreased IGF-I

bioactivity (77, 78) (Figure 4). It is also noteworthy that due to the

excess circulating IGFBPs in end-stage renal failure patients on

hemodialysis, GH is only approximately 50% efficient in increasing

bioactive IGF-I compared with healthy subjects (79). Furthermore,

peripheral insulin resistance triggered by uremia, metabolic acidosis

and low-grade inflammation is common in CKD (80), leading to

intra-portal hyperinsulinemia, but does not necessarily increase

hepatic sensitivity to GH because of the reduced hepatic expression

of IGF-I and GHR mRNA (81). Thus, high total IGF-I levels in

CKD is inadequate in suppressing the increased GH levels because

of the lower IGF-I bioactivity resulting in the lack of IGF-I feedback

on pituitary GH secretion (75, 77) (Table 1; Figure 3).
Low GH and low IGF-I

Like acromegaly, GHD can be considered as a primary GH

disorder, where changes on the GH/IGF-I axis are reflected by a

primary association with low GH and low IGF-I (Table 1; Figure 3).

Patients with GHD can present as either childhood-onset (CO-

GHD) or adult-onset (AO-GHD). Furthermore, GHDmay occur as

isolated GHD or with multiple pituitary hormone deficiencies. The

most common cause of CO-GHD is idiopathic and can be isolated

or associated with other pituitary hormone deficiencies, while AO-

GHD is frequently acquired from hypothalamic-pituitary tumors

and/or secondary to their treatment (82). Because IGF-I exerts anti-

inflammatory actions and is important for peripheral glucose
FIGURE 4

Deranged GH/IGF-I axis in patients with CKD [adapted from
Kamenicky et al. (77)]. *Random fasting GH levels can either be
increased or normal, depending on the extent of renal dysfunction
manifested by the degree of uremia and age of the patient.
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uptake, metabolic disturbances in these patients can, in part, be

explained by the low IGF-I levels (83). Furthermore, due to deficient

GH secretion, the ability of GH to antagonize the anti-lipolytic

effect of insulin is reduced, leading to accumulation of visceral

adipose tissue (VAT). These effects promote insulin resistance and

intra-portal hyperinsulinemia that increases hepatic GH sensitivity

to maintain some degree of IGF-I secretion. Conversely, CO-GHD

patients tend to be less insulin-resistant than AO-GHD patients

(84), and their IGF-I levels are generally lower than their AO-GHD

counterparts due to relatively lower intra-portal insulin levels. Thus,

insulin resistance leading to elevated portal insulin levels may

explain, at least partially, the overlap in individual IGF-I levels

between older GH-deficient subjects and GH-sufficient subjects (85,

86). This is clinically relevant, as IGF-I is generally less reliable of a

biomarker for screening adults above 60 years with GHD and is a

better screening and diagnostic biomarker in GHD in subjects with

disease onset in childhood or early adulthood (86).
Low GH and normal/high IGF-I

Obesity is a common yet serious condition associated with

blunted spontaneous and stimulated GH secretion (87, 88), i.e., a

state of relative GHD. However, serum total and bioactive IGF-I are

relatively preserved despite reductions in GH levels (89) (Table 1;

Figures 1D, 3). Previous studies have found that GH levels in

patients with obesity was decreased nearing the lowest levels of

normal range in men and women (90), with levels in those with

morbid obesity comparable to adults with GHD (91). As weight loss

restores GH levels (92–94), this indicates that the blunted GH

secretion is an effect rather than a cause of obesity. This paradox

may be explained by the increased insulin resistance and the

compensatory intra-portal hyperinsulinemia causing increased

hepatic GH sensitivity that increases serum IGF-I and blunts

pituitary GH secretion via the negative feedback loop. The

increased hepatic exposure to insulin may also explain why obese

subjects following exogenous GH administration respond better

with higher increases of IGF-I than lean subjects; the main concept

behind the IGF-I generation test (95). Additionally, elevations in

FFAs in obesity contributes to GH suppression, as experimental

lowering of FFA levels reverses obesity-associated impairment of

GH secretion (96). Collectively, it may be hypothesized that obesity

induces feedback inhibition of pituitary GH secretion by increasing

non-fasting serum FFA levels and the associated insulin resistance

that causes compensatory intra-portal hyperinsulinemia and

IGFBP-1 suppression, with the net result being low GH and

normal IGF-I levels. Whether this unique pattern worsens the

obese state or constitutes a favorable adaptation remains unclear,

and the physiological and pathophysiological implications of the

altered GH/IGF-I axis in obesity remain uncertain with GH neither

being the cause nor the solution to reverse obesity. Notably, in mice

studies, GH secretagogue receptor suppression in adipose tissues

protects against obesity and insulin resistance (97), whereas IGF-I

increases skeletal muscle insulin sensitivity (98). Thus, it is possible

that the combination of low GH and normal IGF-I serves as a

physiological mechanism aimed at preserving the GH/IGF-I
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anabolic effects and minimizing the insulin-antagonistic effects of

GH without compromising the positive IGF-I metabolic effects.

The hypothalamic-pituitary-adrenal and the GH/IGF-I axis are

also closely associated, as cortisol is required for physiological GH

secretion. In states of hypercortisolemia (e.g., Cushing’s syndrome),

decreased GH secretion with normal to elevated serum IGF-I levels

have been reported (99, 100) (Table 1; Figure 3). English et al. (101)

assessed serum IGF-I levels in patients with Cushing’s disease and

any changes following post-operative remission compared to

matched controls being investigated for suspected pituitary

dysfunction (e.g., nonfunctioning pituitary adenomas). These

investigators found that untreated Cushing’s disease patients had

low GH and high IGF-I levels without clinical features of acromegaly,

and after surgery with disease remission, serum IGF-I levels

normalized. Magiakou et al. (100) demonstrated decreased 24-hour

GH secretion despite the mean IGF-I SDS being +1.0 in patients with

Cushing’s disease, and Bang et al. (102) reported elevated IGF-I levels

in 40% of patients with pituitary and adrenal Cushing’s syndrome.

Similar to obese patients, patients with Cushing’s syndrome also

responded with supranormal IGF-I levels following administration of

exogenous GH (95, 103). An interesting observation that deserves

further exploration is the inherent ability of intra-portal insulin to

regulate hepatic GH sensitivity that remains preserved despite

prevailing changes in peripheral insulin resistance. This observation

has been reported in earlier studies in obese and hyperinsulinemic

subjects, and in patients with Cushing’s syndrome, in whom hepatic

sensitivity to GH is increased when compared to lean subjects (95,

103). However, the exact molecular mechanisms responsible for this

preserved effect remains unclear.

Further evidence of hypercortisolemia decreasing GH and

increasing IGF-I comes from data of exogenous glucocorticoid

therapy in humans. Excess glucocorticoid exposure suppresses

GH secretion mainly through the increase in hypothalamic

somatostatin tone, whereas low cortisol levels causes relative

GHD that is reversible by glucocorticoid therapy (“Giustina’s

effect”) (Figure 5) (104). Other mechanisms include increased

insulin resistance induced by high-dose glucocorticoids that

increases intra-portal insulin, decreases IGFBP-1 that increases

free IGF-I, and direct glucocorticoid effects in increasing hepatic

IGF-I synthesis and decreasing hepatic insulin clearance (105).

Prummel et al. (106) demonstrated that prednisone therapy

rapidly increased serum IGF-I levels; however, these levels

promptly returned to baseline after prednisone discontinuation

followed by suppressed GH levels. Ramshanker et al. (107)

demonstrated that even though prednisolone increased serum

total and bioactive IGF-I, post-IGF-IR signaling was inhibited

indicating that prednisolone-induced increases in serum IGF-I

levels is not accompanied by increased IGF-I action. This

observation aligns with the findings by Unterman et al. (108),

who utilized a porcine cartilage bioassay and demonstrated that

glucocorticoid treatment in children decreased IGF-I activity.

Finally, there are also data showing that even though serum IGF-I

is acutely increased following prednisolone, this is not the case in

lymph-like tissue fluid (107), suggesting that glucocorticoids exert

distinct, compartment-specific effects on IGF-I action. Collectively,

these findings raise the possibility that the mechanism of
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glucocorticoids increasing serum IGF-I levels is by directly inducing

post-IGF-IR signaling resistance.
Effects of weight loss

Short-term fasting is an important stimulator of GH secretion

(109, 110) (Table 1; Figure 3). The increase in GH secretion

precedes the reduction in IGF-I levels that is only evident by the

third day of fasting, thereby ruling out the increase in GH during

fasting is related to reductions in total IGF-I. However, when

measuring free and bioactive IGF-I, it appears that serum levels

decreased concomitantly with increases in IGFBP-1 and GH. Thus,

during short-term fasting, changes in free and bioactive IGF-I

rather than total IGF-I appear to be at least in part responsible

for the increased GH secretion (35). Conversely, despite weight loss

and concomitant improvements in insulin sensitivity, neither low

caloric diets (111, 112), intermittent fasting (113), nor long-term

calorie restriction (114) exerts any consistent inhibitory impact on

serum IGF-I levels. One explanation for this may be that as long as

the intake of protein is sufficient, serum IGF-I levels will remain

relatively stable (115), i.e., the intake of calories per se does not alter

serum IGF-I levels. In the last two decades, bariatric surgery has

been highly successful in treating obesity (116), and changes in the

GH/IGF-I axis has been extensively studied in this context. Changes

in GH appear to be consistent, with several studies reporting

increased GH levels following surgery (92–94), whereas the

response of total IGF-I to bariatric surgery is more variable (117).

We have reported that serum total IGF-I decreased 1 week and 3

months after bariatric surgery, whereas serum bioactive IGF-I

remained unchanged during that period, and after 12 months,

both variables returned to pre-surgery levels (117). The variability

in total IGF-I may be due, in part, to major changes in selective

IGFBPs during the post-bariatric surgery period, i.e. the proteolysis

of IGFBP-3 (118). Another possible explanation may be the

presence or absence of metabolic dysfunction-associated steatotic
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liver disease (MASLD), which can directly influence hepatic IGF-

I generation.
Effects of MASLD, chronic liver disease
and GLP-1RA therapy

Metabolic dysfunction-associated steatotic liver disease

(MASLD) is highly prevalent in obese individuals with insulin

resistance (119, 120). However, in contrast to simple obesity, where

GH is low and IGF-I within normal range (7, 89), subjects with

MASLD demonstrate variable changes in the GH/IGF-I axis

depending on disease severity (121–123) (Table 1). In simple

steatosis and early metabolic dysfunction-associated steatohepatitis

(MASH), many of the body composition and metabolic features

predisposing to MASLD/MASH contribute to decreased GH and

IGF-I levels. With increasing hepatic dysfunction, the GH signaling

cascade and hepatocyte IGF-I synthesis becomes impaired (124).

When cirrhosis develops, a state of hepatic GH resistance ensues

resulting in high GH and low IGF-I levels (125) (Figure 1E).

Cianfarani et al. (126) and Dichtel et al. (127) have shown that

circulating IGF-I levels are related to the histological stages of

MASLD. In a recent study aimed at investigating IGF-IR and GHR

physiology in patients with MASLD, Osganian et al. (128)

demonstrated that GHR and IGF-IR expression hepatocytes were

comparable across MASLD severity. However, the IGF-I gene

expression decreased with increasing severity of MASLD,

suggesting that reductions of hepatic IGF-I production in patients

with MASLD may be related to the severity of the damaged

hepatocytes. It is also possible that insulin resistance is the link

between low GH levels and MASLD, as insulin directly suppresses

pituitary GH secretion (29, 30). Furthermore, inflammation is a

characteristic feature of MASLD (129). Thus, MASLD patients

contrast to patients that have progressed to liver cirrhosis, as these

patients are more susceptible to developing sarcopenia, a chronic

catabolic state with increased energy expenditure, decreased appetite,
FIGURE 5

An integrated model of the biphasic, dose-dependent effect of glucocorticoids on GH secretion [adapted from Mazziotti et al. (104)].
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low protein synthesis, and the development of ascites or

portosystemic shunts that contribute to muscle atrophy (130). In

these patients, when total hepatocyte mass decreases, IGF-I synthesis

and glycogen stores decrease (131) resulting in low glucose and intra-

portal insulin levels, and a state of hepatic GH resistance ensues. This

inevitably results in low IGF-I and high GH that may stray into the

acromegaly range (132, 133) and this catabolic state is comparable to

prolonged fasting and malnutrition states (Figure 1E). Therefore,

IGF-I deprivation contributes to the progressive malnutrition in

chronic liver disease patients, increasing the vulnerability of the

liver to an inflammatory and oxidative microenvironment that

increases the risk of cirrhosis development.

Obesity is currently a growing public health concern (134) and

as weight loss improves many obesity-related complications (135),

there is a great deal of interest in developing weight-loss drugs. One

of the most commonly studied weight-loss drugs, GLP-1RAs, were

initially developed to treat T2D by reducing postprandial glucose

excursions, augmenting glucose-dependent insulin release,

inhibiting glucagon secretion and delaying gastric emptying (136,

137). However, GLP-1RAs are also effective in promoting weight

loss by decreasing appetite and hunger, and increasing satiety (91).

Heinla et al. (138) demonstrated that administration of a single dose

short-acting GLP-1RA exenatide increased GH levels, whereas

administration of long-acting GLP-1RA liraglutide daily for 21

days elicited increased GH levels with no changes in IGF-I levels

in healthy subjects. Acute GLP-1RA infusion has been shown to

decrease IGFBP-3 levels in humans, and this effect may explain the

observed decrease in total IGF-1 levels (139). Alternatively, changes

in GH and IGF-I levels may secondarily reflect the decrease in body

weight following liraglutide treatment. Taken together these results

provide further support that GLP-1RAs can alter the functioning of

the GH/IGF-I axis.
Effects of GH misuse for recreational
and athletic performance and GHRH
analogue use in HIV lipodystrophy

The notion that GH enhances physical function due to its

anabolic and lipolytic properties, albeit unproven, and difficulty of

detection is what drives its misuse for recreational and athletic

performance enhancement to confer a competitive advantage.

Athletic performance depends on muscle strength and the energy

required to increase muscle function. In recreational athletes,

supraphysiological GH doses are often used either alone or in

combination with other doping substances (140), and studies

have shown that GH improves anaerobic sprint capacity, but not

strength and endurance (141), and increases GH, IGF-I and fasting

insulin levels (142, 143) mimicking those seen in acromegaly

patients (Table 1).

Given the evidence that a pulsatile pattern of GH secretion is

important for many of its physiological actions, a strategy to

augment physiological pulsatile GH secretion without inducing

the side-effects of supraphysiological GH doses has been studied

in HIV lipodystrophy with excess VAT and decreased endogenous
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GH secretion (144, 145). Tesamorelin, a synthetic GHRH analog,

that stimulates the synthesis and release of endogenous GH, is the

first and, so far, only treatment indicated for the reduction of excess

abdominal fat in HIV lipodystrophy (144). In a systematic review of

10 clinical trials in patients with HIV lipodystrophy, tesamorelin

was effective in reducing VAT and increasing lean body mass and

did not alter subcutaneous adipose tissue (146), and increased GH

and IGF-I while insulin and glucose levels are unchanged indicating

preservation of insulin sensitivity (147–150) (Table 1). However,

this effect is transient and reversed upon discontinuation of therapy,

and the long-term risk-benefit analysis of its administration is

still unclear.
Learning lessons from the Ecuadorian
Laron and Brazilian
Itabaianinha cohorts

The state of severe GH excess and GHD exists on a spectrum

from complete to partial. In states of mild GH excess and mild GHD

with varying intra-portal insulin levels, the effects of insulin on the

GH/IGF-I axis may not be too apparent. However, conditions

caused by genetic mutations that affect growth are associated with

a wide range of phenotypic abnormalities that may affect glucose

handling, primarily due to diminished pancreatic b-cell mass and

subsequent intra-portal hypoinsulinemia. The Ecuadorian Laron

and Brazilian Itabaianinha cohorts with congenital mutations in the

GH and GHRH receptors, respectively, both provide a unique and

arguably the purest examples to evaluate the effects of chronic

severe IGF-I and both severe GH and IGF-I deficiency, respectively,

with severe hypoinsulinemia being the common denominator in

both cohorts (151, 152) (Table 1; Figures 1F, 3). However, despite

low intra-portal insulin levels, low IGF-I and increased fat mass and

decreased lean body mass, their glucose tolerance and insulin

sensitivity remains unaffected and in fact, is comparable to

normal controls (151, 152). These cohorts serve as compelling

examples of the lack of direct GH counter-regulatory effects on

pancreatic b-cell insulin secretion, thus implying that circulating

insulin exerts its glucose-lowering effects more efficiently in these

subjects compared with healthy controls.
Conclusions

Changes in intra-portal insulin levels play an intricate yet

permissive role in the regulation of the GH/IGF-I axis by either

stimulating or suppressing hepatic GH sensitivity and hepatic IGF-I

generation, probably via an insulin-mediated regulation of the hepatic

GHR expression. Disease states that affect intra-portal insulin levels by

increasing insulin resistance causing compensatory intra-portal

hyperinsulinemia or by decreasing pancreatic b-cell insulin secretion

causing intra-portal hypoinsulinemia results in changes to hepatic

IGF-I synthesis and secretion, and consequently changes in GH levels

via the negative feedback loop. Hence, changes in intra-portal insulin

levels need to be taken into consideration to correctly interpret the
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alterations in the GH/IGF-I axis in healthy and disease states as this

helps the clinician in formulating the decision-making process of

when and how to perform appropriate diagnostic work-up and

whether to offer treatment to improve any accompanying

metabolic consequences.

For example, if a patient presents with elevated GH and IGF-I, it

is important to rule out underlying impairment in renal function as

elevated serum GH and IGF-I levels may also be present in patients

with CKD, and not diagnose the patient as having acromegaly. For a

patient with untreated Cushing’s disease or on high-dose

glucocorticoid therapy, an elevated serum IGF-I may be observed,

but levels decrease following remission or cessation of

glucocorticoid therapy, respectively; hence mildly elevated IGF-I

levels in these patients does not imply pathological GH excess. As

for patients with GHD and concurrent diseases with intra-portal

hypoinsulinemia (e.g., T1D and inflammatory diseases), higher GH

doses are required to normalize IGF-I levels, which has cost

implications. Conversely, in patients with anorexia nervosa, even

supra-physiologic GH doses (mean maximum daily dose: 1.4 mg/

day) may not be sufficient to normalize IGF-I levels (61) indicating

the important role of hepatic GH sensitivity in successful IGF-I

generation. In patients with obesity, there is no evidence for

metabolic benefits of GH therapy in the absence of true GHD

(153); instead, insulin resistance may worsen. Growth hormone

secretion tends to return to normal after weight loss indicating that

low GH is a consequence, not a cause, of central obesity (94), and

therefore GH therapy should not be used to promote weight loss. As

for individuals misusing GH for recreational and athletic

performance-enhancing purposes, GH, IGF-I and insulin levels

are increased suggesting that insulin sensitivity is worsened and

“iatrogenic acromegaly” is induced, especially if used long-term.

Conversely, for individuals with HIV lipodystrophy treated with

tesamorelin, GH and IGF-I levels are increased but insulin

sensitivity remains preserved.

While IGF-I remains the biomarker that best reflects

endogenous GH secretion, when there is a discordancy with GH

and IGF-I levels, it is important for the clinician to be mindful of the

associated changes in intra-portal insulin delivery to the liver when

interpreting these results in the context of health and when deciding
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treatment regimens in disease states. Finally, some commonly used

drugs (e.g., glucocorticoids and GLP-1RAs) can also affect intra-

portal insulin levels that modulate the GH/IGF-I axis either by

increasing or decreasing hepatic GH sensitivity, as reflected by the

discordant GH and IGF-I levels.
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