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Exploring the causal effects of
serum lipids and lipidomes
on lewy body dementia: a
Mendelian randomization study
Qingan Fu1†, Guanrui Pan1†, Qingyun Yu1†, Zhekang Liu2,
Tianzhou Shen1, Xiaowei Ma1 and Long Jiang1*

1Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University,
Nanchang, Jiangxi, China, 2Rheumatology and Immunology Department, The Second Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi, China
Background: Lewy body dementia (LBD) is a neurodegenerative disorder

characterized by the accumulation of Lewy bodies, which primarily composed

of misfolded alpha-synuclein (aS). The development of LBD and APOE4 subtypes

is thought to be associated with disorders of lipid metabolism. In this study, we

investigated the causal relationship between serum lipids, liposomes and LBD

using a two-sample Mendelian randomization (TSMR) method.

Methods: A TSMR analysis of genome-wide association study (GWAS) data for 8

serum lipids, 179 lipidomes components, LBD and its subtypes was performed,

using inverse variance weighted as the primary outcome. To ensure robustness,

the sensitivity analyses including MR Pleiotropy RESidual Sum and Outlier,

Cochran’s test, leave-one-out method and funnel plots were performed.

Results: In this study, we found that low-density lipoprotein cholesterol (LDL-C)

(OR=1.45, 95% CI=1.19-1.77, P<0.001) and remnant cholesterol (RC) (OR=2.64,

95% CI=1.64-4.28, P<0.001) had significant positive causal effects on LBD, and

RC also had a positive effect on LBD in carriers of the APOE4 gene. The results of

lipidome analysis showed that phosphatidylcholine (PC) (O-16:0_20:4) levels

(OR=0.86, 95% CI=0.75-0.98, P=0.02) and PC (O-18:1_20:4) levels (OR=0.76,

95% CI=0.65-0.89, P <0.001) had negative causal effects on LBD, whereas

phosphatidylinositol (PI) (18:1_20:4) levels had a positive causal effect on LBD

(OR=1.19, 95% CI=1.02-1.39, P=0.03). For LBDwith APOE4 carriers, high levels of

PC (16:1_18:0) and PC (O-18:2_18:1) had a significant positive effect, while high

levels of PC (O-16:1_18:0), phosphatidylethanolamine (PE) (O-18:2_18:1),

sphingomyelin (SM) (d38:2), and triacylglycerol (TAG) (56:5) significantly

reduced the risk. No heterogeneity and horizontal pleiotropy were observed in

sensitivity analysis.
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Conclusion: Elevated LDL-C and RC levels are significant risk factors for LBD,

with RC also impacting APOE4-carrying LBD. Glycerophospholipids play a crucial

role in the pathogenesis of LBD, but the specific components that play a role

differ from those with the APOE4 carries. These findings highlight the importance

of lipid metabolism in LBD and APOE4 subtypes.
KEYWORDS

lewy body dementia, apolipoprotein E, serum lipid, lipidomes, Mendelian
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Introduction

Lewy body dementia (LBD) is a neurodegenerative disease,

which is the second most common form of clinical dementia after

Alzheimer’s disease, accounting for 4-8% of all dementia cases

(1, 2). The formation of Lewy bodies, which are intracellular

deposits that form in dopaminergic neurons of the central

nervous system, is a unique pathological feature of LBD (3). The

primary constituent of Lewy bodies is the misfolded, aggregated

form of alpha-synuclein (aS), which is found in pathogenic

inclusions (4). The main clinical features of LBD include early

fluctuations in attention, hallucinations, and Parkinson’s syndrome

(5). Existing studies have shown that LBD occurs in elderly

individuals, with the majority of patients presenting with clinical

symptoms between the ages of 70 and 85 years (6). The aging of the

world population is increasing rapidly, the number of patients with

LBD will continue to increase, creating a greater demand for care

and a growing burden on health care resources globally (3).

Therefore, an in-depth investigation of the pathogenesis of LBD

and the identification of potential risk factors for LBD

are imperative.

There is a special isoform of LBD, called the apolipoprotein E

(APOE) allele-carrying LBD isoforms. The apolipoprotein E

(APOE) gene, which is involved in lipid transport and

metabolism, mainly has three different alleles (APOE2, APOE3,

APOE4) in human being (7). In particular, carriers of the APOE4

allele are usually prone to lipid metabolism disorders are therefore

more susceptible to other diseases (8–10). The most common

diseases associated with APOE4 allele include Alzheimer’s disease

and cardiovascular disease (11). Furthermore, recent studies have
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indicated that the APOE4 allele status in Parkinson’s disease (PD)

may be an important predictor of cognitive decline in Parkinson’s

disease, its effect appears to be independent of gender, as in the

findings of Umeh et al. (12). In addition, increased aggregation of

aS proteins in the brains of LBD patients is strongly associated with

carrying the APOE4 allele (13). However, to date, no study has

clearly demonstrated the potential relationship between lipids and

disease risk in LBD patients carrying the APOE4 allele or whether

this potential relationship is associated with abnormal changes in

the aS protein.

Recently, serum lipid levels have been shown to be associated

with the occurrence and development of LBD. In a previous cross-

sectional study, it was found that higher serum low-density

lipoprotein cholesterol (LDL-C) concentration and lower high-

density lipoprotein cholesterol (HDL-C) concentration will lead

to an increased risk of LBD (14). Another Mendelian

randomization (MR) study also confirmed the positive genetic

causal effect of serum LDL-C level on the LBD risk (15).

However, the existing studies included fewer types of lipids and

did not comprehensively explore lipids composition. Lipidome

components such as phospholipids and cholesterol are major

sources of cell membrane components. Changes in cell membrane

components have been shown to promote the aggregation of aS
into amyloidogenic fibrils (16). Studies demonstrates that specific

lipid fractions may also have an important part to play in the

pathogenesis of LBD (17). However, few research studies have

investigated the link between lipid fractions and LBD.

MR is predominantly used to explore causal relationships

between exposures phenotypes and outcomes phenotypes from a

genetic perspective. It can minimize the impact of confounders and

the interference of negative causal effects (18, 19). Preliminary

research has been conducted in previous studies to examine the

effect of common lipids on the Lewy bodies dementia, but these

studies remain incomplete. Therefore, the present study used a two-

sample MR (TSMR) approach and try to provide insight into the

causal effects of eight lipids and liposomes subdivided into 179

subfractions on LBD and its APOE4 gene-carrying subtypes. Hope

the results could be instrumental for risk prediction, early

prevention, and precision targeted therapy for LBD and

its subtypes.
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Method

Study design

Among the existing studies, we explored causal associations

between eight conventional lipids (LDL-C, TC, HDL-C, Lp(a), TG,

APOB, RC and APOA) and a subdivided set of 179 lipidomes

composition fractions with LBD or APOE4 gene-carrying subtypes

of LBD based on a TSMR approach. Our study strictly followed

three basic principles: (1) IVs are strongly associated with the

exposure; (2) IVs are independent of confounder; (3) IVs are not

associated with outcomes directly, only influence outcomes through

exposures. A simple flowchart is presented in Figure 1, and the

study design complied with the requirements of the Mendelian

Randomization of Observational Studies with Enhanced

Epidemiology Reporting (STROBE-MR) as described in the

Supplementary Materials (20).
Data sources

Sources of LBD GWAS data
GWAS data on LBD from a multicenter study (6), the

researchers recruited 6,618 participants of European ancestry

from multiple centers and cohorts in Europe and North America

(Ncase=2,591, Ncontrol=4,027). In contrast, GWAS data for APOE

4 gene-carrying-positive LBD came from another study of LBD
Frontiers in Endocrinology 03
subtypes, which enrolled 1,180 patients and 657 healthy controls

with a total of 5,912,161 SNPs (21).

Sources of serum lipids GWAS data
The GWAS data for the eight lipids analyzed in this paper were

all retrieved in IEU OpenGWAS project: LDL-C (n=201,678), TC

(n=344,278), HDL-C (n=403,943), TG (n=441,016), APOB

(n=439,214), RC (n=115,078) and APOA (n=393,193). The

majority of these GWAS data were from participants of European

origin, all raw data studies were ethically reviewed and all

participants signed informed consent forms, all GWAS dataset

can be found in Supplementary Table 1.

Sources of 179 lipidomes GWAS data
The lipidomes dataset were obtained from a comprehensive GWAS

study which performed mass spectrometry on 7174 Finnish participants

(2595 males and 4579 females) based on the GeneRISK cohort (22). A

total of 179 lipidomes were obtained in the study, which have been

indexed in the GWAS database (registry numbers GCST90277238-

GCST90277416). The data contained four major lipids: Glycerolipids

(GL), Sphingolipids (SL), Glycerophospholipids (GP), and Sterols (ST),

with a total of 13 lipid subclasses covered by the four lipids: GL:

Triacylglycerol (TAG) n=38; Diacylglycerol (DAG) n=6; SL: Ceramide

(Cer) n=4; Sphingomyelin (SM) n=11; GP: Phosphatidylinositol

(PI) n=10; Phosphatidylethanolamine-ether (PEO) n=8;

Phosphatidylethanolamine (PE) n=5; Phosphatidylcholine-ether (PCO)

n=27; Phosphatidylcholine (PC) n=46; Lysophosphatidylethanolamine
FIGURE 1

The flowchart contains a brief summary of the exposure, outcome, methodology, and sensitivity analyses for this two-sample Mendelian
randomization; with some elements cited from https://alzheimersnewstoday.com. (Created with BioRender.com). APOE, apolipoprotein E; LD, linkage
disequilibrium; MR, Mendelian randomization; SNP, Single-Nucleotide Polymorphism; IVW, Inverse variance weighted.
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(LPE) n=3; Lysophosphatidylcholine (LPC) n=5; ST: Cholesteryl ester

(CE) n=15; Cholesterol (Chol) n=1.
Selection of instruments

The strict inclusion exclusion criteria was implemented when

screening IVs, including only SNPs strongly associated with the

exposure phenotype (P<5×10-8), excluding SNPs associated with

the outcome (P<5×10-6), and further filtering IVs by chain

imbalance (window size = 10,000 kb, r2 threshold = 0.001). We

also removed duplicates, SNPs with missing information, and

palindromic sequences and applied the PhenoScanner website to

assess whether IVs were associated with other risk factors to avoid

confounding effects. Evaluating the strength of effect of IVs and

reducing bias, we calculated the F-value of IVs using the formula

(F= R2*(N-2)/1-R), and excluded all weak IVs with an F<10 (23).
Statistical analyses

In this study, Inverse Variance Weighted (IVW), Weighted

Median, Maximum likelihood and MR-Egger were used to infer

causality, the IVW results were the main results of TSMR (24). To

avoid the results being affected by heterogeneity and horizontal

pleiotropy, A series of sensitivity analyses were performed, and

further removed outliers from the eligible SNPs using MR-PRESSO

to avoid horizontal pleiotropy (25). The Q-value of the Cochrane

test was used to detect heterogeneity in IV, and the symmetry of the

funnel plot can indicate that horizontal pleiotropy is not significant

(26). The MR-Egger’s intercept was used to test the heterogeneity of

SNPs, and the same sensitivity analysis was performed in the reverse

MR analysis to guarantee the reliability of the results. All the data in

this study were analyzed through the “TwoSampleMR”, and “MR-

PRESSO” packages (R version 4.3.0).
Results

Causal relationship between serum lipids
and LBD and its APOE4 gene
carrying subtype

To investigate the causal relationship between serum lipids and

LBD and APOE4 gene-carrying subtypes, we first performed TSMR

analyses with eight lipid components as exposures and LBD as well

as APOE4 gene-carrying LBD subtypes as outcomes. The results of

the analysis showed a significant positive causal effect of LDL-C

(OR=1.45, 95% CI=1.19-1.77, P<0.001) and RC (OR=1.45, 95%

CI=1.19-1.77, P<0.001) on the development of LBD, whereas only

RC had a positive causal effect on the development of APOE4-

carrying LBD (OR=2.64, 95%CI=1.64-4.28, P<0.001). (Figure 2). To

avoid the influence of reverse causality effect, reverse TSMR analysis

was then performed with LBD and APOE4 gene harboring LBD as

exposure and lipids as outcome, and did not find any significant

effect of LBD and subtypes on the any lipid component
Frontiers in Endocrinology 04
(Supplementary Table 2). Subsequently, a series of sensitivity

analyses were performed. The results showed Cochran’s Q test

did not find explicit heterogeneity, while the leave-one-out method

and funnel plot demonstrated that the results were not affected by

single SNPs and horizontal pleiotropy (Supplementary Table 3,

Supplementary Figures S1-S3).
Causal effects of lipidomes on LBD risk

On the basis of the results of eight lipid composition analyses,

we recognized that the LDL-C and RC has a causal effect on LBD,

but which lipid component plays a key role is still unclear.

Therefore, the present study used data from 179 lipidomes to

explore in depth the causal effect between lipid composition and

LBD. As shown in Figure 3, when 179 lipidomes were used as the

exposure, the results indicated that PC (O-16:0_20:4) levels

(OR=0.86, 95% CI=0.75-0.98, P=0.02), PC (O-18:1_20:4) levels

(OR=0.76, 95% CI=0.65-0.89, P <0.001) had a negative causal

effect on LBD, whereas PI (18:1_20:4) levels (OR=1.19, 95%

CI=1.02-1.39, P=0.03) had a positive causal effect on LBD

(Supplementary Table 4). Subsequent sensitivity analyses of the

TSMR results in Cochran’s Q test for PC (O-16:0_20:4) (Q=23.91,

P=0.47), PC (O-18:1_20:4) (Q=20.26,P=0.44) and PI (18:1_20:4)

(Q=23.21,P=0.51), indicated that there is no significant

heterogeneity in our results, and subsequent sensitivity analyses

proved that there is no horizontal pleiotropy (Supplementary

Table 5, Supplementary Figures S4-S6).
Causal effects of lipidomes on APOE4 gene
carrying LBD risk

Similarly, we used the lipidomes as an exposure and APOE4

gene-carrying LBD as an outcome to explore the causal effect of the

lipidomes on the latter, and the results are shown in Figure 4. The

MR analysis results are dominated by the IVW method, which in

the figure is located in the outermost circle of the image, with

brighter red color representing a more statistically significant IVW

result. It can be observed that the lipid components related to

APOE4 gene-carrying LBD is different to LBD, with higher PC

(16:1_18:0) (OR=2.05, 95% CI=1.31-3.19, P=0.001) and PC

(O-18:2_18:1) (OR=1.62, 95% CI=1.08-2.45, P=0.02) as

significant risk factors for the development of APOE4 gene-

carrying LBD. Meanwhile higher PC (O-16:1_18:0) (OR=0.50,

95% CI=0.30-0.84 P=0.01), PE (O-18:2_18:1) (OR=0.70, 95%

CI=0.49-0.98, P=0.04), SM (d38:2) (OR=0.68, 95% CI=0.48-0.97,

P=0.03) and TAG (56:5) levels (OR=0.70, 95% CI=0.50-0.99,

P=0.04), on the other hand, were able to significantly reduce the

risk of developing APOE4 gene-carrying LBD (Supplementary

Table 6). The sensitivity analyses showed no significant

heterogeneity was observed in the MR-Egger and Cochran’s Q

test for IVW, and the leave-one-out results and funnel plots with

symmetric distribution demonstrated the absence of aberrant SNPs

and horizontal pleiotropy (Supplementary Table 7, Supplementary

Figures S7–S12).
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Discussion

This is the first study to systematically assess the causal

relationship between in vivo lipids, lipid composition and the risk

of LBD and LBD with APOE4 alleles. First, our findings suggest that

higher LDL-C and RC levels significant cause an increased risk of

LBD. Second, among the LBD subtypes of APOE4 gene carriers,

only RC levels have a causal positive relationship. Third, elevated

levels of PC (18:1_20:4) increase the risk of LBD, while elevated

levels of PC (O-16:0 20:4) and PC (O-18:1_20:4) have protective

effect for LBD. Fourth, for LBD patients with APOE4 alleles,

elevated levels of PC (16:1 18:0) and PC (O-18:2_18:1) lead to an

increased risk, and elevated levels of PC (O-16:1_18:0), PEO

(O-18:2_18:1), SM (d38:2), and TAG (56:5) significantly reduce

the risk. Our study reveals the causal effects of multiple lipids on

LBD and its APOE4 subtypes, enriching researchers’ understanding

of lipids in the pathogenesis of LBD disease.

The results of the present study are consistent with the findings

of previous studies showing that elevated LDL-C and RC levels are

positively and causally associated with the development of LBD
Frontiers in Endocrinology 05
(15). Previous studies have shown that the vast majority of

cholesterol in the brain is normally produced by astrocytes and

oligodendrocytes. The blood-brain barrier (BBB) prevents

potentially neurotoxic peripheral serum cholesterol from entering

the brain, thus protecting neuronal function (27). In patients with

hypercholesterolemia, researchers have observed an increase in

serum–brain barrier permeability with increasing serum

cholesterol concentrations, including LDL-C and RC, to cross the

serum–brain barrier and enter and accumulate in the central

nervous system (28, 29). Since the brain is unable to degrade

cholesterol, this excess cholesterol is mainly excreted by oxidizing

cholesterol to produce oxysterols . Among these, 27-

hydroxycholesterol (27-OHC), a class of oxysterols, plays an

important role in promoting the aggregation and diffusion of aS
(30, 31). The abnormal aggregation of aS is usually considered one

of the main pathological features of LBD. In contrast, we did not

observe any causal relationship between LDL-C and APOE4 allele-

carrying LBD, and elevated RC levels were the only risk factor for

APOE4-carrying LBD. This finding suggested that LDL-C is not a

risk factor for neurodegenerative diseases in individuals with
FIGURE 2

Two-group forest plot of TSMR results of the causal effect of eight serum lipids on LBD and APOE4 gene-carrying LBD. HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Lp(a), Lipoprotein (a); TC, total cholesterol; TG, triglyceride; RC, residual
cholesterol; MR, Mendelian randomization.
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APOE4 carriage but is only an independent risk factor for LBD risk.

This conclusion is supported by a recent study that concluded that

elevated RC levels have a potentially stronger role in APOE4-

associated dementia risk than do common lipid components (e.g.,

TC and LDL-C). In addition, another study showed that LDL-C is

similarly unrelated to APOE genotypes in the pathophysiology of

Alzheimer’s disease (32). However, the exact mechanisms need to

be further investigated (33).

The interpretation of the causal effect of lipid composition on

LBD and the APOE4 gene is more complex and involves mainly the

interaction of aS with the lipid components of phospholipid

membranes (34). When aS binds and interacts with lipid

membranes, aS undergoes a conformational change, i.e., the

formation of insoluble oligomers by increasing the a-helix
content, which in turn leads to the development of LBD (35).

Many studies have shown that the relationship between the action

of aS and lipid membranes depends on the lipid composition of the
Frontiers in Endocrinology 06
membrane, and our findings provide strong support for this view.

PC, one of the most abundant phospholipids in cell membranes, has

the complex effect on LBD and APOE4 allele-carrying LBD in this

study. The presence of PC resulted in a decreased parallel b-folds in
the secondary structures of oligomers, while the number of a-
helices and disordered protein secondary structures increased. The

interaction between aS and PC may also alter the structure and

function of cell membranes (36). And in a lipidomic study of

Parkinson’s disease, which cerebrospinal fluid from patients with

PD was shown to contain increased levels of PCs, including PC (O-

18:3_20:3), PC (14:0_18:2) and PC (O-20:2_24:3) (37). Our findings

also revealed that in the case of APOE4 allele carriage, the presence

of other phospholipids, including PIs and SMs may also be closely

associated with the pathogenesis of disease. SMs are implicated in

the pathogenesis of aS, leading to increased aS expression and

affecting its membrane binding and aggregation in neurons (38).

The presence of PI in phospholipid vesicles significantly increases
FIGURE 3

Circular heatmap of the causal effect of 179 liposomes components on LBD, with color shades representing the magnitude of significance. The
circular heat map represents the four MR methods, including IVW, MR-Egger, Weighted Median, Maximum likelihood, in order from the outer ring to
the inner ring, and the innermost scatter distribution represents the direction of the causal effect.
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the binding of soluble aS to the membrane and leads to extensive

phospholipid bilayer disruption and aggregate formation (39).

However, the specific mechanism needs further study.

Our findings support that LDL-C and RC are high risk factors

for LBD, and dietary modification of LDL-C and RC levels in

addition to medications may have a positive impact on prognostic

outcomes. In a recent study, APOE4 carriers with higher dietary

cholesterol intake were found to have a poorer lipid profile, which

was associated with a higher risk of dementia and cognitive

impairment. These associations were not observed in non-APOE4

allele carriers. The findings suggest that unfavorable lipid profile

may be an important clinical indicator of dementia risk, especially

in individuals with the APOE4 genotype. Dietary modifications to

reduce the risk of dementia in the early stages of the disease include

reducing the intake of saturated fats, trans fats and cholesterol to

achieve healthy lipid levels (32). However, the current evidence does

not sufficiently validate the use of omega-3 fatty acid supplements as
Frontiers in Endocrinology 07
a treatment for Alzheimer’s disease (40). Moreover, their efficacy in

diminishing the occurrence of Alzheimer’s is also not convincingly

demonstrated (41). In addition, the composition and structure of

cell membrane lipid components can be altered in a targeted

therapeutic manner, such as by up- or downregulating the

expression of specific lipids, enzymes, or transcription factors, to

treat disease, an approach known as membrane lipid therapy

(MLT). For example, docosahexaenoic acid (DHA) has been used

in research to treat Alzheimer’s disease. By design, 2-hydroxy-DHA

(LP226A1, Lipopharma) was tested in a severe Alzheimer’s disease

model animals (5XFADmice). And 4 months of treatment with this

synthetic unsaturated fatty acid increased new neuron production

and restored cognitive scores on the radial maze test to control

values (42). Our study identified lipidome components that are

closely associated with the development of LBD and APOE4 allele-

carrying LBD. It will help researchers develop targeted precision

therapies for LBD in the future.
FIGURE 4

Circular heatmap of the causal effect of 179 lipidomes components on the LBD carried by the APOE4 gene, with color shades representing the
magnitude of significance. The circular heat map represents the results of four MR methods, including IVW, MR-Egger, Weighted Median, Maximum
likelihood, in order from the outer ring to the inner ring, and the innermost scatter distribution represents the direction of the causal effect.
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The advantage of this study is that the LBD GWAS data used is

the largest and only sample data set. Although the original data was

from multicenter and the participants spanned Europe and the

United States, no heterogeneity, pleiotropy, and reverse causality

were observed in a series of sensitivity analyses and reverse MR,

which ensures the reliability of the results in our research. Similarly,

the shortcomings of the study should not be overlooked. First, it

only established causality between certain lipids and LBD or the

APOE4 allele, without delving into mechanisms which need further

basic research. Second, due to the limitations of GWAS data, we

were unable to perform detailed subgroup analyses based on sex

and age, and new GWAS data containing variables such as sex and

age need to be utilized for more personalized subgroup studies in

the future. Finally, the GWAS data for the lipidomes used in the

study were from the Finnish people. Therefore, it needs to be

further verified by large multicenter RCT studies in different

ethnicities and regions.
Conclusion

In this TSMR study, our findings provide evidence for a causal

relationship between lipids, lipid composition and the risk of LBD

and APOE allele-carrying LBD. The results suggest that certain

lipids, such as LDL-C, RC, PI, and some PCs, are associated with

increased LBD risk, while some subset of PCs may offer

protection. In addition, different lipid components also affect

the risk of APOE allele-carrying LBD, but their components are

completely different with LBD. Our findings pave the way for a

better understanding of serum lipids’ impact on LBD and APOE

allele-carrying LBD, hope to guide the development of specific

treatments. However, further research is needed to clarify the

detailed mechanisms of lipids influence on LBD and APOE allele-

carrying LBD risk.
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