
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Rodrigo O. Maranon,
CCT CONICET Tucuman, Argentina

REVIEWED BY

Heather Drummond,
University of Mississippi Medical Center
School of Dentistry, United States
Nicoletta Di Simone,
Humanitas University, Italy
Patricia Canto,
National Autonomous University of Mexico,
Mexico

*CORRESPONDENCE

Ran Luo

19810983973@163.com

†These authors have contributed equally to
this work

RECEIVED 22 June 2024

ACCEPTED 15 August 2024
PUBLISHED 02 September 2024

CITATION

Tan Z, Ding M, Shen J, Huang Y, Li J, Sun A,
Hong J, Yang Y, He S, Pei C and Luo R (2024)
Causal pathways in preeclampsia: a
Mendelian randomization study in European
populations.
Front. Endocrinol. 15:1453277.
doi: 10.3389/fendo.2024.1453277

COPYRIGHT

© 2024 Tan, Ding, Shen, Huang, Li, Sun, Hong,
Yang, He, Pei and Luo. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 02 September 2024

DOI 10.3389/fendo.2024.1453277
Causal pathways in
preeclampsia: a Mendelian
randomization study in
European populations
Zilong Tan1†, Mengdi Ding1†, Jianwu Shen1,2†, Yuxiao Huang3,
Junru Li4, Aochuan Sun5, Jing Hong6, Yan Yang7, Sheng He8,
Chao Pei9 and Ran Luo3*

1Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,
2Department of Urology, Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining, China,
3Department of Gynecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences,
Beijing, China, 4Department of Internal Medicine, Qinghai Provincial Hospital of Traditional Chinese
Medicine, Xining, China, 5Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese
Medical Sciences, Beijing, China, 6Department of Integration of Chinese and Western Medicine, Key
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Purpose:Our study utilizes Mendelian Randomization (MR) to explore the causal

relationships between a range of risk factors and preeclampsia, a major

contributor to maternal and perinatal morbidity and mortality.

Methods: Employing the Inverse Variance Weighting (IVW) approach, we

conducted a comprehensive multi-exposure MR study analyzing genetic

variants linked to 25 risk factors including metabolic disorders, circulating lipid

levels, immune and inflammatory responses, lifestyle choices, and bone

metabolism. We applied rigorous statistical techniques such as sensitivity

analyses, Cochran’s Q test, MR Egger regression, funnel plots, and leave-one-

out sensitivity analysis to address potential biases like pleiotropy and

population stratification.

Results: Our analysis included 267,242 individuals, focusing on European

ancestries and involving 2,355 patients with preeclampsia. We identified strong

genetic associations linking increased preeclampsia risk with factors such as

hyperthyroidism, BMI, type 2 diabetes, and elevated serum uric acid levels.

Conversely, no significant causal links were found with gestational diabetes,

total cholesterol, sleep duration, and bone mineral density, suggesting areas for

further investigation. A notable finding was the causal relationship between

systemic lupus erythematosus and increased preeclampsia risk, highlighting

the significant role of immune and inflammatory responses.

Conclusion: This extensive MR study sheds light on the complex etiology of

preeclampsia, underscoring the causal impact of specific metabolic, lipid,

immune, lifestyle, and bone metabolism factors. Our findings advocate for a
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multidimensional approach to better understand and manage preeclampsia,

paving the way for future research to develop targeted preventive and

therapeutic strategies.
KEYWORDS

preeclampsia, Mendelian randomization, genetic determinants, causal associations,
metabolic disorders, immune and inflammatory factors, serum uric acid levels
1 Introduction

Preeclampsia is a leading complication in maternal health,

characterized by hypertension and often proteinuria, presenting

significant challenges in public health and clinical management (1,

2). Despite considerable advances in our understanding of maternal

health (3, 4), the complex etiology of preeclampsia remains only

partially elucidated, emphasizing the need for innovative research

approaches to explore its underlying causes (5, 6).

Traditional investigative methods, such as randomized

controlled trials (RCTs), face significant ethical and practical

challenges in pregnancy-related research, often leaving gaps in

causal understanding (7–9). Observational studies, while

informative, are susceptible to confounding and reverse causation,

which can obscure causal inferences (10–12).

Mendelian Randomization (MR) emerges as a pivotal tool in

genetic epidemiology, using genetic variants as instrumental

variables to infer causal relationships between risk factors and

health outcomes (13, 14). This study employs the Inverse

Variance Weighted (IVW) method of MR (15, 16) to dissect the

causal relationships between a broad spectrum of risk factors—

including metabolic disorders, lipid levels, immune responses,

lifestyle factors, and bone metabolism—and the onset of

preeclampsia. These risk factors were selected based on

preliminary evidence suggesting their potential roles in the

pathophysiology of preeclampsia. Specifically, metabolic disorders

and lipid levels are implicated in endothelial dysfunction; immune

responses are central to the inflammatory processes in

preeclampsia; lifestyle factors contribute to overall maternal

health and pregnancy outcomes; and bone metabolism reflects

broader systemic changes during pregnancy. This genetic

approach helps overcome the biases inherent in traditional

observational studies and provides a deeper understanding of the

disorder’s pathophysiology.

Our comprehensive analysis traverses multiple domains,

revealing intricate associations that are crucial to understanding

preeclampsia’s development and suggesting the involvement of

diverse biological pathways. This study not only enhances our

knowledge of preeclampsia but also opens avenues for early

detection and targeted intervention strategies.

Furthermore, by addressing inherent limitations of MR, such as

potential pleiotropy and population stratification, through
02
advanced statistical methodologies and rigorous sensitivity

analyses, we ensure the robustness of our findings. Grounded in a

solid methodological framework and building on seminal works in

the field, our research offers valuable insights into the causal

mechanisms of preeclampsia. These findings advocate for a

multifaceted approach to both the research and management of

this complex condition, potentially guiding future research

directions and improving clinical practices to enhance maternal

and perinatal health outcomes.
2 Materials and methods

2.1 Data sources and availability

Our investigation into the genetic underpinnings of

preeclampsia utilizes a multifaceted MR framework (17–19),

drawing from extensive datasets primarily focused on European

ancestry populations. This approach strategically mitigates

potential confounding issues, particularly those related to

population stratification, thus enhancing the accuracy and

specificity of our causal assessments. We have conducted a

comprehensive analysis across five primary exposure categories,

crucial to understanding preeclampsia: metabolic disorders, lipid

metabolism factors, immune and inflammatory factors, lifestyle

variables, and bone metabolism, in addition to other potential

contributors(a total of 25 exposure factors). Within each category,

multiple phenotypes have been examined to elucidate their

associations with preeclampsia. Key to our analysis is the

incorporation of extensive Genome-Wide Association Study

(GWAS) data. Notably, we leveraged the UK Biobank and

FinnGen datasets, encompassing a total of 628,000 participants.

This includes a detailed GWAS for preeclampsia involving 267,242

individuals, comprising 2,355 female cases of preeclampsia and a

wide array of single nucleotide polymorphisms (24,165,538 Single

Nucleotide Polymorphisms [SNPs]) (ID: ebi-a-GCST90018906).

Furthermore, we augmented our genetic analysis with findings

from Saori Sakaue et al.’s phenome-wide association study within

the Japanese biobank, which identified approximately 5,000 novel

loci across 179,000 individuals.

For metabolic factors, our MR analysis probed into type 1

diabetes (520,580 participants, 59,999,551 SNPs, ID: ebi-a-
frontiersin.org
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GCST90014023), type 2 diabetes (490,089 participants, 24,167,560

SNPs, ID: ebi-a-GCST90018926), gestational diabetes (123,579

participants, 16,379,784 SNPs, ID: finn-b-GEST_DIABETES),

hyperthyroidism (460,499 participants, 24,189,279 SNPs, ID: ebi-

a-GCST90018860), and BMI (461,460 participants, 9,851,867 SNPs,

ID: ukb-b-19953). In the lipid metabolism domain, we scrutinized

total cholesterol (437,878 participants, 4,232,052 SNPs, ID: ebi-a-

GCST90025953), triglycerides (343,992 participants, 19,052,580

SNPs, ID: ebi-a-GCST90018975), and apolipoproteins. Immune

and inflammatory condit ions such as systemic lupus

erythematosus (482,911 participants, 24,198,877 SNPs, ID: ebi-a-

GCST90018917), gout (484,598 participants, 9,587,836 SNPs, ID:

ebi-a-GCST90038687), and rheumatoid arthritis (484,598

participants, 9,587,836 SNPs, ID: ebi-a-GCST90038685) were also

analyzed. Furthermore, we analyzed immune and inflammatory

conditions, including systemic lupus erythematosus (482,911

participants), gout (484,598 participants), and rheumatoid

arthritis (484,598 participants). Lifestyle factors like sleep

duration and bone metabolism elements, including bone mineral
Frontiers in Endocrinology 03
density (365,403 participants, 10,783,906 SNPs), calcium levels

(400,792 participants), and serum 25-Hydroxyvitamin D levels

(496,946 participants), were also scrutinized.

Lastly, we investigated other potential exposure factors,

including chronic kidney disease (117,165 participants, 2,179,497

SNPs), uric acid levels (343,836 participants, 19,041,286 SNPs),

alanine aminotransferase levels (437,724 participants, 4,231,965

SNPs), placental growth factor (3,394 participants), vascular

endothelial growth factor (21,758 participants), hemoglobin

concentration (396,624 participants), and platelet count (600,968

participants). These additional factors provide a broader perspective

on the genetic dimensions potentially influencing preeclampsia

(Figure 1). The comprehensive GWAS summaries for each

phenotype, crucial for our genetic analysis, are detailed in

Table 1. For an in-depth statistical exploration, these datasets are

accessible through the MRC Integrative Epidemiology Unit GWAS

database (https://gwas.mrcieu.ac.uk/). This extensive and varied

genetic data is pivotal in our exploration of the complex genetic

landscape associated with the development of preeclampsia.
FIGURE 1

Various possible risk factors for preeclampsia. (01: Type 1 diabetes, 02: Type 2 diabetes 03: Gestational diabetes, 04: Hyperthyroidism, 05: Body
mass index, 06: Circulating lipid metabolism factors, 07: Systemic lupus erythematosus, 08: Gout, 09: Rheumatoid arthritis, 10: Sleep duration,
11: Bone mineral density, 12: Calcium levels, 13: Serum 25-Hydroxyvitamin D levels, 14: Chronic kidney disease, 15: Serum uric acid levels, 16:
Alanine aminotransferase levels, 17: Placental growth factor, 18: Vascular endothelial growth factor levels, 19: Platelet count, 20:
Hemoglobin concentration).
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2.2 Selection of genetic instruments and
data harmonization

Our Multi-exposure MR analysis hinged on the systematic

identification of independent SNPs associated with exposure

factors. We employed a stringent testing process for three critical

hypotheses to validate these SNPs as reliable instrumental variables

on a genome-wide scale (Figure 2), adhering to strict significance

thresholds (P<5e-08). During this phase, we meticulously excluded

SNPs with potential confounding effects on the outcome variables.

The selection process involved a stringent linkage disequilibrium

(LD) criterion (r2 < 0.001 over 10,000 kilobase pairs), utilizing the

LD reference panel from the European superpopulation of the 1000

Genomes Project. This criterion was particularly focused on two-

allele SNPs with minor allele frequencies above 0.01, enhancing the

independence and relevance of our genetic instruments. We then

extracted and harmonized summary-level data from diverse GWAS

datasets, aligning key details such as SNP effects, allele frequencies,

sample sizes, and statistical measures. This harmonization was

critical to ensure the precise alignment of genetic variant

association estimates across the exposure and outcome datasets.

Where specific SNPs were missing in the outcome dataset, we

identified and employed suitable surrogate SNPs, maintaining the

analytical integrity of our study. Post-harmonization, we applied a

rigorous criterion for the selection of instrumental variables,

requiring an F-statistic exceeding 10. This threshold was

instrumental in bolstering the validity of our findings and

minimizing bias, marking a significant advancement in the

application of MR methodologies. Detailed information on the

SNPs used as instruments, including proxies for unavailable SNPs

in the outcome dataset, is comprehensively documented in Figure 3

and Supplementary Tables S1-S25. These resources exemplify our

commitment to methodological transparency and robustness,

offering valuable contributions to the field of genetic epidemiology.
2.3 Statistical analyses

The Multi-exposure MR analysis was conducted using

TwoSampleMR version 0.5.7 (https://github.com/MRCIEU/

TwoSampleMR) within the R 4.2.3 environment. In our pursuit of

evaluating causality, we employed a comprehensive suite of five MR

analysis methods. The primary method employed was the IVWMR

with multiplicative random effects (20).To fortify the robustness of

our findings against potential violations of MR assumptions, we

supplemented the IVW method with four additional

methodologies: MR Egger, Weighted Median, Simple Mode, and

Weighted Mode. The IVW method, our central approach, assigned

weights to each ratio based on their standard errors (SE), adeptly

addressing potential heterogeneity in measurements and ensuring

reliable estimates even across diverse data sources (21,

22).Concurrently, with these five robust MR analysis methods, we

conducted supplementary sensitivity analyses. Initially, we assessed

the presence of heterogeneity among variable-specific causal
Frontiers in Endocrinology 04
estimates using Cochran’s Q test (23, 24). This, in turn, was

utilized to detect and adjust for pleiotropy through MR-Egger

regression, determining whether directional level pleiotropy

directly influenced the outcome (25, 26).Furthermore, we

meticulously constructed funnel plots to visualize the precision of

each variable-specific causal estimate in relation to the estimates

themselves. These plots were designed to reflect symmetry in the

context of IVW estimates, with more precise estimates indicative of

reduced variability (21). Lastly, leave-one-out sensitivity analyses

were executed to identify and assess influential data points within

each instrumental variable (27). This technique was instrumental in

uncovering the dependency of causal effect estimates on individual

genetic variants, thus reinforcing the overall validity and robustness

of our MR analysis outcomes.
3 Results

3.1 Unveiling causal connections between
metabolic risk factors and preeclampsia

In our examination of the complex interplay between metabolic

risk factors and Preeclampsia, we employed the IVW method

within Mendelian Randomization to ensure rigorous analysis

(Figure 4). Our findings revealed that Type 1 diabetes does not

significantly influence Preeclampsia risk (Odds Ratio, OR: 1.025;

95% CI: 0.995-1.056, P=0.107). This lack of association was

consistent across various statistical methods, as meticulously

detailed in Supplementary Table S26, and corroborated by the

heterogeneity analysis (Q=96.581, P=0.065; Table 2) and MR-

Egger regression (Egger intercept = 0.001, P=0.858; Table 3), with

visual supports provided in Supplementary Figures S2, S3.

Conversely, Type 2 diabetes demonstrated a clear causal link with

an increased risk of Preeclampsia (OR: 1.181; 95% CI: 1.094-1.275,

P=1.899e-05), a relationship that persisted in both Weighted Median

and Weighted Mode analyses (Supplementary Table S27). This

correlation translates to an 18.12% increase in risk per standard

deviation increase in genetically predicted Type 2 diabetes, with

robust findings supported by leave-one-out sensitivity analyses and

funnel plots depicted in Supplementary Figures S3, S4.

Interestingly, no causal link was found between Gestational

diabetes and Preeclampsia risk (OR: 1.149; 95% CI: 0.882-1.498,

P=0.304; Supplementary Table S28), as consistent results across

methodologies indicated no directional pleiotropic effects (MR-Egger

intercept =-0.051, P=0.630), outlined in Tables 2 and 3. Furthermore,

our analysis highlighted a significant association between

Hyperthyroidism and increased Preeclampsia risk (OR: 1.135; 95%

CI: 1.027-1.254; P = 0.013; Supplementary Table S29), with additional

evidence from Weighted Median and Weighted Mode analyses

supporting this finding (Supplementary Figure S2). Similarly, an

elevated BMI significantly escalated the risk of Preeclampsia (OR:

1.362; 95% CI: 1.241-2.235; P=7.066e-4), with no excessive

heterogeneity observed (Q=423.955, P=0.396; Supplementary Table

S30), as illustrated in Supplementary Figures S1, S2.
frontiersin.org

https://github.com/MRCIEU/TwoSampleMR
https://github.com/MRCIEU/TwoSampleMR
https://doi.org/10.3389/fendo.2024.1453277
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 1 Baseline characteristics of metabolic disorders, circulating lipid level factors, immune and inflammatory factors, lifestyle variables, bone metabolism, in addition to other potential factors (a total of 25
exposure factors) and Preeclampsia datasets.

mple Size n SNPs n Case n Control

520,580 59,999,551 18,942 501,638

490,089 24,167,560 38,841 451,248

123,579 16,379,784 5,687 117,892

460,499 24,189,279 3,557 456,942

461,460 9,851,867 NA NA

437,878 4,232,052 NA NA

343,992 19,052,580 NA NA

400,754 4,218,934 NA NA

431,167 16,293,344 NA NA

398,508 4,218,115 NA NA

435,744 4,231,412 NA NA

482,911 24,198,877 647 482,264

484,598 9,587,836 6,810 477,788

484,598 9,587,836 5,427 479,171

460,099 9,851,867 NA NA

365,403 10,783,906 NA NA

400,792 4,218,949 NA NA

496,946 496,946 NA NA
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Trait Contains ID Year PMID Population Sa

Metabolic factors

Type 1 diabetes
ebi-

a-GCST90014023
2021 34012112 European

Type 2 diabetes
ebi-

a-GCST90018926
2021 34594039 European

Gestational diabetes
finn-

b-GEST_DIABETES
2021 NA European

Hyperthyroidism
ebi-

a-GCST90018860
2021 34594039 European

Body mass index (BMI) ukb-b-19953 2018 32042192 European

Circulating lipid level factors

Total cholesterol levels
ebi-

a-GCST90025953
2021 34226706 European

Triglycerides
ebi-

a-GCST90018975
2021 34594039 European

HDL cholesterol levels
ebi-

a-GCST90025956
2021 34226706 European

LDL cholesterol levels
ebi-

a-GCST90002412
2020 32493714 European

Apolipoprotein A1 levels
ebi-

a-GCST90025955
2021 34226706 European

Apolipoprotein B levels
ebi-

a-GCST90025952
2021 34226706 European

Immune and inflammatory factors

Systemic
lupus erythematosus

ebi-
a-GCST90018917

2021 34594039 European

Gout
ebi-

a-GCST90038687
2021 33959723 European

Rheumatoid arthritis
ebi-

a-GCST90038685
2021 33959723 European

Lifestyle and Bone metabolism factors

Sleep duration ukb-b-4424 2018 NA European

Bone mineral density
ebi-

a-GCST90014022
2021 34017140 European

Calcium levels
ebi-

a-GCST90025990
2021 34226706 European

2020 32242144 European
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TABLE 1 Continued

ID Year PMID Population Sample Size n SNPs n Case n Control

ebi-
-GCST90000618

i-a-GCST003374 2016 26831199 European 117,165 2,179,497 12,385 104,780

ebi-
-GCST90018977

2021 34594039 European 343,836 19,041,286 NA NA

ebi-
-GCST90025979

2021 34226706 European 437,724 4,231,965 NA NA

prot-b-66 2018 28369058 European 3,394 5,270,646 NA NA

ebi-
-GCST90011995

2020 33067605 European 21,758 12,717,927 NA NA

ebi-
-GCST90013978

2021 34017140 European 396,624 10,783,698 NA NA

ebi-
-GCST90028999

2018 29892013 European 600,968 11,973,076 NA NA

ebi-
-GCST90018906

2021 34594039 European 267,242 24,165,538 2,355 264,887
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Trait Contains

Serum 25-Hydroxyvitamin
D levels a

Other potential factors

Chronic kidney disease eb

Serum uric acid levels
a

Alanine
aminotransferase levels a

Placental growth factor

Vascular endothelial growth
factor levels a

Hemoglobin concentration
a

Platelet count
a

Outcome factors Preeclampsia
a

NA, Not Applicable.
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3.2 Unveiling causal connections between
circulating lipid level factors
and preeclampsia

Employing the IVW Mendelian Randomization model, our

analysis explored the impacts of various lipid levels on

Preeclampsia risk. We found no significant causal association

between total cholesterol levels and Preeclampsia (OR: 0.992; 95%

CI: 0.848-1.161, P=0.924), with this finding consistently supported

across multiple analytical methods as shown in Supplementary

Figures S1, S2, and detailed in Supplementary Table S31. Notably,

heterogeneity was present (Q=222.723, P=0.030; Table 2), but MR-

Egger regression indicated no directional pleiotropic effects (Egger

intercept =-0.005, P=0.245; Table 3). Our results’ robustness was

further confirmed by leave-one-out sensitivity analyses and funnel

plots (Supplementary Figures S3, S4).

In contrast, triglycerides were linked to an elevated risk of

Preeclampsia, with the IVW analysis indicating a significant

association (OR: 1.346; 95% CI: 1.170-1.549, P=3.184e-05;

Supplementary Table S32, Supplementary Figure S1). For each

standard deviation increase in genetically predicted triglyceride

levels, Preeclampsia risk escalated by 34.62%. This association

persisted across diverse analytical methods (Supplementary Figure

S2) and showed no excessive heterogeneity (Q=276.256, P=0.417;

Table 2). However, the presence of potential pleiotropy suggested by

MR-Egger regression (Egger intercept=0.007, P=0.030; Table 3)

necessitates cautious interpretation of these results.

Furthermore, High-Density Lipoprotein Cholesterol (HDL-C)

demonstrated a protective effect, reducing the risk of developing
Frontiers in Endocrinology 07
Preeclampsia by 12.75% for each standard deviation increase (OR:

0.872; 95% CI: 0.785-0.970, P=0.011; Supplementary Table S33,

Supplementary Figure S1). This consistent finding across methods

(Supplementary Figure S2) was mirrored by the absence of

directional pleiotropic effects in MR-Egger regression (Egger

intercept =-0.002, P=0.549; Table 3). Conversely, Low-Density

Lipoprotein Cholesterol (LDL-C) was associated with an increased

Preeclampsia risk (OR: 1.125; 95% CI: 1.009-1.254, P=0.034;

Supplementary Table S34, Supplementary Figures S1, S2), with the

primary IVW analysis suggesting a 12.49% risk escalation for each

standard deviation increase. MR-Egger regression confirmed the

absence of pleiotropic effects influencing these results (Egger

intercept =-0.002, P=0.449; Table 3). Lastly, analyses for

Apolipoprotein A-1 (APOA-1) and Apolipoprotein B (APOB)

revealed no significant causal links with Preeclampsia (APOA-1

OR: 0.922; 95% CI: 0.815-1.043, P=0.195; APOB OR: 1.044; 95%

CI: 0.917-1.189, P=0.517), with these findings consistently supported

by further analytical methods as detailed in Supplementary Tables

S35, S36, and shown in Supplementary Figure S2.
3.3 Unveiling causal connections between
immune and inflammatory factors
and preeclampsia

Our comprehensive MR investigation explored the causal

impact of immune and inflammatory factors on the risk of

Preeclampsia, revealing notable distinctions among different

conditions. Systemic lupus erythematosus was found to
FIGURE 2

Schematic representation of the three assumptions and study design. (1) The selected genetic instrumental variables (IVs) are robustly associated
with the exposure, ensuring a reliable link; (2) These IVs demonstrate no connections to potential confounding factors, safeguarding against bias;
(3) The IVs exclusively affect the outcome risk via the exposure in a dependent manner, maintaining the integrity of the causal pathway.
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significantly increase the risk of Preeclampsia (OR: 1.114; 95% CI:

1.005-1.234; P = 0.039), as shown in Supplementary Figure S1 and

quantified in Supplementary Table S37. This positive correlation

indicates an 11.35% escalation in Preeclampsia risk for each

standard deviation increase in genetically inferred Systemic lupus

erythematosus levels. The Cochran’s Q statistic confirmed minimal

heterogeneity (Q = 7.512, P=0.111), and MR-Egger regression

showed no significant directional effects among genetic variants

(Egger intercept = 0.196, P = 0.079), supporting the validity of our

results (Supplementary Figures S3, S4).

Conversely, no substantial causal relationships were identified

for Gout or Rheumatoid arthritis. The IVW analysis for Gout

showed a non-significant correlation with Preeclampsia risk (OR:

0.304; 95% CI: 0.00188 to 49.121; P=0.646; Supplementary Figure

S1, Supplementary Table S38), and similar findings were observed

for Rheumatoid arthritis, which displayed no positive association

with Preeclampsia (OR: 0.947; 95% CI: 0.0000619 to 14500;

P=0.991; Supplementary Figure S1, Supplementary Table S39).

These outcomes suggest a lack of direct causal links between

these conditions and Preeclampsia, further corroborated by
Frontiers in Endocrinology 08
multiple analytical approaches indicating robustness and stability

of the interpretations (Supplementary Figures S3, S4).
3.4 Unveiling the influence of lifestyle and
bone metabolism factors on
preeclampsia risk

Our extensive MR analysis also assessed the potential influences

of lifestyle and bone metabolism factors on Preeclampsia risk.

Notably, no discernible association was found between sleep

duration and Preeclampsia risk (OR: 1.300; 95% CI: 0.622-2.717,

P=0.485), with consistent outcomes validated across different

analytical methods (Supplementary Figure S1, Supplementary Table

S40). The analysis revealed no evidence of heterogeneity or directed

pleiotropic effects (Egger intercept = -0.007, P=0.697), underscoring

the stability of our findings (Supplementary Figures S3, S4).

Similarly, our investigation into bone mineral density and

calcium levels showed no causal connections with Preeclampsia

risk (Bone mineral density OR: 1.082; 95% CI: 0.953-1.229,
FIGURE 3

Genetic instrument selection of single-variable Mendelian randomization study.
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FIGURE 4

The impact of exposure factors on the risk of preeclampsia was assessed through MR analysis utilizing the IVW model.
TABLE 2 Cochran’s Q tests for heterogeneity from MR-IVW analyses.

Exposure Q df P-value

Metabolic factors

Type 1 diabetes 96.581 77 0.065

Type 2 diabetes 176.845 170 0.344

Gestational diabetes 16.770 4 0.002

Hyperthyroidism 4.486 8 0.811

Body mass index (BMI) 423.955 417 0.396

Circulating lipid metabolism factors

Total cholesterol levels 222.723 185 0.030

Triglycerides 276.256 272 0.417

HDL cholesterol levels 334.400 324 0.333

LDL cholesterol levels 302.701 312 0.637

Apolipoprotein A1 levels 290.202 260 0.096

Apolipoprotein B levels 220.763 182 0.026

Immune and inflammatory factors Systemic lupus erythematosus 7.512 4 0.111

(Continued)
F
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TABLE 3 MR-Egger intercept tests for horizontal pleiotropy.

Exposure Egger intercept SE P-value

Metabolic factors

Type 1 diabetes 0.001 0.005 0.858

Type 2 diabetes 0.002 0.006 0.772

Gestational diabetes -0.051 0.096 0.630

Hyperthyroidism -0.028 0.026 0.320

Body mass index (BMI) -0.008 0.004 0.081

Circulating lipid metabolism factors

Total cholesterol levels -0.005 0.004 0.245

Triglycerides 0.007 0.003 0.030

HDL cholesterol levels -0.002 0.003 0.549

LDL cholesterol levels -0.002 0.008 0.449

Apolipoprotein A1 levels 0.001 0.003 0.741

Apolipoprotein B levels -0.005 0.004 0.150

Immune and inflammatory factors

Systemic lupus erythematosus 0.196 0.075 0.079

Gout 0.010 0.013 0.450

Rheumatoid arthritis 0.005 0.034 0.884

Lifestyle and Bone metabolism factors

Sleep duration -0.007 0.0177 0.697

Bone mineral density 0.001 0.003 0.868

Calcium levels -0.003 0.005 0.500

Serum 25-Hydroxyvitamin D levels 0.001 0.006 0.923

Other unidentified factors Chronic kidney disease -0.047 0.055 0.481

(Continued)
F
rontiers in Endocrinology 10
TABLE 2 Continued

Exposure Q df P-value

Gout 37.458 26 0.068

Rheumatoid arthritis 4.380 5 0.496

Lifestyle and Bone metabolism factors

Sleep duration 76.946 66 0.168

Bone mineral density 426.393 406 0.234

Calcium levels 267.586 210 0.004

Serum 25-Hydroxyvitamin D levels 125.080 113 0.206

Other unidentified factors

Chronic kidney disease 1.104 3 0.776

Serum uric acid levels 267.320 234 0.066

Alanine aminotransferase levels 296.922 235 0.004

Placental growth factor 3.729 5 0.589

Vascular endothelial growth
factor levels

2.865 4 0.581

Haemoglobin concentration 292.159 279 0.282

Platelet count 626.886 550 0.013
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P=0.222; Calcium levels OR: 0.978; 95% CI: 0.799-1.198, P=0.833;

Supplementary Figures S1, Supplementary Tables S41, S42). These

results indicate that neither bone mineral density nor calcium levels

play a significant role in the development of Preeclampsia.

Furthermore, analyses of serum 25-Hydroxyvitamin D levels

also revealed no causal association with an increased risk of

Preeclampsia (OR: 0.932; 95% CI: 0.722-1.203, P=0.589; Figure 4,

Supplementary Table S43). This finding, supported by a lack of

evidence for heterogeneity or pleiotropic effects (Egger intercept =

0.001, P=0.923), suggests that 25-Hydroxyvitamin D levels are not a

significant factor in Preeclampsia development, as confirmed by

consistent results across various analytical methods and highlighted

in our robustness checks (Supplementary Figures S3, S4).
3.5 Unveiling the influence of other
potential factors on preeclampsia risk

In this MR investigation, we explored the impact of various

undisclosed factors on Preeclampsia risk, focusing on Chronic

kidney disease, Serum uric acid levels, Alanine aminotransferase

levels, Placental growth factor, Vascular endothelial growth factor

levels, Hemoglobin concentration, and Platelet count. Our analyses

revealed a significant causal relationship between elevated Serum

uric acid levels and an increased risk of Preeclampsia (OR: 1.215;

95% CI: 1.007-1.465; P = 0.042), indicating a 21.47% rise in risk for

each standard deviation increase in genetically predicted levels. This

robust association was observed consistently across various

analytical methods, shown in Supplementary Figure S1 and

detailed in Supplementary Table S45. Minimal heterogeneity (Q =

267.320, P = 0.066) and the absence of significant pleiotropic effects

(Egger intercept = -0.003, P = 0.437) from MR-Egger regression

analysis suggest a strong link.

Conversely, no substantial causal associations were found for

Chronic kidney disease, with results detailed in Supplementary

Figure S1 and Supplementary Table S44 (OR: 0.811; 95% CI:

0.646-1.019; P = 0.072). Similar non-significant findings were

observed for Alanine aminotransferase levels (OR: 1.141; 95% CI:

0.934-1.393; P = 0.196; Supplementary Figure S1, Supplementary

Table S46) and other measured factors such as Placental Growth

Factor, Vascular Endothelial Growth Factor Levels, Hemoglobin

Concentration, and Platelet Count, with comprehensive results

presented in Supplementary Tables S47-S50. These findings were

consistently non-significant across various models, with
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heterogenei ty within acceptable l imits (as shown in

Supplementary Figures S3, S4) and no evidence of directional

effects, indicating these factors do not significantly impact

Preeclampsia risk.
4 Discussion

4.1 Main findings

Our comprehensive MR analyses illuminate the intricate

network of risk factors associated with preeclampsia. Utilizing the

IVWmethod, supplemented by other MR techniques, we examined

25 exposure factors across five distinct categories. This approach

allowed us to critically address potential biases and confounding

factors, thereby reinforcing the validity of our findings. Several

factors have been identified with a causal relationship to the risk of

developing preeclampsia, which are pivotal in guiding future

research and intervention strategies.
4.2 Detailed comparison with other studies
on preeclampsia risk factors

4.2.1 Metabolic risk factors
Our exploration of metabolic risk factors uncovers complex

relationships with preeclampsia, adding new dimensions to the

existing literature (28–34). Contrary to some observational studies

(35–38), our findings indicate that type 1 diabetes does not

significantly increase preeclampsia risk. This could be attributed

to the autoimmune nature of type 1 diabetes, which may not involve

the same metabolic pathways that exacerbate preeclampsia, such as

insulin resistance and systemic inflammation typically associated

with type 2 diabetes. Conversely, our robust evidence supports a

causal link between type 2 diabetes and increased preeclampsia risk,

reinforcing the concept of metabolic syndrome’s impact on

endothelial function and inflammatory status (31, 39, 40).

Additionally, the lack of a causal relationship between gestational

diabetes and preeclampsia invites a reevaluation of its role,

suggesting transient hyperglycemia may not reach the threshold

necessary to influence preeclampsia pathogenesis. Moreover, we

identify a genetic predisposition to hyperthyroidism and elevated

BMI as risk enhancers for preeclampsia, highlighting the intricate

interplay between various metabolic disorders and preeclampsia
TABLE 3 Continued

Exposure Egger intercept SE P-value

Serum uric acid levels -0.003 0.004 0.437

Alanine aminotransferase levels 0.005 0.005 0.297

Placental growth factor 0.031 0.034 0.414

Vascular endothelial growth factor levels -0.011 0.025 0.694

Hemoglobin concentration 0.005 0.004 0.230

Platelet count 0.002 0.003 0.471
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risk (41–44). These insights emphasize the need for personalized

management strategies in maternal healthcare, tailored to the

metabolic profiles of pregnant women.

4.2.2 Lipid-related factors
In examining lipid metabolism, we provide detailed insights

into how specific lipid fractions influence preeclampsia risk (2, 45–

48). While total cholesterol does not show a causal relationship with

preeclampsia, triglycerides and LDL-C are implicated in enhancing

risk, possibly through mechanisms involving oxidative stress and

lipid peroxidation, which adversely affect placental function (49).

On the other hand, HDL-C exhibits protective effects, likely due to

its role in promoting endothelial health and reducing inflammation.

These findings underscore the critical need for monitoring lipid

profiles in pregnancy, suggesting that targeted lipid management

could serve as an early intervention strategy to mitigate the risk of

developing preeclampsia.

4.2.3 Immune and inflammatory factors
Our rigorous MR analysis extends to immune and

inflammatory factors, where we establish a causal relationship

between genetically inferred systemic lupus erythematosus (SLE)

and increased preeclampsia risk (50–54). This supports the theory

that autoimmunity, through its disruptive influence on immune

homeostasis, contributes significantly to the pathophysiology of

preeclampsia. In contrast, the absence of associations with gout and

rheumatoid arthritis indicates that not all inflammatory conditions

exert similar effects, underscoring the specificity of immune

pathways involved in preeclampsia (51). This differentiation is

crucial for developing targeted therapies and preventive measures

in managing preeclampsia risk among different patient populations.

4.2.4 Lifestyle and bone metabolism factors
Our further exploration into lifestyle and bone metabolism

factors, specifically sleep duration, bone mineral density, calcium

levels, and serum 25-hydroxyvitamin D levels, reveals no significant

association with preeclampsia. This finding challenges previous

observational studies (55–60) that suggested potential links

between these factors and preeclampsia risk. The robustness of

our results is underscored by the lack of heterogeneity in IVW

analyses and the absence of directed pleiotropic effects. These

rigorous, genetics-based analyses provide a more reliable

assessment compared to traditional observational studies,

highlighting the necessity for continued use of such robust

methodologies in future research to accurately discern the risk

factors associated with preeclampsia.
4.2.5 Other potential factors
The inclusion of controversial factors such as chronic kidney

disease (61, 62), serum uric acid levels (63, 64), alanine

aminotransferase levels (65, 66), placental growth factor (67–69),

vascular endothelial growth factor levels (70), hemoglobin

concentration (71), and platelet count (72, 73) provides

convincing evidence. Notably, no causal relationship is identified

between chronic kidney disease and preeclampsia. This finding
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suggests that while chronic kidney disease is a known risk factor for

many pregnancy complications, its mechanisms may not directly

contribute to preeclampsia pathogenesis.

However, our results establish a significant causal link between

genetically determined serum uric acid levels and increased

preeclampsia risk. Elevated serum uric acid levels may contribute

to endothelial dysfunction, oxidative stress, and inflammation,

which are key mechanisms in the development of preeclampsia

(63). This underscores the potential of serum uric acid as a

biomarker for preeclampsia risk, providing a target for

early intervention.

Importantly, placental growth factor (PlGF) and vascular

endothelial growth factor (VEGF) exhibit no causal association

with preeclampsia. These findings align with certain observational

studies and suggest that despite their critical roles in placental

health and vascular function (74), other mechanisms may be more

significant in preeclampsia onset. Additionally, our analyses do not

support an association between alanine aminotransferase levels,

hemoglobin concentrations, and platelet counts with preeclampsia.

This suggests these markers may not directly influence

preeclampsia pathogenesis, despite being often altered in the

condition. These findings clarify debated factors, adding new

insights into preeclampsia.
4.3 Strengths and weakness of the study

While our study significantly advances the field of genetic

epidemiology in preeclampsia, it acknowledges inherent

limitations related to the assumptions required for MR analyses,

such as the absence of pleiotropy and the proper handling of

population stratification. Methods like MR-Egger regression have

been employed to mitigate these issues, though they cannot fully

eliminate the possibility of residual confounding. Additionally, the

generalizability of our findings may be limited, as our data primarily

derive from European ancestry datasets, highlighting the need for

more inclusive genomic research.

Furthermore, our study primarily focused on modifiable

lifestyle factors, such as sleep duration, while other important risk

factors like age and gynecological history were not directly

investigated. Although age was considered and accounted for as a

confounding factor in our analysis, we recognize that including a

broader range of risk factors could provide a more comprehensive

understanding of preeclampsia risk. This focus on modifiable

factors, while aligned with our study’s objectives, may have

inadvertently overlooked the contributions of non-modifiable

factors that also play crucial roles in the development

of preeclampsia.
4.4 Implications for clinical practice
and research

Our comprehensive MR analyses enhance understanding of the

multifaceted nature of preeclampsia risk factors. By employing

diverse MR methods, we not only confirm known associations
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but also challenge existing paradigms, paving the way for a deeper

understanding of the complex genetic interactions influencing the

risk of developing preeclampsia. This could potentially lead to more

targeted prevention strategies and therapeutic interventions tailored

to individual risk profiles, enhancing outcomes in maternal and

perinatal health.
5 Conclusion

Our extensive MR investigation unravels the intricate genetic

tapestry influencing the risk of preeclampsia, encompassing a

diverse array of risk factors. Our findings provide robust insights

into the complex interplay of genetic determinants across

metabolic, lipid-related, immune, inflammatory, lifestyle, and

other debated factors. This study not only refines established

relationships but also unveils novel insights, elucidating the

nuanced genet i c interac t ions in condi t ions such as

hyperthyroidism, BMI, and diabetes subtypes in relation to

preeclampsia, while delineating the variable impacts of different

lipid subtypes.

The significant causal link between genetically determined

serum uric acid levels and increased preeclampsia risk

underscores a crucial element in the risk landscape of this

disorder. Our investigation into immune and inflammatory

factors enhances our understanding by emphasizing the

specificity of individual elements in the etiology of preeclampsia.

Furthermore, by exploring novel elements, our study contributes to

the evolving discourse in preeclampsia research, highlighting new

avenues for inquiry.

While acknowledging the inherent limitations of our approach,

the transparency and thoroughness of our methods reinforce the

validity of our findings. This study deepens our understanding of

the complex genetic architecture underpinning preeclampsia and

lays a solid foundation for future research. It opens avenues for

targeted interventions and preventive strategies in at-risk

populations, underscoring the potential for personalized medicine

in managing this multifaceted condition. Our research exemplifies

the power of genetic epidemiology in unraveling the complexities of

maternal health, providing a compass for future explorations that

could transform our approach to preeclampsia and maternal care.
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