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The hypothalamus lies at the intersection of brain and hormonal mechanisms

governing essential bodily functions, including metabolic/body weight

homeostasis and reproduction. While metabolism and fertility are precisely

regulated by independent neuroendocrine axes, these are tightly connected,

as reflection of the bidirectional interplay between the energy status of the

organisms and their capacity to reproduce; a connection with important

pathophysiological implications in disorders affecting these two crucial

systems. Beyond the well-characterized roles of key hormones (e.g., leptin,

insulin, ghrelin) and neuropeptides (e.g., melanocortins, kisspeptins) in the

integral control of metabolism and reproduction, mounting evidence has

pointed out a relevant function of cell energy sensors and lipid sensing

mechanisms in the hypothalamic control of metabolism, with prominent roles

also for metabolic sensors, such as mTOR, AMPK and SIRT1, in the nutritional

regulation of key aspects of reproduction, such as pubertal maturation. We

provide herein a synoptic overview of these novel regulatory pathways, with a

particular focus on their putative function in the metabolic control of puberty,

and delineate new avenues for further exploration of the intricate mechanisms

whereby metabolism and reproduction are tightly connected.
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1 Introduction: neuroendocrine
mechanisms for the control of body
weight and reproduction

Metabolism and reproduction are two closely related bodily

functions essential for the survival of the organism and the species,

respectively. An unequivocal indication of this interaction is that

significant disruptions in energy balance, ranging from

malnutrition to obesity, are often associated not only with several

metabolic alterations, but also with pubertal disorders and reduced

reproductive capacity in adulthood (1, 2). Similarly, certain

reproductive disorders, such as hypogonadism, may exacerbate an

altered metabolic state, such as that bound to obesity (3).

Although the mechanisms linking energy balance and

reproduction are intricate and not fully understood yet, it is

known that they primarily have a neuroendocrine basis. This

involves the complex interaction between specific peripheral

signals, particularly metabolic hormones, and molecules generated

by the central nervous system, mainly neurotransmitters and

neuropeptides (2, 4). The coordination of this interaction occurs

primarily in the hypothalamus, a small brain region located below

the thalamus that operates as an integrator hub for these signals and

produces appropriate homeostatic responses to support the proper

functioning of our organism (5).

Leptin, ghrelin, and insulin are essential hormones regulating

energy balance and reproductive function. While these hormones

have effects at local and peripheral levels, it has been conclusively

documented that their primary influence on energy balance and

reproductive function occurs through their actions at the

hypothalamic level (2, 4, 6). These hormones are now known to

directly or indirectly affect specific groups of neurons that play a key

role in controlling metabolism and reproduction, which are mainly

located in the hypothalamic arcuate nucleus (ARC) or preoptic areas

(2). These include: (i) orexigenic neurons co-expressing neuropeptide Y

(NPY) and agouti-related peptide (AgRP) – i.e., NPY/AgRP neurons;

(ii) anorexigenic neurons co-expressing the peptide products of

proopiomelanocortin (POMC), such as alpha-melanocyte-stimulating

hormone (a-MSH), and the cocaine- and amphetamine-regulated

transcript (CART) – i.e., POMC/CART neurons; (iii) neurons

producing gonadotropin-releasing hormone (GnRH), which are

essential for the ultimate activation of reproductive axis at puberty

and its regulation in adulthood; and (iv) neurons modulating the

activity of GnRH neurons, including prominently neurons producing

the neuropeptides kisspeptins – named Kiss1 neurons, which are

potent stimulators of the reproductive axis (7).

In addition, neuronal populations at other key hypothalamic

nuclei, such as the ventromedial (VMH) and dorsomedial (DMH)

hypothalamic nuclei, as well as the lateral hypothalamus, have been

shown to participate in the control of feeding, energy balance and

thermoregulation (8), as well as their interplay with reproductive

hormones, such as estrogens (9). Similarly, the relevance of the

suprachiasmatic nucleus (SCN) in the regulation of circadian

rhythms modulating reproductive and metabolic function (10), as

well as the key role of the ventral premammillary nucleus (PMV), as

an important integrating node of metabolic and reproductive status,
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have been documented (6). Altogether, these heterogeneous neuronal

components and the peripheral signals they interact with constitute

the main neuroendocrine pathways involved in controlling energy

balance and reproduction.

In the same vein, a very recent study, which integrated information

from seventeen single-cell RNA sequencing datasets into a mouse

hypothalamic cell atlas (named HypoMap), has highlighted the

complex heterogeneity of the neuronal populations and

subpopulations within the hypothalamus and the existence of

differential transcriptional responses to specific conditions of

metabolic stress, such as fasting (11). This heterogeneity is not

restricted to neuronal populations, but affects also glial cells,

including astrocytes, oligodendrocytes and their precursor cells,

microglia, ependymal cells and tanycytes, which are highly relevant

in the modulation of hypothalamic circuits (12). Indeed, compelling

evidence has been presented for the involvement of these glial cells in

the control of energy balance, includingmodulation of leptin responses,

nutrient sensing and metabolite transport (12, 13), and more recently

in the modulation of the reproductive axis by metabolic cues, via

kisspeptin-mediated astrocyte signaling (14). Altogether, these

heterogeneous neuronal and glial components illustrate the high

degree of complexity and sophistication of the mechanisms involved

in controlling energy balance and reproduction.

Notably, while the biological actions of the metabolic hormones

and neuropeptides indicated above have been extensively

characterized in the last three decades, in recent years, novel

molecular mechanisms for the homeostatic control of bodily

metabolism and reproduction, operating at the hypothalamus,

particularly in some of the above neuronal systems, have been

unveiled. Part of these recent developments are summarized here,

with a specific focus on new pathways putatively involved in the

metabolic control of puberty and fertility.

2 Role of energy sensors in the
hypothalamic control of
energy homeostasis

Energy sensors are molecular and cellular systems that perceive

the energetic state of a cell or, when operating in specific cellular

pathways, of an organism. A caloric nutrient sensor is typically a

protein that identifies a specific macronutrient, prompting a cellular

response that alters nutrient distribution, animal feeding behavior

and/or its metabolic rate. These sensors can operate intracellularly,

detecting nutrient flux within metabolic pathways, or extracellularly,

perceiving nutrients in the surrounding environment (15, 16). The

intricate network of hormonal and neural pathways linking multiple

nutrient-sensing organs —such as the intestine, pancreas, liver,

adipose tissue, and the brain— suggests a vast communication

among nutrient-sensing cells across diverse organ systems (17).

Among others, recent studies have demonstrated that pathways,

such as AMPK, mTOR and SIRT1, the latter as prominent

member of the sirtuin family, are pivotal elements in adaptive

responses to changes in body nutritional status and energy reserves,

therefore contributing to modulate the energetic and reproductive

status of the organism (18).
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2.1 AMP-activated protein kinase and the
neuroendocrine control of metabolism

AMPK is an ubiquitous, highly-conserved kinase, composed of

one catalytic subunit (a) and two regulatory subunits (b and g) (19).
AMPK acts as a bona fide cell energy sensor, since its activity is

driven by changes in the abundance of adenine nucleotides, i.e.,

AMP, but also ADP and ATP, within the cells. Thus, conditions of

energy deprivation result in enhanced activity of AMPK, which in

turn represses ATP-consuming phenomena, while it enhances

ATP-producing processes. This leads to the restoration of AMP:

ATP and ADP: ATP ratios, therefore contributing to energy

homeostasis at the cellular level. Importantly, besides this

function, acting in specific hypothalamic circuits, AMPK plays a

fundamental role in the maintenance of whole-body energy balance,

by promoting feeding and catabolic reactions, whereas it suppresses

anabolic pathways systemically (17, 20).

In line with this systemic function, in recent years, AMPK-

mediated pathways in the hypothalamus have been shown to

operate as the main canonical route whereby multiple endocrine

factors actively participate in the precise regulation of whole-body

metabolism and weight homeostasis. This pivotal role as metabolic

mediator has been documented not only for essential metabolic

hormones, such as those coming from the adipose tissue (leptin),

gut (ghrelin, glucagon-like peptide-1, GLP-1), gonads (estrogens)

and thyroid gland (thyroid hormones), but also metabolites, such as

glucose (21). Thus, AMPK activity in the hypothalamus seemingly

orchestrates a diversity of responses, including stimulation of food

intake and modulation of food preferences, regulation of glucose

homeostasis (22), suppression of brown adipose tissue

thermogenesis (23), and regulation of hepatic function (23), just

to highlight its most prominent functions. Interestingly, according

to experimental studies, these activities appear to display a

considerable degree of nucleus-specificity within the

hypothalamus, so that while the function of AMPK to enhance

food intake seems to reside mainly in the ARC, the capacity of

AMPK to suppress thermogenesis is located mainly at the VMH

(17). While the cellular substrate for these differential actions is yet

to be fully characterized, it has been shown that AMPK signaling

within ARC POMC and AgRP neurons is essential for feeding

control (24) whereas neurons expressing steroidogenic factor 1

(SF1) in the VMH play a crucial role in mediating the

thermogenic-regulatory actions of AMPK, via sympathetic

regulation of brown adipose tissue activity (25).
2.2 The mammalian target of rapamycin
and the neuroendocrine control
of metabolism

mTOR is an evolutionary conserved factor belonging to the

PI3K-related kinase family. It forms two multimeric complexes,

mTORC1 and mTORC2, through their respective interactions with

integral proteins, RAPTOR and RICTOR (26). Activation of

mTORC1 leads to the inactivation of mTORC2 and vice versa;
Frontiers in Endocrinology 03
thus, the mTORC1/mTORC2 tandem represents an essential

component of a negative feedback loop to ensure proper

signaling. At the cellular level, mTORC1 senses and becomes

activated by nutrient abundance, by detecting different cues, from

amino acids to cell stress and energy status, therefore linking these

to cell growth and proliferation (27). Accordingly, mTOR and

AMPK operate in a reciprocal manner, so that conditions that

activate mTOR suppress AMPK activity, and vice versa (28).

At the systemic level, mTOR signaling in the mediobasal

hypothalamus becomes activated by leptin, as a signal of energy

abundance (29), and mediates, at least partially, the feeding-

promoting effects of ghrelin, as putative signal of energy deficit

(30), thereby coordinating appropriate feeding and metabolic

responses (31). In addition, disruption of mTORC2 in neurons

led to increased fat composition, adiposity, and impaired glucose

tolerance, while deletion of RICTOR in POMC neurons resulted in

obesity, hyperphagia, and glucose intolerance (32), therefore

supporting a relevant role of central mTOR signaling in the

integral control of metabolism. Of note, as it is the case also for

AMPK, the hypothalamic actions of mTOR seem to display some

degree of nucleus- and cell-specificity, as demonstrated by the fact

that mTOR activity in the ARC and VMH was oppositely regulated

by fasting and leptin deficiency (33). These findings, together with

the interplay of brain mTOR with other metabolic hormones, such

as nesfatin-1 (34), illustrate the complexity of the mode of action of

mTOR-dependent pathways in the central control of metabolism.
2.3 SIRT1 and the neuroendocrine control
of metabolism

Sirtuins are a family of regulatory proteins, highly conserved

across evolution, whose initial member is Sir2, identified in

Saccharomyces cerevisiae (35). In mammals, up to seven sirtuins,

including nuclear and mitochondrial proteins, have been identified;

SIRT1 being the most prominent and best characterized member of

the sirtuin superfamiliy (36). From a functional standpoint, SIRT1

acts as a NAD+-dependent deacetylase (37), with capacity to erase

acetylation marks from histones and other protein targets. Thereby,

SIRT1 can epigenetically modulate multiple biological processes,

seemingly including lifespan and healthy ageing (35). Notably,

SIRT1, as well as other sirtuins, operate as a genuine cell energy

sensor, since their activation is dictated by fluctuations in the

cellular levels of the cofactor, NAD+, and its related intermediary

products, NADH and nicotinamide. Thus, conditions of energy

deprivation, such as caloric restriction, that enhance NAD+/NADH

and NAD+/nicotinamide ratios, are known to cause accumulation

and activation of SIRT1 in different tissues, including the brain.

Indeed, while SIRT1 is expressed in multiple peripheral tissues,

where it is involved in different metabolic adaptive responses in the

pancreas, muscle, liver and adipose tissue, SIRT1 is known to be

expressed also in the CNS, where it has been shown to participate in

the regulation of systemic homeostatic responses, including food

intake and energy expenditure (38). In fact, in adulthood, high

expression levels of SIRT1 have been reported in different

hypothalamic nuclei, including the VMH, dorsomedial and
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paraventricular nuclei, as well as the ARC (39). On the latter, SIRT1

has been shown to be expressed and operate in essential neuronal

populations in the control of metabolic homeostasis, such as POMC

and AgRP neurons (38, 40). Moreover, hypothalamic SIRT1

signaling has been shown to participate in conveying the effects of

key metabolic hormones, such as ghrelin (41), while SIRT1 in

POMC neurons mediates, at least partially, the effects of leptin on

PI3K signaling in this neuronal population and leptin-induced

remodeling of white adipose tissue (42). Of note, SIRT1 protein

levels are elevated in the hypothalamus in conditions of energy

deprivation (39); a profile that is mirrored by hypothalamic AMPK

levels, which are also elevated under energy deficit. In fact, SIRT1

and AMPK are both fuel-sensing molecules that reciprocally

activate each other, therefore contributing to mediate metabolic

adaptations to conditions such as energy deprivation (43).

Importantly, the hypothalamic actions of SIRT1 are not restricted

to ARC neuronal populations; thus, ablation of SIRT1 in SF1

neurons, abundantly expressed in the VMH, is bound to

metabolic perturbations, while over-expression of SIRT1 in this

neuronal population protects from diet-induced obesity and insulin

resistance (44). In addition, other sirtuins, such as SIRT3 and

SIRT6, have been shown to operate at the hypothalamic, and

particularly in POMC neurons, to contribute to energy

homeostasis and adaptive responses to lessen the metabolic

impact of obesity (38, 45, 46).
3 Role of energy sensors in the
hypothalamic control of reproduction

Hypothalamic circuits engaging cellular energy sensors, such as

AMPK, mTOR and SIRT1, have been shown also to participate in

the metabolic regulation of the neuronal pathways governing

puberty onset and the reproductive axis. Indeed, while GnRH

neurons in the basal forebrain operate as the main output

pathway for the brain control of puberty and fertility, the

secretory activity of GnRH neurons is exquisitely dependent on

the regulatory actions of upstream regulatory circuits, including

prominently Kiss1 neurons, producing kisspeptins, which

participate in conveying the modulatory effects of metabolic cues

on GnRH neurons. Accordingly, the activity of these sensors has

been shown to regulate, either directly or indirectly these key

neuronal populations, as a means to funnel the influence of

nutritional and metabolic signals to the centers governing the

reproductive axis.
3.1 AMPK and the metabolic control of
puberty and reproduction

The potential function of AMPK in the regulation of the

reproductive axis by metabolic cues has been explored in recent

years, with a particular focus on its role in the modulation of Kiss1

and GnRH neurons. In line with the capacity of conditions energy

deficit to enhance AMPK activity in the hypothalamus,
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pharmacological activation of brain AMPK has been shown to

impair ovarian cyclicity (47) and substantially delayed puberty

onset in female rats (48). Initial fragmentary evidence suggested

that this effect might involve an inhibition of the Kiss1 system since

the adipose hormone, adiponectin, was shown to suppress Kiss1

expression via induction of AMPK activity in the GnRH cell line,

GT1-7 (49). This possibility was later documented by a body of

experimental evidence from genetically-modified mouse lines.

Thus, congenital ablation of the AMPKa2 subunit from Kiss1-

expressing cells resulted in resilience to the inhibitory impact of

fasting (50), supporting the view that AMPK activity in Kiss1

neurons conveys a negative influence in conditions of food

deprivation bound to the inhibition of the reproductive axis. In

the same line, we have demonstrated that AMPK signaling in Kiss1

neurons has a discernible role in the metabolic control of puberty,

since conditional elimination of the AMPKa1 subunit from Kiss1

neurons protected pubertal female mice from the delay in the onset

of puberty induced by post-weaning subnutrition (48). In good

agreement, our data in immature female rats documented that

pharmacological activation of central AMPK suppressed Kiss1

expression in the ARC, together with its action in terms of

induction of delayed puberty (48).

Interestingly, the activity of AMPK in the metabolic modulation

of puberty and the reproductive axis is not restricted to its action in

Kiss1 neurons, but also involves regulatory effects in GnRH

neurons. Thus, conditional ablation of AMPKa1 from GnRH

neurons resulted in accelerated puberty and enhanced responses

to exogenous kisspeptin, both in pubertal and adult mice,

suggesting that, in normal conditions, AMPK is also suppressing

GnRH activity (51). In addition, mice lacking AMPK activity in

GnRH neurons also displayed partial resistance to the suppressive

impact of energy deprivation on the gonadotropic axis (51). Of

note, the nutritional control of GnRH neurons also involves the

regulatory actions of the G protein-coupled-receptor kinase-2,

GRK2, as putative negative modulator of kisspeptin receptor in

situations of subnutrition (52). Thus, conditions of energy deficit

can suppress GnRH neurons via AMPK- and GRK2-

dependent mechanisms.
3.2 mTOR and the metabolic control of
puberty and reproduction

As a putative signal for energy abundance, positively modulated

by leptin, the eventual role of mTOR signaling in the hypothalamus

in the metabolic control of puberty was explored by our group over

a decade ago (53). Indeed, our experimental data in female rats

documented that intact brain signaling via mTOR is mandatory for

normal pubertal progression. Moreover, pharmacological blockade

of central mTOR by rapamycin not only suppressed ARC

expression of Kiss1, which is a major puberty-promoting signal,

but prevented also the permissive effects of leptin on puberty onset.

Thus, in immature female rats subjected to chronic subnutrition,

the pubertal delay induced by the state of negative energy balance

could be rescued by simultaneous treatment with leptin, but this

permissive response was abrogated by co-administration of
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rapamycin, as a means to inhibit mTOR activity (54). Admittedly,

however, it remains unsolved if mTOR conducts such permissive/

positive effect directly in Kiss1 neurons and/or operates in upstream

afferents to Kiss1 cells. Notwithstanding, this evidence points to a

major role of brain mTOR signaling in the metabolic control

of puberty.

In this context, the function of several up-stream regulators of

the mTOR pathway in the control of Kiss1 neurons has been more

recently explored using functional genomics. Conditional ablation

of the catalytic subunit of PI3K in Kiss1 neurons has been shown to

reduce ARC kisspeptin content and to suppress reproductive

function in mice, predominantly in females (55). Importantly,

PI3K has been proposed as an integratory hub for conveying the

actions of metabolic hormones with key roles in reproductive

function, such as leptin. More recently, the function of PTEN (for

phosphatase and tensin homolog) has been studied in Kiss1 neurons

using also genetic ablation approaches; PTEN is known to inhibit

PI3K activity. Thus, conditional elimination of PTEN from Kiss1

neurons caused hypertrophy of Kiss1 neurons and enhanced

kisspeptin fiber density in mice, which was associated with

exaggerated mTOR activity, especially in females (56). From a

functional standpoint, these responses were linked to a situation

of refractoriness to the negative impact of fasting on luteinizing

hormone (LH), as main hormonal signal for gonadal stimulation.

These findings are compatible with a function of PTEN to inhibit

the PI3K/mTOR pathway in Kiss1 neurons, whereby it can

contribute to the suppression of the reproductive axis in

situations of nutritional deprivation.
3.3 SIRT1 and the metabolic control of
puberty and reproduction

In line with its putative role as co-regulator of AMPK and fuel-

energy sensor at the hypothalamus, SIRT1 has been documented to

participate in the control of central components of the reproductive

axis. The first evidence for such a reproductive dimension came

from observations in Sirt1 null mice, which documented a state of

hypogonadotropic hypogonadism, due to impaired migration of

GnRH neurons (57), that renders Sirt1 KO mice infertile (58), due

to a dramatic reduction in the number of GnRH neurons (57) and

in the levels of circulating gonadotropins (59). This function of

SIRT1, however, seems to be engaged in early developmental events,

rather than dynamic regulatory actions linked to fluctuations in the

whole-body metabolic status. The latter, however, has been

documented by the demonstration of a relevant role of

hypothalamic SIRT1, particularly in ARC Kiss1 neurons, in the

regulation of puberty and its modulation by nutritional cues.

Expression analyses in immature female rats documented that

hypothalamic SIRT1 protein levels decrease, whereas Kiss1

expression increases during the transition between the infantile

and pubertal period. Hypothalamic SIRT1 levels increased in

models of pubertal undernutrition, bound to pubertal delay,

whereas conditions of early obesity, linked to accelerated puberty,

were associated with decreased SIRT1 content in the hypothalamus

(60). Interestingly, SIRT1 protein content in Kiss1 neurons
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mirrored these profiles in the models of subnutrition (with

increased SIRT1 levels) and obesity (with decreased SIRT1

content). In good agreement, enhanced SIRT1 activity, caused

either by a pharmacological agent or virogenetic over-expression

in the ARC, delayed puberty onset in female rats; a response that

was associated with a suppression of Kiss1 expression after

pharmacological activation of SIRT1. Overall, this evidence

suggests that SIRT1 actually operates as a repressor of Kiss1,

which is modulated by the nutritional status, and can transduce

part of the modulatory effects of either over- or undernutrition on

pubertal timing.

The molecular substrate for the regulatory effects of SIRT1 on

puberty is likely connected with its capacity to epigenetically modify

the chromatin landscape of the Kiss1 promoter, mainly in the ARC.

Thus, during the normal pubertal transition, SIRT1 is evicted from

the Kiss1 promoter, allowing also the removal of other epigenetic

repressors, such as EED, therefore adopting a permissive chromatin

configuration that enhances Kiss1 transcription. In conditions of

accelerated puberty due to early over-feeding, this eviction is

advanced, leading to precious elevation of Kiss1 expression. In

contrast, in conditions of subnutrition, removal of SIRT1 from

the Kiss1 promoter is deferred and this locks the chromatin

landscape in a repressive configuration that reduces Kiss1

expression and, thereby, delays puberty (60). Therefore, SIRT1

represents a link between nutritional status and the epigenetic

machinery regulating the Kiss1 promoter and pubertal

maturation. Of note, while no evidence has been presented for a

similar role of hypothalamic SIRT1 in the nutritional control of

adult reproductive function, our preliminary observations strongly

suggest that SIRT1 signaling in Kiss1 neurons in the rostral

hypothalamus in adult female rats, that play a prominent role in

the control of ovulation, is also relevant for the suppression of the

pre-ovulatory surge of gonadotropins, as major hormonal trigger of

ovulation, in conditions of energy deficit. Finally, it is interesting to

note that over-expression of a mutant form of SIRT1, devoid of

deacetylase activity, in astrocytes lowered Kiss1 expression and

perturbed reproductive function, pointing out that SIRT1

signaling in astroglia might also regulate the Kiss1 system in mice

(61). Whether, as is the case in energy homeostasis, other members

of the SIRT family participate also in the control of the reproductive

axis and its modulation by metabolic cues, is yet to be elucidated.
4 Role of lipid sensing mechanisms in
the hypothalamic control of
energy homeostasis

Besides the role of hypothalamic energy sensors in the control

of metabolic homeostasis and the nutritional modulation of puberty

and fertility, emerging evidence supports that relevant

hypothalamic metabolic pathways, including those governing

feeding and body weight, may sense lipid nutrients and lipid

mediators, driving also adaptive responses to maintain energy

homeostasis. This phenomenon is termed hypothalamic “lipid

sensing”, whose molecular mechanisms and interactive players
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are yet to be fully disclosed (62). In this context, there is a growing

body of evidence supporting that fatty acid (FA) sensing in

hypothalamic neurons provides signals regarding the metabolic

state of the body, therefore enabling precise adjustments for

whole-body energy homeostasis (63). Among the putative

mechanisms involved, FA receptors have been recently recognized

as relevant players in this phenomenon, since these are capable to

bind and/or transduce the actions of FAs (64), likely providing an

additional layer of sophistication to the brain systems for fine-

tuning metabolism. In addition, other factors involved in lipid

sensing, including transporters, nuclear receptors and lipid

mediators, also contribute to the hypothalamic control of

metabolic homeostasis, as briefly summarized in this section.
4.1 Hypothalamic FA receptors and the
neuroendocrine control of metabolism

FAs are indispensable constituents of the plasma membrane

and a highly efficient energy source. In addition, free FA (FFA) are

of special relevance due to their capacity to operate as signaling

molecules, with regulatory actions on gene expression and energy

homeostasis at various physiological and pathological conditions

(65). The regulatory actions of FFAs are mediated by signaling

pathways initiated upon binding to FFA receptors (FFAR) present

in the cell membrane (66). Different members of the FFAR family

are abundantly expressed in multiple metabolic tissues and display

ligand specificity by classes of FFA, therefore operating as genuine

lipid sensors, able to trigger adaptive metabolic responses (65).

Among FFARs, receptors for long-chain fatty acids (LCFAs;

with a chain length of 14-22 carbon atoms) have been shown as key

players in the regulation of energy balance. Solid evidence supports

that these receptors contribute to sense fluctuations of LCFA in the

hypothalamus, with a prominent role in the regulation of whole-

body energy metabolism (62, 67). In this context, FFAR4 (aka,

GPR120), a membrane GPCR exclusively activated by LCFAs, is

particularly relevant in the control of whole-body energy

homeostasis (66). It is expressed in several metabolic tissues,

including the brain, where FFAR4 has been detected in the

hypothalamus, including the ARC (68). Central activation of

FFAR has been shown to acutely decrease food intake (68), while

administration of the LCFA, docosahexaenoic acid (DHA),

prevented the inflammatory state induced by TNF-alpha in an

hypothalamic cell line, rHypoE-7, that abundantly expresses FFAR4

(69). While these data may suggest that this FFAR may mediate the

beneficial metabolic effects of omega-3 FAs, chronic administration

of a FFAR4 agonist did not change energy expenditure or body

weight in mice fed high-fat content diet (68).

Another important LCFA receptor is FFAR1 (aka, GPR40),

which can be activated not only by LCFAs but also by medium-

chain fatty acids (MCFAs, with a chain length of 6-14 carbons).

FFAR1 participates in a wide range of physiological functions and its

expression has been reported in several tissues, including the CNS. Of

note, FFAR1 has been shown to be widely expressed in hypothalamic

neurons directly involved in the control of energy homeostasis (64,

70). In this context, a recent study has documented that central
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pharmacological activation of FFAR1 in diet-induced obese mice

decreased body weight and increased energy expenditure, while

virogenetic knockdown of FFAR1 in ARC POMC neurons of obese

mice evoked hyperphagia and body weight gain, as well as the

development of hepatic insulin resistance and steatosis (70). These

data highlight the relevance of hypothalamic FFAR1 signaling in the

control of adult metabolic homeostasis.

Another MCFA receptor, GPR84, has been found to be

expressed also in several metabolic tissues, including the brain

(71), where its presence within the hypothalamus has been

reported (64). While the information of the roles of GPR84 in the

central control of metabolic homeostasis remains scarce, it has been

shown that icv treatment with a GPR84 agonist reduced food intake

in the rainbow trout together with an increase in hypothalamic

mRNA levels of POMC and CART, and a decrease in NPY and

AgRP levels (71). Further studies are needed to address the putative

role of this FFAR as a hypothalamic lipid sensor in mammals.

Finally, FFARs sensitive to short-chain fatty acids (SCFAs; up to

6 carbon atoms), produced from the fermentation of dietary fibers

by the gut microbiota (72), have been shown also to participate in

the regulation of various physiological processes, including the

maintenance of energy balance. These include FFAR2 (aka,

GPR43) and FFAR3 (aka, GPR41), whose expression has been

reported in several tissues, including the brain (65). In this

context, FFAR2 and FFAR3 are expressed in the hypothalamus of

rodents (73, 74). Although the exact mechanism whereby

hypothalamic FFAR2/3 exert their metabolic actions is yet to be

fully clarified, it has been shown that high fat diet exposure results

in increased expression of FFAR3 in the PVN, associated with

decreased butyrate levels, as putative contributing factor for

development of inflammation and hypertension, while virogenetic

silencing of FFAR3 in the PVN attenuated these adverse responses,

i.e., tissue inflammation and hypertension, in rats (75).
4.2 Lipid transporters and nuclear
receptors and the neuroendocrine control
of metabolism

Besides FFARs, elements involved in the translocation of certain

FAs inside the cell or the intracellular sensing of lipid species have

been suggested to serve a role as lipid sensors themselves. Among

these, CD36 (for cluster of differentiation 36) is a transmembrane

protein expressed in various cell types, including hypothalamic

neurons and astrocytes (76). CD36 is primarily known for its dual

capacity as both facilitator of LCFAs transport and initiator of

signaling cascades upon FA binding (77). Its role as hypothalamic

lipid sensor is supported by its documented function as the main

mediator of FFA actions in the VMH, as well as its prominent

contribution to lipid sensing in glucosensing neurons in the ARC

(76). Moreover, depletion of CD36 in the VMH/ARC region in rats

fed on high-fat diet caused subcutaneous fat accumulation and

increased leptin levels, together with insulin resistance, without an

overall effect on food intake and body weight (78).

In addition, FA transport proteins (FATPs), a family of six

transmembrane transporters (FATP1-FATP6) involved in the
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cellular uptake of FAs and their acylation (76), also contribute to

mediating part of the actions of FFA to modulate metabolism,

energy homeostasis, and lipid storage. Expression of FATP1 has

been detected in neurons of the VMH (63), and in vitro studies

strongly suggest that FATP1 substantially contributes to the brain

uptake of lipid species, such as DHA and oleic acid (OA) (79, 80).

Given the proven role of changes in OA and DHA upon

hypothalamic neuronal populations, such as POMC and AgRP

neurons, it is tenable to consider FATP1 as key component in

central lipid sensing. Furthermore, FATP4 expression has been

detected in neurons and astrocytes of the VMH in mice (63), and

virogenetic silencing of FATP4 in the VMH increased body weight,

food intake, fat mass and leptin levels in mice.

Once inside the cell, FAs can function as signals of energy status

by acting on nuclear receptors, also involved in lipid sensing, which

upon binding operate as transcriptional factors regulating the

expression of genes involved in lipid metabolism and energy

homeostasis (81). The most prominent example is the family of

peroxisome proliferator-activated receptors (PPARs), ligand-

activated nuclear receptors that play a crucial role in regulating

essential physiological functions, such as glucose and lipid

metabolism, as well as energy balance. Upon FA binding, PPARs

are translocated to the nucleus and heterodimerize with another

nuclear receptor, the retinoid X receptor (RXR), acting as

transcription factors by binding to peroxisome proliferator

response elements (PPREs) which allows the heterodimer to

activate or repress transcription (64). Three different PPAR

isoforms -PPARa, PPARb/d and PPARg- have been identified,

and their involvement in lipid metabolism has been well

documented. While all PPAR isoforms have been detected in the

CNS, their expression levels differ among the different isoforms,

suggesting distinct roles in regulating metabolism and energy

homeostasis. The role of PPARg as lipid sensor seems to be

especially relevant, as its expression has been reported in

hypothalamic areas involved in energy homeostasis and feeding

behavior (82), while PPARg levels in AgRP/NPY neurons are

sensitive to the nutritional state (83). Moreover, central

overexpression of PPARg in diet-induced obese mice resulted in

decreased ghrelin and NPY mRNA levels, while POMC mRNA

levels were increased (84). On the contrary, deletion of PPARg in
POMC neurons in high-fat diet fed mice attenuated hyperphagia,

increased energy expenditure, and protected from obesity and leptin

resistance (85). All these data attest to a prominent role of PPARg in
hypothalamic lipid sensing and metabolic control.
4.3 Hypothalamic lipid mediators and the
neuroendocrine control of metabolism

In a broad sense, another component of the lipid sensing

mechanisms involves lipid species, other than FFA, with signaling

capacities and ability to modulate central pathways governing

metabolism. A prominent example is hypothalamic ceramides, lipid

molecules composed of a sphingosine moiety bound to FA with a

range of chain length, from 14 to 30 carbon atoms (86). Besides the

proven role of ceramide accumulation in peripheral tissues in the
Frontiers in Endocrinology 07
pathophysiological control of metabolism, compelling evidence,

gathered in the last decade, has documented a relevant role for

hypothalamic ceramides, in connection with ER stress responses, in

mediating the impact of adverse metabolic conditions, such as obesity,

at the whole-body level. In fact, ceramide accumulation in the VMH,

coupled to ER stress, has been shown to decrease thermogenesis and

promote body weight gain and insulin resistance (87). Furthermore,

hypothalamic ceramide signaling participates in mediating the

metabolic actions of key hormonal regulators, including leptin,

ghrelin and estrogens; for instance, the capacity of leptin and

estrogens to decrease the hypothalamic levels of ceramides has

proven relevant for mediating their effects in terms of induction of

thermogenesis and reduction of body weight (87, 88). On the other

hand, the pathogenic role of central ceramide accumulation in

promoting metabolic perturbations is documented by the fact that

inhibition of ceramide synthesis in the brain can ameliorate insulin

resistance in leptin-receptor mutant Zucker rats (89), while blockade

of ceramide synthesis in the VMH can improve the metabolic profile

in rat models of obesity (87). Similarly, CerS6-mediated ceramide

synthesis in hypothalamic neurons, as those expressing POMC or SF1,

likely contributes to the metabolic deregulation induced by obesogenic

diets (90), while ceramides participate also in other relevant brain

functions, such as myelination (91).

Finally, bile acids (BA), as derivatives of the lipid precursor,

cholesterol, synthesized in the liver (primary BA) and later

transformed into secondary BA by the gut microbiota, have

gained momentum as putative metabolic mediators, acting in part

via hypothalamic circuits (92). Initially considered merely as

detergent molecules essential for intestinal lipid absorption, BAs

are known to operate via specific nuclear and cell-surface receptors

to conduct a variety of regulatory effects (93). Indeed, BAs have

been detected in the brain at a concentration that correlates with

their circulating levels (94), and BAs have been shown to activate

their receptors also in the hypothalamus (95), therefore supporting

a role of BA signaling in the mechanisms for central lipid sensing.

Indeed, recent studies have demonstrated that the BA-selective,

G protein-coupled receptor, TGR5, operates at the hypothalamus to

convey part of the metabolic actions of BAs. Thus, hypothalamic

BA content is decreased in obese mice and virogenetic-mediated

suppression of TGR5 in the mediobasal hypothalamus promoted

obesity development. Conversely, central activation of TGR5

reduced body weight (95). Moreover, specific deletion of TGR5 in

AgRP neurons of mice has been recently shown to increase in food

intake (96), pointing to the contribution of this hypothalamic

pathway for the anorectic effects of BAs.
5 Role of lipid sensing mechanisms in
the hypothalamic control
of reproduction

While our knowledge of the role of hypothalamic lipid sensing

in the control of whole-body homeostasis has substantially

expanded during the last decade, whether analogous mechanisms

operate in the metabolic regulation of puberty and fertility remains
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largely unexplored. From a conceptual standpoint, such intersection

between central lipid sensing and the centers governing the

reproductive axis is tenable, given the sensitivity of the pathways

controlling puberty and fertility to nutritional and metabolic cues,

and the proven interplay between reproductive- and metabolic-

regulatory circuits within the hypothalamus. Indeed, emerging

evidence suggests a role of specific lipid mediators in the

perturbations of puberty in conditions of early-obesity (97), while

hypothalamic PPARg seems to modulate part of reproductive

responses to high-fat diet in mice (82). Yet, the putative

“reproductive” roles of other components of the hypothalamic

lipid sensing mechanisms have not been studied yet.

Our group has provided evidence for a novel brain pathway,

involving de novo ceramide synthesis at the PVN, in the metabolic

control of puberty and its alterations after early-onset obesity in

rats. Thus, as it is the case in adulthood, the hypothalamic ceramide

content was increased in pubertal female rats subjected to postnatal

overfeeding, displaying early obesity, which was associated with

accelerated puberty. Activation of central de novo ceramide

synthesis in immature female, but not male rats, also resulted in

advancement of the age of puberty onset despite no changes in body

weight, whereas blockade of brain de novo ceramide synthesis

resulted in delayed puberty and obliterated the stimulatory effects

of kisspeptins on pubertal maturation. Notably, this phenomenon

was conducted via gonadotropin-independent modulation, and

involved a previously unnoticed hypothalamic pathway, involving

the PVN and the sympathetic innervation of the ovary. In fact,

obese pubertal female rats were shown to display changes in

kisspeptin innervation of the PVN and increased content in this

nucleus of the enzyme, serine palmitoyltransferase long chain base

subunit 1 (SPTLC1), responsible for the initial, limiting step in de

novo ceramide synthesis (97). In fact, virogenetic blockade of

SPTLC1 in the PVN of obese female rats largely prevented

pubertal acceleration due to overweight. These findings support

that ceramide-related pathways are key to central alteration of

female puberty in conditions of early obesity.

In addition, functional genomic analyses have evaluated the role

of another component of lipid sensing, namely hypothalamic

PPARg signaling, in the control of puberty and reproduction.

Thus, female mice engineered to lack PPARg in mature neurons

displayed normal age of pubertal maturation but markers of

ovulatory dysfunction, with smaller litters and a reduction in the

number of oocytes released per ovulation. In addition, neuron-

specific PPARg KO females displayed alterations in ovarian cycle

length and LH levels, as well as hemorrhagic corpora lutea in the

ovaries; yet, they were protected from obesity-induced leptin

resistance and ovarian cycle irregularities (82). Of interest,

neuronal ablation of PPARg did not alter body weight or glucose/

insulin homeostasis in this genetic model. Whether other means of

manipulation (e.g., pharmacological) of brain PPARg signaling may

influence reproductive function is yet to be defined. Likewise,

whether other lipid sensing mechanisms in the hypothalamus,

such as those mediated by FFAR, FA transporters or the BA

receptor, TGR5, participate in the control of puberty and

reproduction has not been thoroughly addressed and warrant
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future investigation. Yet, our preliminary observations suggest

FFARs, such as GPR84, and PPARg might participate in the

hypothalamic control of puberty, with a variable role depending

on the maturational stage and metabolic status. In the same vein, a

very recent study has pointed out a putative role of TGR5 in the

central regulation of puberty onset in female rats (98). It must be

noted that, in addition, PPARg signaling at the pituitary, the

placenta and the ovary has been shown to participate in the

control of female reproduction (99), and the use of PPARg
agonists has been proposed in the context of reproductive

disorders bound to metabolic alterations, such as polycystic

ovary syndrome.
6 Conclusions

In recent years, we have witnessed a substantial expansion of

our knowledge of the hypothalamic mechanisms governing whole-

body metabolism and reproduction, and particularly of the central

pathways responsible for the metabolic control of puberty and

fertility. In this context, besides the elucidation of the important

reproductive roles of key peripheral hormones, such as leptin,

insulin and ghrelin, and central transmitters with pivotal

functions in energy homeostasis, recognition of fundamental

components of the reproductive brain, such as Kiss1 neurons,

sensitive to nutritional and metabolic cues, have paved the way

for the integral comprehension of the neuroendocrine mechanisms

whereby metabolism and reproduction are tightly connected, and

eventually deregulated in adverse conditions.

On top of such neuropeptide framework, it has become evident

recently that additional layers of molecular mediators participate in

the fine tuning of puberty and reproductive function, and their

modulation by metabolic signals. As a clear example, during the last

decade it has been disclosed that epigenetic regulatory mechanisms

operate to precisely control pubertal maturation and to convey the

influence of the nutritional cues on puberty onset (100). In the same

vein, the role of different cellular energy sensors, such as AMPK,

mTOR and SIRT1, acting on hypothalamic circuits converging on

Kiss1 and GnRH neurons, have been shown to participate in the

metabolic control of puberty, coupling body nutritional and

metabolic status to pubertal maturation and, eventually, fertility.

In addition, illuminated by recent evidence pointing out that lipid

sensing mechanisms are key components for the hypothalamic

regulation of whole-body metabolism (62), the roles of elements

of such lipid sensing pathways in the control of reproductive

function have begun to be explored recently. These include, but

are not restricted to, the roles of hypothalamic ceramides in obesity-

induced pubertal acceleration in females, as well as the role of

hypothalamic PPARg in the modulation of the female reproductive

axis and its perturbation by obesogenic diets. As important note, it

must be stressed that most of our understanding of roles of these

energy-sensing mechanisms and lipid mediators in the control of

puberty, as key maturational event of the reproductive axis highly

sensitive to metabolic cues, derives from studies in female rodents,

whereas our knowledge of the eventual function of these signaling
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pathways in males remains virtually null. Given that puberty and

reproductive function in the male are also sensitive, albeit to a lesser

extent, to body energy status, further research is warranted to

analyze whether sex differences exist regarding the pathways for

the integrative control of energy balance and reproduction; a

contention supported by our recent evidence for the female-

specific role of hypothalamic ceramide signaling in the control of

puberty onset, which is not observed in male rats (97).

In addition, a major challenge that remains to be solved is how

the proposed mechanisms for the integral regulation of whole-body

metabolism and reproductive function actually integrate within the

complex framework defined by the multiple neuronal and glial

populations of the hypothalamus. Recent single cell RNA

sequencing studies in the mouse hypothalamus, comparing

opposite nutritional states (feeding ad-libitum vs. acute fasting),

have revealed significant transcriptional changes in AgRP neurons

and other cell types, activated during food deprivation (11). Among

the differentially-expressed genes, Zbtb16, encoding a transcription

factor with a relevant role in neurogenesis; Fam107b, that codes for

a stress response mediator; Vgf, a neuropeptide precursor involved

in energy homeostasis; and Sv2c, a glycoprotein involved in

neurotransmitter release, have been highlighted (11). Whether

these factors can contribute to the metabolic control of the

reproductive axis is yet to be defined, but the Vgf-encoded

neuropeptide, TLQP-21, has been previously shown to modulate

puberty onset and reproductive hormone secretion in rats (101).

Importantly, the above RNA-seq studies not only aid in identifying

novel and essential components within the different hypothalamic

cell populations that control organism functions, including

metabolism and reproduction, but also pave the way for

comprehensive approaches involving various multi-omics

strategies and specific manipulations, targeting different cell types

(e.g., cell type-specific viral transfections, as well as chemo- and

optogenetic manipulations). These approaches will allow the

generation of functional connectivity mappings among different

hypothalamic cell types responsible for the integral control of

energy balance and reproduction.

Finally, it is anticipated that future efforts in this domain will

aim to elucidate the complete set of biological actions and

mechanisms of such metabolic and lipid sensing pathways. The

resulting knowledge will be instrumental not only to gain deeper

insight into the physiological mechanisms governing puberty and

fertility, but also to identify novel therapeutic targets for improved

management of high prevalent metabolic and reproductive

conditions, ranging from pubertal disorders to polycystic ovary

syndrome and obesity.
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