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The role of GABA in
type 1 diabetes
Gail J. Mick* and Kenneth L. McCormick

Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
Gamma aminobutyric acid (GABA) is synthesized from glutamate by glutamic

decarboxylase (GAD). The entero-pancreatic biology of GABA, which is

produced by pancreatic islets, GAD-expressing microbiota, enteric immune

cells, or ingested through diet, supports an essential physiologic role of GABA

in the health and disease. Outside the central nervous system (CNS), GABA is

uniquely concentrated in pancreatic b-cells. They express GAD65, which is a type

1 diabetes (T1D) autoantigen. Glutamate constitutes 10% of the amino acids in

dietary protein and is preeminently concentrated in human milk. GABA is

enriched in many foods, such as tomato and fermented cheese, and is an

over-the-counter supplement. Selected microbiota in the midgut have the

enzymatic capacity to produce GABA. Intestinal microbiota interact with gut-

associated lymphoid tissue to maintain host defenses and immune tolerance,

which are implicated in autoimmune disease. Although GABA is a widely known

inhibitory neurotransmitter, oral GABA does not cross the blood brain barrier.

Three diabetes-related therapeutic actions are ascribed to GABA, namely,

increasing pancreatic b-cell content, attenuating excess glucagon and tamping

down T-cell immune destruction. These salutary actions have been observed in

numerous rodent diabetes models that usually employed high or near-

continuous GABA doses. Clinical studies, to date, have identified positive

effects of oral GABA on peripheral blood mononuclear cell cytokine release

and plasma glucagon. Going forward, it is reassuring that oral GABA therapy has

been well-tolerated and devoid of serious adverse effects.
KEYWORDS

gamma aminobutyric acid (GABA), Type 1 diabetes, GABA treatment/diabetes, b-cells/
pancreatic islets, a-cells/glucagon, diabetes/new therapies, GABA-producing microbes,
microbiome/GABA/glutamate
1 Introduction

The pathogenesis of autoimmune type 1 diabetes mellitus (T1D) involves infiltration of

the pancreatic islet cells by T-lymphocytes, macrophages, and other immune cells with

consequent loss of insulin producing b-cells (1–3). Both genetic susceptibility related to

HLA and non-HLA genes as well as environmental factors (infectious, dietary, the

microbiome) participate in this process (4, 5). Clinical staging of at-risk subjects
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according to autoantibodies and dysglycemia has guided potential

preventive and therapeutic interventions. At the onset of T1D, more

than 70% of b-cells are eradicated (6), thus, residual b-cell
replication, intra islet cell transformations and progenitor ductal

neogenesis may represent pathways for restoration of b−cell mass.

(7). Studies from organ donor pancreata demonstrate insulin-

containing islets despite decades following T1D onset (8)

indicating ongoing b-cell renewal despite lasting autoimmunity

and other stressors. A myriad of immunological abnormalities

have been reported in those with T1D including, but not limited

to, the production of autoantibodies and cytokines as well as the

inability of regulatory T cells (Treg) to curtail the action of effector

T cells (Teff); the latter distinct cell population participate in the

immune destructive processes. Therefore, a vast majority of clinical

studies attempting to curtail this immune foray have focused on

immune suppression (9, 10). Additionally, dysfunction in the

exocrine pancreas, aberrant sympathetic innervation, oxidative

stress, ER stress, and altered autocrine and paracrine signaling

within the islet cell are potential therapeutic targets in T1D (11–17).
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Outside of the CNS, GABA is highly concentrated in the

pancreatic islet wherein it has autocrine and paracrine actions to

regulate b-cell insulin secretion and inhibit a-cell glucagon release.

Well-known communal microbiota also produce GABA (18, 19).

Rodent models have demonstrated reversal or prevention of diabetes

with oral and intraperitoneal GABA treatments (20). Combination

therapies of GABA with b-cell antigens, antiapoptotic agents, and

immunotherapies show additive actions (21–23). In diabetic NOD-

scid-g (NSG) mice, GABA promotes b-cell neogenesis in human islet

cell implants and reverses diabetes (24). In children with new onset

T1D, low-dose, twice daily oral GABA, with/or without GAD-alum

antigen stimulation, inhibited glucagon and reduced Th1

inflammatory cytokine release. Taken together, these studies

support a unique role for GABA as a naturally derived oral agent

with multifarious anti-diabetic actions. Given its excellent safety and

tolerability, higher GABA doses, longer-acting preparations or

combination therapies may bear salutary actions in stage 1, 2 or 3

diabetes (Figure 1). In this review, the potential role of GABA as an

endogenous and exogenous disease modifier in T1D is presented.
FIGURE 1

GABA in health and diabetes. This figure summarizes the role of GABA in the entero-pancreatic system, its anti-diabetic actions and potential as a
therapeutic agent in type 1 diabetes (T1D). (A) GABA is synthesized from glutamate by glutamate decarboxylase (GAD65) which is also a T1D
autoantigen. GABA is uniquely concentrated in b-cells but is also consumed in foods and produced by select GAD-containing microbiota in the
upper and lower intestinal tract. From birth, gut associated lymph tissue (GALT) within the lamina propria are intricately involved in bodily defenses
against autoimmunity and inflammation. (B) The key anti-diabetic actions of GABA are presented as validated in numerous preclinical rodent and
human islet studies. In children with new onset T1D, oral GABA, with or without recombinant GAD, reduced serum glucagon as well as inflammatory
cytokines. (C) The potential therapeutic role of GABA in T1D is shown from birth through stage 3 diabetes. The perinatal acquired microbiome is
pivotal to lifetime immune defense. Whether GABA producing microbiota or glutamate have salutary immune actions is unexamined. In stage 1
diabetes (asymptomatic autoimmunity), GABA supplementation or precision probiotics might restrain the autoimmune process, particularly if GABA/
GABA-producing microbiota are deficient. Combination therapy with a low risk oral therapy such as an islet antigen or anti-apoptosis agent might
further preserve or expand b−cell mass. In stage 2 diabetes (autoimmunity with dysglycemia), GABA supplementation, with or without more potent
combination therapies, might hamper autoimmune destruction. Possible co-therapies, noted to be effective in diabetic rodent studies, include oral
T1D antigens, GLP-1 agonists, and positive allosteric modifiers that augment GABA action. Longer acting GABA formulations could also improve
efficacy. In stage 3 diabetes (insulin dependent), higher dose GABA along with combination agents that preserve b-cell mass or induce b-cell
proliferation are a consideration (anti-apoptotic agent, low dose immune therapies, GLP1 agonists, GABA receptor agonists). Finally, in humanized
rodent diabetic models, GABA preserves implanted human islets while promoting b-cell proliferation - whether this has application for human islet
transplant survival is intriguing.
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2 Pancreatic GABA in diabetes

2.1 GABA in the pancreatic islet

GABA is present in assorted peripheral (non-CNS) tissues

including pancreas, gonads, placenta, uterus, gastrointestinal tract,

lymphatic and adrenal medulla (25, 26). Pancreatic b-cells have

distinctly inordinate concentrations of GABA that are comparable

to CNS tissue content (27). Several recent reviews underscore the role

of GABA in the pancreatic islet (15, 28, 29). In human b-cells, GABA
is synthesized from glutamate by the pyridoxal phosphate dependent

enzyme GAD65, which is also a key diabetes autoantigen. GAD67 is

an isoform of GAD65 found exclusively in mouse b-cells and brain,

and both isoforms are present in rat b-cells (30).
Two GABA receptors are recognized. The GABA-A receptor

(GABAAR) is a heteropentamer that functions as a fast-acting

chloride channel, thereby altering membrane polarization. It is the

primary GABA receptor in the human islet (31). Following GABA

binding, there is efflux of chloride in b-cells (hypopolarization) but
the opposite flow of chloride occurs in a-cells (hyperpolarization)
(13). The GABA-B receptor (GABABR) is an inhibitory two-

subunit G-protein receptor that reduces cAMP and modulates

Ca+2 channels. Under basal conditions, human b-cells express

only one of the two functionally necessary GABABR subunits.

Modifiers that increase b-cell cAMP, such as forskolin, induce

expression of the second subunit yielding functional activity of

GABABR (decreasing insulin secretion) (32). Hence, while both

GABA receptors are available in the human b-cell, GABAAR are

functionally predominant. Regarding GABAA receptor affinity,

human b-cells retain two main pentamer subunit subtypes; the

stoiochiometry and arrangement of these subunits determines

pharmacological selectivity regarding potential agonists and

antagonist therapies (33, 34).

Autocrine and paracrine mechanisms account for the regulatory

actions of ambient GABA on b- and a-cell function (15, 28, 29). By

most accounts, a-cells are devoid of GAD, although this view has

been disputed (35). Whether paracrine stimulation of d-cell
somatostatin secretion by GABA inhibits b-cell insulin release is

unclear (35). Initial islet studies suggested the co-release of GABA

and insulin by exocytosis and that the process was mediated via

GABAA receptors. At 6 mM glucose, a GABAA receptor antagonist

inhibited insulin secretion (31). Using patch clamp recording and

PCR analysis of human islets, the authors demonstrated the presence

of GABAA receptors on b-cell, d-cells and a-cells implicating

autocrine and paracrine roles for GABA. Using dynamic hormone

secretion measurements in donor islets, GABA was later shown to

regulate b-cell insulin release in an oscillatory pattern that was not

glucose-dependent (35). GABA accumulates in the cytosol (rather

than vesicles) and is secreted via volume regulatory channels. The

autocrine action of GABA on b-cell insulin release was inhibitory.

GABA attained local (interstitial) concentrations of 10 mM and

patterned with the known oscillatory release of insulin. These

investigations point to a stabilizing role of GABA in the dynamic

regulation of b-cell insulin release. Menegaz and colleagues also

demonstrated that T2D and T1D donor islets were 75% and 85%

depleted of GABA, respectively, despite no difference in GAD65
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content (35). The T2D islets lacked pulsatile insulin release until

cellular GABA levels were restored by inhibiting GABA catabolism.

Using single cell transcriptomics, islet cells with multiple hormone

mRNA expression have been identified in human pancreatic islets

(36). These mixed identity islet-cells most often express insulin/

glucagon combinations but may also include somatostatin. In

diabetic islets, glucagon predominant cell types are more frequent

compared to controls. As to why the islet has mix-identity cells, the

investigators underscore that the plasticity of the pancreatic islets

(37), numerous regulatory factors, including GABA, and patterns of

cellular neogenesis or dedifferentiation are all under investigation

Rodent and human islet studies demonstrate the complex

autocrine and paracrine signaling that underpin nutrient-

responsive crosstalk amongst a-, b- and d- cells. Lesser-studied

components include pancreatic polypeptide-secreting gamma cells

and ghrelin-expressing epsilon cells which form <1% islet content.

Each islet has a capillary and neural network that provides intimate

connectivity with the immune system, gut, liver and CNS (17, 38–41).

Aside from receptor-mediated regulation by GABA, the

metabolism of GABA via the intracellular GABA-shunt and TCA

cycle further modulates b-cell GABA content and its energy

metabolism. Beta-cells metabolize cytosolic GABA via the GABA

shunt to meet cellular metabolic demands as the islet responds to

the fluctuating energy shifts of the fasting and fed states (42).
2.2 Preclinical studies: GABA in diabetes

In numerous studies using diverse diabetic rodent models,

GABA prevents and/or reverses hyperglycemia. Soltani et al.

reported several gainful actions of GABA on b-cell mass, immune

function, and clinical diabetes in two diabetic mouse models and also

in INS-1 rat insulinoma cells (20). GABA increased BrdU+ labelled

b-cells 5-fold in CD1 mice following two i.p. injections of GABA (20

mmol/mouse over 48 hours). In the multiple dose STZ-diabetic

(MDSD), daily i.p. injections of GABA(20 mmol/mouse, i.p.) for 7-

days prior to STZ prevented hyperglycemia, increased serum insulin,

decreased glucagon, restored b-cell mass and normalized a-cell
mass. In the NOD mouse, a spontaneous immune-mediated

diabetes model, treatment with GABA was preventative. GABA

led to an abatement of insulinitis (lymphocyte infiltration), b-cell
mass expansion and normalization of hyperglycemia (after i.p.

glucose challenge). GABA treatment reduced MDSD- related

inflammation by lowing cytokines (IL-1b, TNF-a, INF-g and IL-

10) and reducing LPS+IFN-g-stimulated splenic CD4+ and CD8+ cell

numbers (20). Tian, et al. demonstrated that treatment of prediabetic

NODmice with GABA (delivered by subcutaneous pellet) from 6-34

weeks of age inhibited progression to overt diabetes by 70%

and decreased GAD-specific INF-g-secreting T-cells by 39% (43).

Other rodent models also corroborate a salutary response to GABA

in diabetes(median dose 1500 mg/kg/day, range 0.25-4500) (20, 22,

24, 44–52).

The anti-diabetic action of GABA has been studied in

combination with other agents. Combination GABA with GAD

immunization increased the duration of syngenic b-cell survival in
diabetic NODmice from 1 week in control-diabetic mice to 10 weeks
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with maximal GABA doses (GABA 6 ml/ml in drinking water + 100

mg GAD immunization) (23). GABA with proinsulin immunization

corrected hyperglycemia in newly diabetic NOD mice when

compared to either agent alone (49). At the highest GABA doses

(20 mg/ml in water) plus proinsulin immunization, diabetic mice

achieved normoglycemia with 4/9 mice remaining normoglycemic

for up to 50 weeks post onset of diabetes. Combined GABA plus

proinsulin reduced insulinitis, increased b-cell replication and

improved splenic Treg responses compared to monotherapy. In

NOD mice prior to diabetes onset (4-6 weeks old), combination

rapamycin (1 mg/kg daily) and GABA (~200 mg/kg/day divided

twice daily) delayed the onset of diabetes for the entire 12 week

experimental period, whereas with monotherapy 20% of the mice

acquired diabetes (53). In overtly diabetic NOD mice, co-therapy

with rapamycin and GABA was superior to monotherapy in reducing

hyperglycemia and retaining b-cell function. In INS-1 cells and

human pancreatic islets, combination therapy of GABA with a

GLP-1 agonist (exendin-4) led to a reduction in cytokine-induced

apoptosis and improved glucose-stimulated insulin release.

Moreover, the anti-apoptotic actions of SIRT1 and a-Klotho
expression were normalized with GABA plus exendin-4 (54).

Finally, in severely diabetic NOD mice, low-dose anti-CD3 (35

mcg) and lesgaberan, a GABA-B receptor agonist (0.08mg/ml in

drinking water), rapidly lowered blood glucoses and preserved

functional b-cells over a 25-week treatment period (21). After

discontinuing treatment, mice were monitored for an additional

25 weeks. The co-therapy group was 83% relapse-free compared to

30% in the anti-CD3 monotherapy group. In a separate report, Tian

et al. found that treatment of diabetic NOD mice for 25 weeks with

low dose anti-CD3 treatment plus a GABA-A receptor agonist

(homotaurine) reversed hyperglycemia and improved the percent of

relapse free mice post treatment: 60% with combined therapy, 30%

with anti-CD3 monotherapy and 10% with homotaurine alone (55).

Notably, GABA has shown anti-diabetic actions in diverse T1D

rodent models, including NOD mice, multiple low dose STZ mice as

well as humanized rodent models such as the NOD/Lt-SCID-IL2rg or

NSG mouse (55–57). Concerning the NOD mouse, GABA not only

forfends against diabetes onset but also reverses overt diabetes (20).

As discussed in section 4 regarding GABA dosing and safety, to date,

experimental rodent doses of GABA are comparatively higher and of

longer duration than oral human dosing. Furthermore, conflicting or

negative GABA effects were apparent when lower GABA doses were

used in mice (44, 58). As concerns treatment of T!D, longer acting

preparations of GABA, co-therapy with GABA receptor agonists,

positive allosteric modifiers (59) or complimentary antidiabetic

agents (discussed above) could potentially overcome a need for

higher GABA doses to achieve efficacy.
2.3 GABA promotes b-cell proliferation
and survival

Loss of b-cell mass due to a reduction in b-cell proliferation/
regeneration and accelerated b-cell apoptosis are synergistic processes
leading to the clinical manifestations of TID. Therapies that

invigorate b-cell replication and reduce b-cell destruction may
Frontiers in Endocrinology 04
favorably improve the diabetogenic imbalance of cell growth/cell

demise. These therapies are relevant to the survival of islet cell

transplants as well as in situ b-cell function. GABA promotes b-cell
growth and survival (24, 60–62). Mechanistically, via an autocrine

route, GABA-mediated membrane depolarization (via GABAAR) in

b-cells stimulates calcium influx via voltage-gated, calcium channels.

The subsequent activation of the growth promoting Ca2+ dependent

P13K/Akt pathways in INS-1 cells and isolated rodent and grafted

human islets leads to increased b-cell proliferation and survival (20,

24). This GABAAR mediated process is potentiated by augmented

expression of b3 receptor subunits as shown in the partial

pancreatectomized mouse diabetes model (63). Humanized rodent

models have advanced our understanding regarding the remarkable

proliferative potential of human islets (57, 64).

Elevated TxNIP increases oxidative stress in b-cells and other

tissues via thioredoxin (65, 66). In mouse islets from STZ-diabetic

mice treated for 13 weeks with GABA (6 mg/ml in drinking water),

the anti-apoptotic action of GABA was linked to TxNIP (67). They

reported that both GABA and GLP-1 reduced hyperglycemia-

associated increases in TxNIP through a common pathway

(cAMP-b-cat) . If the effect of these agents is additive, then the

combination of GLP-1 and GABA in T1D warrants investigation.

Others have identified the role of SIRT-1 and a-Klotho in mediating

the anti-apoptotic actions of GABA in the b-cells (47, 54).
Given the abundance of islet non-endocrine cells with

pancreatic lineage such as exocrine cells from acinar or epithelial

duct, the neogenesis of these cells into insulin-producing b-cells
presents an enticing treatment for T1D. However, low-dose GABA

over months failed to induce neogenesis of b-cells from ductal tissue

based on lineage-labelled ductal tissue in Sox9CreER;R26Ryfp mice

(68). Another experimental approach to b-cell insulin deficiency

would be to induce transdifferentiation of a-cells to functional b-
cells with GABA. This was accomplished by Ben-Othman, et al.

(44). Experiments with wild-type mice showed a dose-dependent

increase of insulin+ b-cell mass with 1-5 mg/kg GABA that persisted

at a much lower dose of GABA (250mg/kg). In a related study, when

C57BL/6J mice, rendered diabetic by STZ, were treated for 8 weeks

with GABA (250mg/kg), blood glucose concentrations declined in

concert with a ~3-fold increase in plasma insulin, yet plasma

glucagon was unaltered. By histological staining, neither

pancreatic b-cell nor a-cell mass was altered by GABA treatment

alone. A nearly two-fold increase in a-to-b cell conversion was

observed. The results of these studies could not be replicated (69).

The discordant conclusions between labs could be consequent to

heterogeneous experimental protocols to measure a-cell and b-cell
transdifferentiation, and other such variables as mouse strains, diets,

gut microbiota, and duration of GABA treatment. Worth

considering, the three research groups aforementioned used

GABA doses that were logarithmically lower than most in vivo

GABA protocols.

In an attempt to resolve different experimental conclusions

regarding GABA and b-cell regeneration, especially a- to b-
transdifferentiation, von Herrath et al. independently conducted a

series of experiments using similar GABA doses, additional delivery

methods as well as assiduously reproducing identical experimental

conditions (70). They were unable to demonstrate a- to b-
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transdifferentiation by GABA, as well as, no effect on glucose

homeostasis or a-cell/b-cell mass in normal or diabetic mice.

However, there is an apparent dose-dependent trend that GABA

decreased a-cell mass and the a-to b- ratio in the wild type mice.
2.4 GABA inhibits glucagon

Glucose control in diabetes is regulated in part by glucagon, not

only through paracrine intra islet cell communication, but also

through peripheral effects on hepatic, adipose and neural

metabolism (17, 71, 72). Hyperglycemia triggers b-cell insulin

release and suppression of a-cell glucagon secretion. Using rodent

islets, Xu, et al. found that insulin secretion induces an Akt kinase

dependent translocation of GABAA receptors to the membrane of

pancreatic a-cells that augments the response to paracrine release of

GABA from b-cells. The result is GABA-mediated membrane

hyperpolarization and subsequent inhibition of glucagon secretion

(73). GABA-deficient islets did not exhibit appropriate glucagon

inhibition in response to increasing glucose concentrations in vitro

(74), inferring that GABA is directly involved in the suppression of

glucagon secretion in a-cells. Based on immunofluorescence studies

in STZ-treated mice, daily intraperitoneal GABA (10 mg/kg) for 12
days thwarted the 7-fold rise in a-cell mass which transpired in the

control-diabetic group and also preserved b-cell mass (75). The a-cell
mass expansion in STZ mice likely develops in human T1D; for

example, following the onset of T1D in humans, there is a progressive

increase in serum glucagon for at least one year and sometimes 3-5

years thereafter (76–79). In diabetic animals, the effect of exogenous

GABA on circulating glucagon and/or a-cell mass are conflicting.

There was an approximate threefold reduction in serum glucagon in

several studies (20, 75), but no change was noted by others (80, 81).

As for the latter two studies, one involved rats and the other used a

very low GABA dose (0.25mg/kg) - these experimental disparities

could account for the conflicting findings. An excess of glucagon

relative to insulin characterizes the metabolic dysregulation and

hyperglycemia of diabetes. Treatment of children with T1D with

low dose, twice-daily oral GABA, with and without GAD-alum, for

12 months reduced circulating glucagon without preserving serum c-

peptide (82). In this trial, a secondary finding buttresses a role for

glucagon in glycemic control: there was a significant relationship

between fasting glucose and fasting glucagon. Moreover, at 12

months, there was an even more robust association between area

under the curve (AUC) glucose and AUC glucagon following a

mixed-meal challenge. Both of these glucagon-glucose relationships

do not establish causation, yet provide intimations that compel

further study.
2.5 GABA is anti-inflammatory

Type 1 diabetes is characterized by a multipronged inflammatory

assault notable for infiltration of the pancreatic islet with autoreactive

CD4+ and CD8+ T cells and macrophages begetting insulitis and b-
cell demise. Antibodies to GAD65 and other b-cell antigens are

present years prior to dysglycemia and overt symptomatic diabetes
Frontiers in Endocrinology 05
(4). Peripheral blood mononuclear cells (PBMC) release pro-

inflammatory cytokines and chemokines that accelerate the

process. Identifying safe immunomodulatory interventions to slow/

abort the T1D autoimmune process or protect transplanted islets

from immune destruction is imperative (14).

GABAARs are expressed in various immune cells, including T-

cells and peripheral blood mononuclear cells, and are known to

exert immune-inhibitory actions (43, 83, 84). Human T cells,

dendritic cells, NK killer cells, and monocytes, also contain the

enzymatic components for GABA production (including GAD) and

catabolism (GABA transaminase) (85, 86). In NOD/scidmice, daily

GABA (600 mg/day by subcutaneous pellet) inhibited the adoptive

transfer of T1D indicating suppression of effector-T cells. In

addition, continuous low-dose GABA for 30 weeks reduced the

onset of diabetes in NOD mice: 90% of control mice developed

diabetes compared to the 20% of those treated with GABA (43).

GABA suppresses the formation of IL-12 by macrophages, and

IFN-g by CD8 T-cells, underscoring its anti-inflammatory role of

reducing cytokine production (20, 87). In rat INS-1 cells versus

human b-cells, GABA attenuates cytokine-induced (IL-1b, TNF-a,
INF-g) apoptosis 75% and 30%, respectively; these actions were

potentiated by a glucagon-like peptide-1 (GLP-1) (54). As recently

reported, ambient glucose or insulin modulate the effect of GABA

on inflammatory cytokine release in human CD4+T-cells (88). In

children with new onset T1D, oral GABA, with or without GAD65-

alum, curtailed the Th1 proinflammatory response relative to

placebo (89). Following antigen stimulation of PBMC with

GAD65, GABA/GAD treatment showed a blunted (absent) rise in

INFg and TNFa compared to the statistical increase in both

proinflammatory cytokines in a placebo group from 0-12

months (p<.05).
3 GABA and the microbiome

3.1 GABA producing microbes

The intricate entero-pancreatic biology of GABA, ingested or

synthesized by microbial glutamate decarboxylase(GAD), is

conceivably germane to T1D pathophysiology. As aforementioned,

GAD65 is concentrated in the b-cell (15) and found in discrete

enteric bacteria (19). In microbiota, an intact GAD operon (includes

both gadB or gadA plus the glutamate/GABA antiporter) is requisite

for GABA metabolism (90) and acid/base tolerance (91). In the

gastrointestinal tract, lactic acid bacteria such as L. brevis and L.

reuteri (phyla Firmacutes), as well as bifidobacteria (phyla

Actinobacteria) including B. adolescentis and B. dentium, are

acclaimed GABA producers (92–94). Of 135 strains of

Lactobacillus and Bifidobacterium from human donor enteric/

salivary/vaginal specimens, 58 srains produced GABA from

glutamate in vitro (94). The authors confirmed the presence of

gadB/gadC genes in the bacteria and noted in vitro GABA

production rates of 50-6000 mg/L in timed incubations. Standwitz,

et al. identified a previously unculturable gram positive bacterium

(KLE1738) that required a common GABA-producing gut microbe

-Bacteroides fragilis- to grow in vitro (19). Genome-based metabolic
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modelling uncovered genera of enteric bacteria capable of consuming

or producing GABA. This work highlights the overlapping roles of

GABA in microbiota as an energy source or pH modifier via the

GABA shunt (95) versus its role in neuroendocrine signaling and

immune regulation (96). The question whether GABA forming

microbiota can alter plasma GABA is unresolved: two germ-free

models employing metabolomics support this premise (97, 98)

whereas another germ-free rodent study did not (99).
3.2 Microbial GABA in diabetes -
preclinical studies

Several studies have examined the effect of GABA-producing

microbes in streptozocin (STZ) diabetes. A single-dose streptozotocin

(STZ) model was employed which causes abrupt chemically mediated

b-cell destruction (100) and, hence, the results to not entirely translate

to immune-mediated diabetes. Marques et al., treated STZ-diabetic rats

with Lactobacillus GABBDPC6108 or GABA alone (2mg/kg/day or

versus 200 mg/kg/day in drinking water) over 9 weeks (81). The

investigators confirmed that the microbe-treated rats retained live,

GABA-producing L.brevis in fecal samples at study end. Concerning

diabetic parameters, there was a 26% decrease in blood glucose in the

diabetic L. brevis-treated rats. GABA-treatment was associated with a

12-15% decrease in blood glucose. The serum GABA level was

unchanged in the low-dose GABA group but increased 34% in the

high dose GABA group. The investigators concluded that the nominal

reduction in glucose by L. brevis or oral GABA was likely due to the

massive b-cell destruction in their non-inflammatory STZ-dose rat

model. Insofar as the effects of microbial-produced GABA is anti-

inflammatory, perhaps a multiple dose STZ (MDSD) or autoimmune

model, in which there is both inflammation and residual b-cells, would
have revealed anti-diabetic actions in these experiments.

Using specific pathogen-free male C57BL/6 mice, Abdelazez

et al. treated two groups of STZ-diabetic mice with different strains

of Lactobacillus brevis (KLDS 1.0727 and KLDS 1.0373) and

compared diabetes-related parameters relative to control mice

and STZ-treated diabetic mice (no probiotic treatment) after 4

weeks. There was a 40% decrease in blood glucose in the L. brevis-

treated STZ-mice compared to untreated STZ-controls (serum

glucose 7mM versus 4 mM, respectively). The L.brevis strains

were shown to contain a GAD gene and produce GABA. Proof of

sustained enteric colonization with the Lactobacillus was not

documented (101). In high fat-fed, insulin-resistant mice, L.

brevis readily colonized the animals, increased insulin sensitivity,

and, following an overnight fast, increased the GABA concentration

in the small intestine 2.25-fold (102).

In aggregate, these STZ-diabetic rodent models showed modest

metabolic actions on glucose and insulin with L. brevis treatment

without reversal of diabetes. This supports that the primary salutary

actions of microbial-GABA in T1D may be immunologic. Hence,

long-term enhancement of GABA-producing microbiota,

particularly in the entero-pancreatic region, may be requisite to

mitigate autoimmune b-cell destruction. And, concerning the role

of GUT health, many other factors, including nutrition, prebiotics,
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additional microbe-derived metabolites such as short chain fatty

acids (SCFA), along with avoidance of unnecessary antibiotics,

warrant study in T1D (16).
3.3 Crosstalk between gut microbiota and
the pancreatic islet

The human gastrointestinal tract from the oral cavity to colon

harbors distinct microbial ecosystems. Accordingly, microbes

contained in a distal stool specimen, while experimentally

convenient, differ considerably from proximal segments (103–105).

In 21 healthy individuals age 59 ± 12.3 years who had endoscopy to

obtain mucosal biopsies of the upper and lower GI tract (103) fecal

microbiota by 16S ribosomal profiling did not mirror those in the

upper intestinal mucosal microbiota. Noteworthy, lactobacilli

(phylum Frimicutes), which includes many GABA-producing

microbiota, were exclusive to the upper GI tract compared to fecal

samples. Fecal GABA levels, however, correlate with Bifidobacterium

abundance (phylum Actinobacteria) in healthy controls (106). In a

catheterized rat model, serum GABA was measured in the venous

effluent from small versus large intestine after selective ligation of

abdominal arteries and veins. A two-fold increase in portal GABA

concentration was found between the fasting and fed states, as well as

a 50% diminishment in serum GABA in large versus small bowel

effluent (99).

Concerning entero-pancreatic signaling, or crosstalk, between

microbiota and the pancreas, local, as opposed to systemic, GABA

levels are likely more relevant to autoimmune diabetes (107). The

anatomical proximity and connections between microbiota in the

nutrient-rich duodenum, gut-associated lymph tissue (GALT) and

pancreatic lymph nodes (PLN) form a complex network that

mediates immune tolerance (39, 108). For example, in control

mice, pancreatic b-cells produce calthelicidin-related antimicrobial

peptide (CRAMP) in response to microbial-derived SCFA; this

response mechanism is deficient in both NOD mice and multiple

dose STZ diabetes (MDSD) mice that are genetically CRAMP-

negative (109). Replacing CRAMP forestalls diabetes in these

rodents and is associated with reduced pancreatic immune cell

infiltrates (B-cell, T-cell, and dendritic cells). This novel rodent

study demonstrates that crosstalk between b-cells and the

metabolites of intestinal microbiota may contribute to the immune

backdrop that forfends against autoimmune diabetes. Studies in

germ-free NOD,MyD88-deficientKO mice also highlight a

protective interaction of commensal microbes with the immune

system that reduces the incidence of diabetes (110). It is, therefore,

reasonable to posit that within this enteric micro-environment, a

healthy complement of GABA-producing microbes might favorably

modulate T-cell immunity and islet cell function (81, 111, 112).
3.4 Microbial GABA and type 1 diabetes

Type 1 diabetes is associated with alterations in the

composition of gastrointestinal microbiota (dysbiosis) and
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breakdown of the gut barrier integrity (113–115). Longitudinal

analysis from the TEDDY trial of fecal microbes and their

metabolites from infancy to T1D-onset has uncovered bacterial

imbalances notable for reduced ratios of Firmicutes to Bacteroidetes

as well as deficient enteric SCFA (116–119). Serum metabolome

analysis disclosed reduced GABA levels one year before

seroconversion to insulin autoantibodies (IAA), but not before

the appearance of GAD antibodies (120). This observation was

corroborated in the Finnish Type 1 Prediction and prevention

(DIPP) study wherein elevations in glutamate (precursor to

GABA) were apparent prior to seroconversion. And, in a salient

case study, an 8-fold spike in serum GABA and 13-fold increase in

glutamate preceded the appearance of GAD antibodies by 2.5 years

(121). The significance of these GABA/glutamate trends are

unknown but may reflect compensatory immunomodulation, diet,

microbiota, infection or unknown exogenous factors. Microbial

dysbiosis has been implicated as a key element, in concert with

genetic predisposition and environmental factors, which underpin

the pathoetiology of T1D. It follows that a deficiency of GABA-

producing microbiota, particularly in the duodenum, may be a

component of diabetic dysbiosis. GABA receptors are abundant in

the intestinal tract and on T-cells where anti-inflammatory actions

are recognized (94, 113). T cells express functional GABAA

receptors that are responsive to low dose GABA (43). As follows,

GABA production by the microflora in the metabolically active

small intestine could conceivably lessen pathogenic autoreactive T-

cell responses in gut-associated lymphoid tissue (GALT) and/or

pancreatic lymph nodes (117, 122).

A straightforward approach to dysbiosis in T1D is the

introduction of probiotics (123, 124). Most human trials have

tested the benefits of combinations of Lactobacillus (phyla

Firmacutes) a bifidobacteria (phyla Actinobacteria) (124, 125).

While GABA production was not the focus of these

investigations, many lactobillus and bifidobacteria express GAD

and, thereby, produce GABA (19, 90, 92, 94, 126, 127).
3.5 Microbial glutamate decarboxylase
(GAD) and autoimmunity

GAD65 is a pyridoxal (B6)-dependent decarboxylase. The

enzyme can alternate between an antigenic apoGAD65 format

(no attached B6) versus its active and less antigenic holoGAD65

format (B6 bound). This contrasts with the non-antigenic holo-

GAD67 that is only B6- bound (128). The hypothesis that GAD-

containing microbiota might trigger an autoimmune attack against

b-cell GAD65 was considered based on similarities in human versus

bacterial GAD epitopes in the B6 binding region of GAD (129). The

antigenic, pyridoxal linkage site of GAD65 in GABA-producing gut

microbes aligns closely with human GAD65 such that microbial

GAD could conceivably sensitize enteric T-cells to GAD65 leading

to the pathogenic immune destruction of b-cells. In this model, B6

deficiency might enhance exposure of the antigenic catalytic site of

GAD to autoimmune detection (130). Nevertheless, increased

vitamin B6 intake was not protective against T1D progression in

the TEDDY study (131).
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3.6 Glutamate

Glutamate, the enzymatic precursor for GABA, constitutes

about 10% of dietary amino acid content. Analogous to GABA,

glutamate is a CNS neurotransmitter with additional actions

outside the CNS. Glutamate receptors are widespread, found

particularly in pancreas, adrenal gland, developing cartilage,

gastrointestinal tract and lymphocytes (132). For unknown

reasons, free glutamate is uniquely concentrated in human milk

(133), several-fold higher than other amino acids . The free

glutamate intake of breast-fed infants is 36 mg/kg compared to

0.7 mg/kg from dairy milk formulas; protein hydrolysate

preparations provide 170 mg/kg. Enteral glutamate is rapidly

oxidized for intestinal metabolic energy in piglets (134), preterm

infants (as measured with stable isotopes) (135) and adults.

Glutamate is, furthermore, the widely applied, unami food

enhancer (mono-sodium glutamate or MSG). Inasmuch as oral

glutamate is metabolized rapidly by enterocytes, there was no

measurable rise in systemic GABA levels following an oral dose

of glutamate (136, 137). Concerning glutamate metabolism and

signaling in pancreatic islets, extracellular uptake of glutamate by

AMPA receptors augments a-cell glucagon release (138). In b-cells,
glutamate potentiates glucose and incretin-stimulated insulin

signaling and islet survival via NMDA receptors (139). The

intracellular metabolism of glutamate in b-cells involves

mitochondrial glutamate dehydrogenase, glutamate decarboxylase

(GAD), glutamine synthetase, and the synthesis of glutathione

(140). The glutamate NMDA receptor is a proposed drug target

for diabetes (140–142).
4 GABA dosing and safety

GABA is a water soluble, non-protein amino acid (C4H9NO2).

It is considered a dietary supplement in the USA (143) and a

pharmaceutical in Europe (144). The Dietary Supplement Label

Database (https://dsld.od.nih.gov) records over 1500 GABA-

containing supplements with daily doses ranging from 45 mg to

3000 mg/day, and most at 500-750mg/day (143). A toxicity study in

rats administered oral GABA (500-2500 mg/kg/day) for 13 weeks

and found no significant abnormalities in behavior, weight gain, or

blood indices including general chemistries, glucose, renal function,

hematology and liver function. Postmortem organ histopathology

and weights were normal (145). The highest reported oral dose of

GABA involved 14 adults (8 gram/kg/day divided into 4 doses) for

up to 2 years and was well-tolerated (146). In healthy adults, single

GABA doses of 5 gm, 10 gm or 18 gram/day for 4 days was without

serious adverse side effects (147). Figure 2 presents a comparison of

experimental daily GABA doses (mg/kg) in rodents and one human

clinical study. Of importance, oral administered GABA does not

cross the blood brain barrier (143), although this viewpoint may

need further analysis in neonates (149).

Using immunoassay, adults with T1D had plasma GABA levels

of 649 ± 42 nM compared to 501 ± 32 nM in controls (87). In T2DM,

plasma GABA concentrations were 480 ± 28 nM in T2D compared to

516 ± 30nM in non-diabetic controls (33). In a clinical trial, baseline,
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fasting GABA levels were 248 ± 86 nM by LC-MS/MS in children

with T1D (82). Peripheral blood GABA levels, as measured by HPLC,

do not vary significantly by gender or exercise (150). Using LC-MS/

MS, fasting GABA was 10 ng/ml (97 nM) in 12 healthy volunteers

(151). Following a 2 gram oral dose of GABA, there was a rapid rise in

plasma GABA (tmax: 0.5-1 hour, C max 6.7 mM, t1/2 = 5 hours). With

repeated dosing of 2 grams GABA three times per day for 7 days (~85

mg/kg/day), GABA levels were at steady state. For comparison, in

mice, GABA treatment (6 mg/ml in drinking water for ten

weeks=1500mg/kg/day) raised plasma GABA five-fold over a

baseline of 47.4± 4.8 ng/ml (460 nM) (51). In another report,

fasting GABA levels were 16 ng/ml (155nM) in 11 male adult

volunteers when measured by LC/MS/MS. Following ingestion

of 888mg GABA in 1 liter of water, the pharmacokinetic variables

were: tmax (h) = 0.5 and the Cmax (ng/ml) = 75. Interestingly,

ingestion of pureed tomatoes (innately high in GABA) that contain

a comparable 888 mg dose of endogenous GABA, the GABA kinetics

were: tmax (h) = 0.36 and the Cmax (ng/ml) = 184.

In all pharmacologic interventions, a threshold concentration

must be attained for efficacy. Hence, thrice-daily oral GABA, which

is a practical outpatient regimen, and/or higher doses, is suggested

given the short half-life of GABA. As emphasized by Kaufman’s lab

concerning the clinical utility of oral GABA, there is evidence that

the GABAA receptor EC50 is of low affinity (50-400 mM) (55). By
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patch clamp technique, human islets attained maximum channel

opening at 100-1000 nM GABA with desensitization occurring

above this concentration range (33). The interstitial GABA

concentration in the islet is unknown, yet reason dictates that

continuous exposure or frequent and higher dose GABA may be

required for efficacy. Alternative therapeutic options include longer

acting receptor agonists such as lesogaberan, a GABA-B receptor

agonist (21, 152), or homotaurine, a GABA-A receptor agonist (55).

Other long- acting GABA formulations are in clinical trials (144) or

early development (153, 154). Tian et al. demonstrated the role of

positive allosteric modulators such as alprazolam to augment and/

or prolong GABA actions (59).
5 Clinical studies using GABA
in diabetes

5.1 GABA and GABA/GAD65-alum clinical
trial in children with recent onset T1D

The GABA and GABA/GAD65 trial (82) was the first human,

prospective, double blind, placebo-controlled and randomized clinical

trial of oral GABA (with and without GAD65-alum) in new onset type

1 childhood diabetes. The investigators hypothesized that treatment
FIGURE 2

Comparison of experimental GABA doses used in rodent versus human studies. To compare the experimental GABA doses (mg/kg/day) used in
rodent versus human studies, we estimated daily water intake and tabulated average adult rodent weights. When GABA was added to drinking water
or given by injection, the daily intake approximated 1500 mg/kg/day based on estimated daily water consumption (148). This calculation does not
take into account that diabetic animals have polydipsia, thus the actual GABA dose is vastly underestimated. Mouse body weights - unless noted by
investigators in the methods section- were based on species and the average, non-diabetic weight in healthy animals. Figure 2 references (Y-axis):
Wang, et al. (68), Gu, et al. (80), Ackermann et al. (69), Ben-Othman et al. (44), Feng et al. (75), Soltani et al. (20). Tian et al. (23), Martin et al. (82),
Tian et al. (43), Hwang et al. (45), Sohrabipour et al. (48), Untereiner et al. (51), Liu et al. (22), Prud’homme et al. (47), Purwana et al. (24). Figure
adapted from "A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on
pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes," by Martin A, Mick GJ, Choat HM, Lunsford AA, Tse HM,
McGwin GG Jr, and McCormick KL. Nat Commun. 2022 Dec 24;13(1):7928, Supplementary Data, Figure 6 (https://doi.org/10.1371/journal.
pone.0197160).
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with oral GABA, or a combination of GABA/GAD65-alum, would halt

or slow the progression of new onset type 1 diabetes (T1DM) by some/

all of the following mechanisms: 1) increasing endogenous insulin

secretion, 2) suppression of glucagon release, 3) dampening the T-cell

mediated autoimmune process. This single center, one-year trial

enrolled 97 children with T1D within 6 weeks of diagnosis

(NCT02002130). Interventions included oral GABA (1 gram/M2/day

up to a maximum of 1.5 gram/day or approximately 30 mg/kg/day, see

Figure 2) divided into two daily doses with or without two GAD-alum

injections (20 mcg/dose)-one at baseline and the other at one month.

The FDA constrained the permissible

GABA treatment dose given that this was the first human trial, no

less in children. While the primary outcome (preservation of fasting/

meal-stimulated c-peptide) was not attained, the secondary outcome

(reduction of glucagon) was demonstrated in the GABA/GAD group.

Importantly, the safety and tolerability of oral GABA in children was

confirmed. Considering the low oral GABA dose administered, it was

not unforeseen that only glucagon inhibition was detected,

corroborating the paracrine inhibitory effect of b-cell GABA on a-
cells. Overnight fasting plasma GABA levels did not differ between

T1D and controls in this pediatric trial, not unexpected with the short

half-life of GABA. In contrast, adults with T1D had 13% higher

fasting blood GABA levels compared to controls (87). Strengths of

this T1D trial were the recruitment of young patients within 5 weeks

of diagnosis and the inclusion of a combination antigen (GAD-alum)

plus GABA study group (23). Limitations of this study were the low-

dose of GABA and twice daily dosing to encourage study drug

adherence. Compliance was measured by pill counts of returned

study drug. The average compliance was 83% with 20% of patient

visits recording <50% compliance over the study course. Based on a

half-life of 5 hours after a two gram oral GABA dose (151), in

combination with non-ideal study drug adherence, it is possible that

islet GABA exposure was insufficient to achieve an anti-diabetic

effect. Future human GABA trials could entail longer-acting

preparations, higher doses, GABA agonists or precision GABA-

producing probiotics. As previously discussed, preclinical studies

support combination therapies (23, 54, 67, 155).
5.2 GABA and GABA/GAD65-alum alters
Th-1 cytokine response in children with
recent onset T1D

In the same cohort as the GABA/GAD-alum study (82), the

potential immune effects of GABA treatment, with or without

GAD65 immunization, were examined (89). B ased on cytokine

responses in peripheral blood mononuclear cells following

polyclonal and GAD65 antigen re-challenge, proinflammatory

Th1 cytokine responses were attenuated in both the GABA and

GABA/GAD65-alum groups over 12 months.

Peripheral blood mononuclear cell (PBMC) mRNA expression

was measured following polyclonal stimulation with anti-CD3/

CD28 Dynabeads. GABA treatment decreased IFNg expression at

5 months compared to placebo and with GABA/GAD at 12 months

(p<0.05). At 12 months, GABA increased expression of FOXP3, a

transcriptional regulator of Treg differentiation (p<.05). Using an
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antigen-specific recall assay to GAD65, IFNgmRNA decreased with

GABA/GAD compared to GABA alone at 12 months (p<.05).

The cytokine/chemokine response of PBMC’s was measured

following antigen stimulation with GAD65 using a Milliplex MAP

human cytokine/chemokine bead panel. GABA/GAD treatment

showed a blunted (absent) rise in INFg and TNFa compared to the

statistical increase in both cytokines in the placebo group from 0-12

months (p<.05). GABA decreased the Th1 inflammatory chemokine

CXCL10 response between 0 to 5 months but this diminishment

reversed by 12months. The placebo group, by contrast, had an increase

in CXCL10 between 5-12 months (p<0.05) and 0-12 months (p<0.01).

In aggregate, by qPCR and cytokine/chemokine analysis, GABA

and GABA/GAD reduced some but not all proinflammatory cytokines

and chemokines consistent with an attenuated progression of the

inflammatory phenotype. Subjects were next divided by high-risk

haplotypes as either HLA-DR3-DQ2 and HLA-DR4-DQ8/other. The

DR4 group manifested a Th1-skewed proinflammatory response in

comparison to the DR3 group and responded differently to GABA

alone versus GABA/GAD65-alum. Expression of IFNgmRNA over 12

months was lower in the GABA/GAD group compared to placebo

(p<0.001) or GABA alone (p<0.01) as well as compared to the same

treatments in the HLA-DR4 cohort. At 12 month, GABA/GAD

treatment led to decreased CXCL10 in the DR3 group compared to

placebo (p<0.05) and the HLA-DR4/other GABA group. IL-2, which

promotes expansion andmaturation of naïve T-cell to T-eff, showed no

differences with the placebo versus treatment groups.

These immune studies in PBMC from study subjects confirm the

HLA-delineated immunomodulary actions of GABA and GABA/

GAD65-alum in children with recent onset T1D. The results

corroborate, in part, preclinical studies in MDSD mice showing

that GABA decreased levels of circulating and CD4-released IFNg,
IL1b, TNFa, and IL-12 mice (20). The immunomodulary effect of

GABA in NOD mice (600 mcg daily by subcut. pellet for 60 day) is

also instructive (43). For example, in GAD-stimulated splenic T-cells

from the NOD mice, GABA reduced INFg formation 55%. The

GABA dose used in the NODmice (~30 mg/kg/day) (see Figure 2) is

comparable to this clinical trial (82, 89).

Limitations of this study were the low dose of GABA and

challenges with medication adherence as discussed previously.

Concerning immunophenotyping of isolated PBMCs, it is evident

that results do not perfectly mimic the localized immune response

within the pancreatic islet. Corroborating the results in animal models

of T1D treated with GABA andGAD65-alum could clarify whether the

peripheral immune responses resemble the islet microenvironment.

In addition, both GABA alson and GABA with GAD65-alum

treatment inhibited Th1 responses compared to placebo but showed

no significant differences between the treatment cohorts. It is

possible that multiple autoantigens are necessary to induce robust

T cell proliferation as was shown in an analogous T1D study that

used antigen recall assays and HLA delineation (5).
5.3 GABA trial in adults with prediabetes

In overweight adults with prediabetes, De Bie and colleagues

examined the effect of oral GABA on glycemic control using a
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double-blind, randomized and placebo-controlled study design

(NCT04303468) (156). In this well-designed trial, 52 subjects,

ages 50-70 years, were given 500 mg GABA orally thrice daily

versus placebo for 95 days. Prediabetes was defined by abnormal

oral glucose tolerance testing (OGTT). The primary outcome was

the effect of GABA on OGTT, and the secondary exploratory

outcomes included continuous glucose monitoring (CGM),

cardiovascular indices and sleep quality. Blood sampling included

glycated hemoglobin, insulin, glucagon, GABA, glutamate and

lipids. Results did not establish the primary endpoint, although

there was a 0.22 mmol/L decrease in fasting glucose in the GABA

group after 95 days. Other secondary outcomes were not met. Given

the role of excess hepatic glucose production and reduced glucose

clearance in the pathophysiology of prediabetes (157) the inhibition

of glucagon by GABA, in addition to b-cell replication, could

favorably improve the insulin/glucagon ratio (158, 159).
5.4 Efficacy of combination therapy with
GABA, a dipeptidyl peptidase-inhibitor and
a proton pump inhibitor in adults with T1D.

This retrospective study examined the effect of GABA (500 mg

orally 2-4 times/day) in combination with one of two DPP-4i

(sitagliptin or saxagliptin) and a proton pump inhibitor (PPI)

(omeprazole 20-40 mg/day) in 19 overweight adults (32± 13 years

of age) with insulin dependent diabetes (160). The authors based this

study on their preclinical report examining the effect of GABA, DPP-

4i and PPI in NOD mice (161). T1D was characterized by low c-

peptide (5/19 subjects) and GAD65 positivity (14/19 subjects).

Patients were identified by chart review and were divided into two

subgroups: early-therapy (begun within 12 months, mean 3 months,

of starting insulin) and late therapy (begun more than 12 months,

mean 168 months, after starting insulin). Treatment continued for

26-42 months. There were improvements in fasting blood glucose,

HgA1C, IDAA1c, total daily dose of insulin, and c-peptide. Seventy

percent of patients in the early- therapy subgroup no longer required

insulin but none in the late-therapy group. Moreover, despite

persistently low fasting c-peptide, the combination treatment led to

improvements in glycemic control and reduced total daily insulin.

The authors inferred that reduced glucagon secretion may have

played a role. In T2D with insulitis, beta cell failure and glucagon

excess would also likely benefit from this combination therapy.

Preclinical studies support this possibility (22, 49, 54, 56, 67, 155).
5.5 GABA levels and GAD65 antibody titers
in adults with T1D

Plasma GABA levels, GAD65 antibody titers, c-peptide, and serum

cytokines were determined in 128 young adults: 45 healthy controls, 60

individuals with long standing T1D and 13 individuals with new onset

T1D (162). Fasting morning blood was collected for analysis and

GABA was measured by LC/MS/MS. Detectible serum c-peptide was

found in 20% of patients with long-standing diabetes. Plasma GABA

was similar in each group and correlated positively with fasting glucose
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and negatively with age. The authors posit that while circulating GABA

levels were the same in all groups, GABA concentrations in the entero-

pancreatic region and islets may be at variance. Moreover, both dietary

intake and GABA- producing microbes are additional sources of

GABA that may modify the islet milieu but not be reflected by

circulating concentrations (19, 127, 163).
5.6 GABA induces a hormonal
counterregulatory response in subjects
with long-standing T1D

Six adult males enrolled in an open-label, 11 day study to test the

safety, efficacy, pharmacokinetics and hormonal responses (including

a hypoglycemic clamp) to a long-acting oral GABA preparation

(Remygen, Diamyd Medical, Stockholm, Sweden) (144). Subjects

were on average 25 years old and had long-standing diabetes. In 5

subjects the baseline c-peptide was <0.01 nmol/L. Results found that

the long acting GABA preparation restored the counter-regulatory

response (glucagon, cortisol, and adrenaline) to hypoglycemia

(clamped at 2.5 mmol/L). The authors suggest a potential

therapeutic action of their GABA preparation on hormonal

counter-regulation during hypoglycemia. Note that with normal to

high glucose, GABA inhibits alpha-cell glucagon release (15, 164).
6 GABA in hybrid diabetes

T1D and T2D have overlapping features such that both have

relative or veritable insulin-deficiency (with or without autoimmunity)

or insulin-resistance, both of which are identified in many patients

who were previously classified to one or the other binary designation.

Assorted recent classification schemes have been proposed to

subdivide diabetes subjects as: double-diabetes, hybrid-diabetes, type

1.5-diabetes, early onset T2D or late-onset autoimmune diabetes

(LADA) (165–167). The potential efficacy of GABA in hybrid

diabetes is relevant given the purported capacity of GABA to

increase beta cell mass and reduce glucagon (17, 80, 168). In the

high fat fed/streptozocin type 2 diabetic rat model, GABA improved

insulin sensitivity and reduced expression of lipogenic genes both in

diabetic rat mothers and their offspring (169). Using the same model,

Sohrabipour, et al. demonstrated that GABA (1.5 gr/kg/day, IP)

normalized hyperglycemia, improved insulin sensitivity (measured

by insulin clamp), reduced liver glucagon receptor mRNA (but not

glucagon levels), and increased muscle GLUT4 translocation to

plasma membrane as well as GLUT4 mRNA expression (48).

Concerning the insulin-resistant phenotype, GABA treatment also

reduced diabetic rat abdominal fat compared to an insulin-treated

counterpart. In an olanzapine-induced insulin resistant model, GABA

treatment (50mg/kg/day, i.p.) decreased insulin resistance through

GABA-B receptor dependent mechanisms in adipose stromal vascular

tissue (170). In pancreatic donor islets from non-diabetic versus T2D

individuals (171), GABA-A receptor subunits in the T2D islets were

downregulated compared to controls. The authors propound that

deficient islet GABA signaling/content may contribute to the hyper-

glucagonemia of T2D which again reinforces a role for GABA-

based therapeutics.
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7 Conclusion

The role of GABA as a safe and inexpensive therapeutic agent for

diabetes is reviewed herein. Unlike exogenous interventions, GABA is

a natural compound with a distinctive physiologic role in the

pancreatic islet and nutrient gut. GABA is available in select foods

and over-the-counter supplements. Pharmacokinetic and safety

studies demonstrate that oral GABA has a short half-life, excellent

tolerability and does not cross the blood brain barrier. Insofar as

GAD autoantibodies are detected early in nearly all T1D, the logical

segue was that islets would be depleted of the product of this enzyme,

namely, GABA. Indeed, this has been confirmed in T1D and T2D

donor islets. Preclinical studies demonstrated reversal of rodent

diabetes (immune or chemically-mediated) using intermittent or

continuous oral GABA dosing, as well as with subdermal implants.

To date, experimental animal GABA doses (mg/kg/day) are generally

many-fold higher than employed in clinical studies and, in general,

higher doses (Figure 2) were more likely to elicit a favorable metabolic

response. In adults, two small cohorts ingested 20-50 times the usual

over-the-counter GABA dose (~1000 mg/day) for days to months

without incident. There are no long-term safety data regarding

GABA treatment. New approaches are emerging to prolong the

half-life and efficacy of GABA using GABA receptor agonists

(21, 55), long acting formulations (144), and positive allosteric

modifiers (172). These agents may obviate the need for frequent

and high oral doses of GABA.

slet studies in rodent and human islets, including single-cell

transcriptomics, have unveiled a multitude of paracrine and

autocrine GABA actions. There is more to learn regarding the

GABA’s role in modifying b-cell survival, regeneration and insulin

secretory patterns. How GABA partakes in the regulatory crosstalk

between the three major islet endocrine cells (b, a, and d) is under
study (15). Given its safety record and anti-inflammatory action,

GABA may play a role in islet transplantation, either alone or in

combination with other immunosuppressive or anti-apoptotic agents.

The endocrine and immunologic roles of GABA within the

entero-pancreatic mid-gut as pertains to diet, the microbiome and

the abundant gut-associated and pancreatic lymph tissue is likewise

ripe for study (16, 163). A host of questions persists. Do GABA-

enriched foods have health benefits? Do environmental toxins/

antibiotics lead to GABA-deficient dysbiosis and reduced innate

immunity? Human immune cells have GABA receptors including

lymphocytes, CD4+. CD8+, PBMC, and monocytes. Do GABA-

producing microbes have an immunosuppressive role concerning

T1D autoimmunity? Could GABA-producing microbiota have

analogous immune protective actions to SCFA-secreting microbes

concerning b-cell immune protection and crosstalk in T1D? Do

GABA-producing microbiota participate in primary TID prevention?

To the point, disappearance of bifidobacterium infantia from the

infant gut is implicated in the early dysbiosis of T1D (173). Of

relevance, b. infantia is a recognized GABA-producer (111, 174).

Probiotic trials frequently select Lactobacillus (phyla Firmacutes) as

well as Bifidobacteria (phyla Actinobacteria) both of which contain

recognized GABA-producing microbes via expressed glutamate

decarboxylase (GAD). Whether microbial dysbiosis sensitizes the

host immune system to GAD sequence dissimilarities between
Frontiers in Endocrinology 11
human and microbial is an alluring hypothesis (129) that deserves

further consideration. Preventive management of gut dysbiosis might

theoretically diminish this risk by correcting microbial imbalances

and maintaining gut integrity.

GABA elicits an antidiabetic outcome by numerous routes. The

fact that GABA can strikingly reverse hyperglycemia in diabetic

mice, both STZ-induced and immune models, merits further

clinical trials. Given the depletion of GABA in islets from patients

with T1D and T2D (35), repletion of islet GABA may have

pharmacologic application. Whether systemically administered

GABA can replete this is unsettled, no less whether the

experimentally measured islet cell deficit is indeed pathogenic. An

alternative multipronged therapeutic approach would be GABA in

conjunction with other immunomodulary or anti-diabetic

compounds that have diverse mechanisms of action. Examples

include GLP-1 agonists, DPP-4 inhibitors, TxNIP inhibitors, islet

antigens, low-dose anti-CD3 antibody, and positive allosteric

modifiers of GABA (13, 14, 21, 22, 59, 67).

The propitious safety profile of GABA renders early and

longer-term GABA therapeutics particularly attractive, especially

in stage 1 and 2 diabetes. The ongoing GPPAD-02 infant study

(175) provides a paradigm for primary prevention with oral GABA.

The underexplored role of endogenous GABA-producing

microbiota in the immunoprotective enteropancreatic gut is apt

for preclinical study and randomized controlled trials (RCT) with

GABA producing probiotics in stage 1 diabetes (113). A lifetime of

microbiome-protective nutritional and pharmacologic options for

gut health may also defend against T1D. Combination therapy of

GABA with a complimentary oral agents such as a TxNIP inhibitor

or positive allosteric modifier in stage 2 T1D is an inexpensive

intervention, and especially attractive insofar as the low toxicity.

Based on residual b-cell function in stage 3 diabetes (176), b-cell
preservation may also be feasible with longer acting or higher dose

GABA formulations (82). Looking forward, GABA may have

unique and previously underappreciated therapeutic benefits in

TID to increase b-cell content, reduce excess glucagon and curtail

the inflammatory T-cell dysfunction of type 1 diabetes.
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