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Sepsis is a global health challenge marked by limited clinical options and high

mortality rates. AMP-activated protein kinase (AMPK) is a cellular energy sensor

that mediates multiple crucial metabolic pathways that may be an attractive

therapeutic target in sepsis. Pre-clinical experimental studies have demonstrated

that pharmacological activation of AMPK can offer multiple potential benefits

during sepsis, including anti-inflammatory effects, induction of autophagy,

promotion of mitochondrial biogenesis, enhanced phagocytosis, antimicrobial

properties, and regulation of tight junction assembly. This review aims to discuss

the existing evidence supporting the therapeutic potential of AMPK activation in

sepsis management.
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Introduction

Sepsis represents a significant global health challenge, impacting nearly 50 million

people and accounting for approximately 20% of all deaths worldwide (1). Despite

advances in understanding its pathophysiology, septic shock often results in mortalities

of 30% or higher. Management of sepsis is generally supportive. While fluids and

antibiotics improve outcome, no pharmacologic therapy has been shown to effectively

target the dysregulated host response seen in sepsis (2, 3). While numerous preclinical

studies have shown promise in improving outcomes based upon sound mechanistic

insights, effective translation of specific treatments for sepsis into clinical practice at the

bedside has proven to be an elusive goal (4). Consequently, there is a clear need to develop

targeted and effective therapeutics to augment current strategies in sepsis management.

AMP-activated protein kinase (AMPK) is a central integrator of cellular energy and

metabolic homeostasis (5). Once activated, AMPK participates in triggering downstream

effector proteins involved in a range of biological responses, from glucose metabolism and

lipid oxidation to autophagy (6, 7). Although AMPK activation is best known for its role in

long-term treatment of diabetes through drugs such as metformin, growing evidence
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suggests that AMPK activation can exert anti-inflammatory effects

through several mechanisms. As such, AMPK is increasingly viewed

as a potential therapeutic target for a number of human conditions,

including cardiovascular diseases, ischemia-reperfusion injuries,

and various inflammatory diseases. Numerous pharmacological

agents have been identified that can activate AMPK, ranging from

widely used medicat ions to innovat ive substrates to

natural compounds.

In critically ill patients, multiple meta-analyses have

demonstrated an association between preadmission use of

metformin, an indirect AMPK activator, and lower mortality in

adult septic patients who have diabetes mellitus (8, 9). Further, a

propensity score matched cohort of 2,691 septic ICU patients with

type 2 diabetes mellitus demonstrated decreased 90 day mortality,

reduced severe kidney injury and increased renal recovery in

patients exposed to metformin during their hospitalization (10).

Additionally, metformin exposure during Staphylococcus aureus

bacteremia (regardless of prior use) was shown to be an

independent predictor of survival in a study of 452 patients with

diabetes (11). Understanding the limitations of associative studies

and that causation should not be inferred from these studies,

activation of AMPK may represent a therapeutic strategy for the

treatment of sepsis that is worthy of further study. In fact, a protocol

has recently been published for a planned randomized clinical trial

examining the safety and feasibility of metformin as a treatment for

sepsis-associated acute kidney injury (12). While metformin is well

known as a treatment for diabetes mellitus, AMPK activation has

numerous effects above and beyond this, and the full spectrum of

effects of AMPK activation during sepsis remains to be fully

elucidated. This review explores the current understanding of the

role of AMPK in sepsis, emphasizing the therapeutic implications of

AMPK activators.
Overview of AMPK

AMPK functions as an energy sensor that is activated in response

to cellular energy depletion. Activation is triggered by increased

AMP/ATP or ADP/ATP ratios during conditions such as

starvation, hypoxia, ischemic stress, or exercise. Structurally, AMPK

is a heterotrimeric complex comprised of three subunits: the catalytic

a-subunit, the scaffolding b-subunit, and the regulatory g-subunit.
There are two isoforms of the a and b subunits, while the g-subunit
has three isoforms (13, 14). The a1, b1, and g1 subunits are

ubiquitously expressed, whereas other combinations display tissue-

specific expression. For instance, the a2 and b2 subunits are

predominantly found in heart and skeletal muscle (15). Primary

physiological AMPK activation is achieved by phosphorylation at

Thr172 of the AMPK a-subunit predominantly by upstream kinases

including liver kinase B1 (LKB1) and calcium/calmodulin-dependent

protein kinase kinase-beta (CaMKKb) (5, 14). Activation of the

LKB1/AMPK signaling pathway reduces lung vascular permeability
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and the sy s t emic inflammatory response fo l low ing

lipopolysaccharide (LPS) treatment (16). Macrophage LKB1 also

helps control local Klebsiella pneumoniae growth during

pneumonia by maintaining adequate alveolar macrophages in the

lung (17). In contrast, CaMKKb activates AMPK via an increase in

intracellular Ca2+ concentration, independent of the AMP/ATP or

ADP/ATP ratios. The CaMKKb/AMPK pathway is pivotal in

providing protection against LPS-induced neuroinflammation and

cerebral ischemia/reperfusion injury (18, 19). Activation of AMPK

then influences a number of downstream pathways related to

carbohydrate, amino acid, and lipid metabolism, as well as

mitochondrial function, autophagy, and cell growth (14, 16).
AMPK activators

AMPK can be activated directly or indirectly by a number of

different pharmacological compounds. 5-aminoimidazole-4-

carboxamide ribonucleoside (AICAR) is commonly utilized as an

experimental direct AMPK activator. AICAR is transformed

intracellularly into AICAR monophosphate, which acts as an

AMP mimetic, consequently activating AMPK. However, it is

worth noting that AICAR also activates other AMP-regulated

enzymes, such as fructose-1,6-bisphosphatase through which it

could play a role in regulating glycolysis and gluconeogenesis

unrelated to AMPK (13). Over the past decade, more specific

direct small molecule AMPK activators have been developed. For

instance, A-769662 specifically activates AMPK by directly binding

to the AMPK b-subunit, resulting in allosteric activation. In

contrast, metformin, a frequently prescribed medication for type

2 diabetes mellitus, along with other biguanides, indirectly activates

AMPK by inhibiting the mitochondrial respiratory chain complex I,

leading to an increase in AMP levels. Additionally, IM156 is a novel

biguanide more potent than metformin in activating AMPK.

Several natural products derived from plants, such as berberine

from traditional Chinese medicine and the polyphenol resveratrol,

have also been identified as AMPK activators (20, 21).
Kinetics of AMPK activation during sepsis

AMPK activation changes during sepsis differ depending on

both tissue and species. AMPK activation is increased at 12 hours

and declines at 24 hours following CLP compared with sham

control in mouse liver (22). In contrast, AMPK activation is

elevated at 6 hours in rat heart and remains elevated at 24 and 72

hours following CLP compared with sham control (23). A trend

towards lower AMPK activation is observed in mouse lung 24 hours

after CLP (24) while AMPK activation trends higher by 6 hours in

mouse kidney after CLP, before returning to baseline (25). AMPK

activation in diaphragm and tibialis anterior is also increased 48 and

96 hours after CLP in mice (26). In contrast, human biopsy data
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demonstrated that in vastus lateral muscle, AMPK activity is

reduced in critically ill ICU patients (not restricted to sepsis),

with an interquartile range of 4 to 6 days following admission (27).
Potential beneficial effects of AMPK
activation in treating sepsis

Experimental studies (described in further detail below) have

demonstrated that metformin can potentially mitigate sepsis-

induced organ failure via AMPK activation (28) via a number of

physiological benefits (Figure 1).
Anti-inflammatory effect

Sepsis is characterized as having dysregulated inflammation.

While the balance between inflammation and immunosuppression

is complex, modulating excessive inflammation – especially in the

early stages of sepsis – and the resulting organ damage stands out as

a potential therapeutic target (29). The role of AMPK in

inflammation regulation has been extensively characterized.
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AMPK activation indirectly suppresses nuclear factor-kB, a

pivotal transcriptional factor that induces the inflammatory

response, through various mediators including SIRT1, FOXO, and

PGC1a (30). Diminished AMPK activity in macrophages leads to a

marked increase in the expression of pro-inflammatory cytokines

IL-6 and TNF following LPS treatment with a simultaneous

downregulation of the anti-inflammatory cytokine IL-10 (31). In

contrast, AMPK activation causes a decrease in LPS-induced IL-6

and TNF production, coupled with a surge in IL-10 production. In

addition, AMPK exhibits anti-inflammatory properties by

modulating lipid metabolism. It is recognized that sepsis impacts

fatty acid metabolism, with systemic inflammation and lipotoxicity

stemming from reduced fatty acid oxidation and an accumulation

of free fatty acids (32, 33). AMPK aids in enhancing fatty acid

oxidation and mitigating excessive lipid accumulation via the

phosphorylation of acetyl-CoA carboxylase (5).
Induction of autophagy

Autophagy is a dynamic process through which intracellular

materials are degraded and subsequently recycled in lysosomes. In
FIGURE 1

Proposed effects of AMPK activation on sepsis. Pharmacological activation of AMPK enhances autophagy, leading to a decrease in apoptosis and an
increase in antigen presentation. AMPK activation promotes mitochondrial biogenesis and mitophagy. It exerts anti-inflammatory effects by reducing
the production of pro-inflammatory cytokines and facilitating fatty acid oxidation. Furthermore, AMPK boosts the phagocytic activity of neutrophils
and macrophages. Additionally, AMPK reduces vascular and intestinal permeability by restoring the integrity of tight junctions in the endothelium and
epithelium. AMPK; AMP-activated protein kinase.
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mouse cecal ligation and puncture (CLP), a model of polymicrobial

intraabdominal sepsis, autophagy is accelerated 6 hours after the

induction of sepsis, but this is followed by a decline in autophagy in

the liver, heart, and spleen (34).

Some preclinical studies have indicated that autophagy offers

protective effects against sepsis in multiple vital organs including

lung, heart, kidneys and brain although it may be potentially

harmful in skeletal muscle (35). The beneficial aspects of

autophagy can be attributed, in part, to the preservation of

mitochondrial integrity, the prevention of apoptosis, and the

enhancement of MHC II antigen presentation (36). Interestingly,

suppressing autophagy in the liver heightens mortality rates after

experimental sepsis, primarily due to the induction of apoptosis and

mitochondrial damage (37). Thus, autophagy modulation might be

a promising therapeutic target for sepsis treatment. The Unc-51-

like autophagy-activating kinase 1 (ULK1) protein kinase is pivotal

in the initiation of autophagy. AMPK acts directly as an upstream

signal facilitating ULK1 activation. Moreover, AMPK suppresses

the mechanistic target of rapamycin (mTOR), another main

regulator that exerts negative control over autophagy (38).
Mitochondrial homeostasis

Mitochondria are responsible for numerous physiological

processes, including ATP generation through oxidative

phosphorylation, reactive oxygen species (ROS) production,

calcium homeostasis , and the initiation of apoptosis .

Mitochondrial homeostasis hinges on two opposing yet

harmoniously coordinated processes: mitochondrial biogenesis

and mitochondrial selective autophagy (often referred to as

mitophagy) (39). Mitochondrial biogenesis is the process through

which mitochondria adapt by increasing both in number and size,

ensuring their robust heath and functionality. In contrast,

mitophagy is a form of specialized autophagy targeting the

selective degradation of damaged mitochondria via lysosomes.

Beyond general autophagy, ULK1 is believed to be integral to

mitophagy under various conditions (6).

Sepsis frequently leads to mitochondrial dysfunction, which has

been mechanistically linked to poor patient outcomes (40, 41). This

dysfunction is mainly marked by disturbance in electron transport

chain function, causing excessive ROS production. The surge in

ROS is further exacerbated by pro-inflammatory cytokines, such as

IL-1, IL-6, and TNF. This cascade eventually triggers apoptosis,

induced by the release of cytochrome c and other pro-apoptotic

proteins (42, 43). Emerging evidence highlights the protective roles

of both mitochondrial biogenesis and mitophagy during sepsis. In

response to mitochondrial dysfunction, AMPK activation serves as

a key compensatory mechanism by stimulating both mitochondrial

biogenesis and mitophagy, restoring function and reducing damage

(41, 44–46). Notably A-769662, a potent AMPK activator, bolsters

mitochondrial biogenesis, as evidenced by an increase in nuclear
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PGC-1a activity within the lungs (47). Additionally, pre-treatment

with lycorine, a benzyl isoquinoline alkaloid, decreases mortality

and mitigates cardiac injury following CLP, by activating AMPK

and suppressing ROS production and oxidative stress (48). In

contrast, inhibiting mitophagy in macrophages leads to enhanced

survival following sepsis. This phenomenon is attributed to ROS

production in mitochondria, facilitating bacterial clearance and

host defense (49).
Role of AMPK in immune cells

AMPK has been demonstrated to play a crucial role in the

immune response, particularly within myeloid and T cells.

Activating AMPK with either metformin or AICAR leads to

reduced bacterial loads in peritoneal lavage following peritonitis-

induced sepsis, associated with the amplification of neutrophil

chemotaxis, phagocytosis, and bacterial neutralization (50).

Additionally, metformin-induced AMPK activation inhibits the

proliferation of Listeria pneumophilia within macrophages

through enhanced mitochondrial ROS production (51).

Moreover, AMPK is an important regulator of high mobility

group box 1 (a consequential late mediator in lethal sepsis)

release within stimulated macrophages and monocytes (52).

AMPK is also crucial for T cell-mediated immunity as mice with

a T cell-specific deletion of AMPKa1 have reduced counts of CD4+

and CD8+ T cells within bronchoalveolar lavage and lung tissues

following pulmonary infections caused by either Influenza A or

Listeria monocytogenes (53). While viral load in the lung remains

consistent in mice with T cell-specific AMPKa1 deletion following

Influenza A, knockout mice exhibit elevated bacterial loads within

the liver (with a trend towards an increase in the spleen) following

Listeria monocytogenes.
Antimicrobial effect

AMPK plays a complex role in infectious diseases, especially viral

infections, with its impact varying depending on the specific

pathogen. AMPK activation also plays a key role in defending the

host againstMycobacterium tuberculosis. This bacterium bypasses the

host’s autophagic defense system in part by activating the mTOR

pathway. AMPK therefore has been highlighted as a potential

therapeutic target in the fight against mycobacterium infection

(54). Within severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), AMPK activation leads to the phosphorylation and

stabilization of angiotensin-converting enzyme 2 (ACE2) (55). While

ACE2 facilitates SARS-CoV-2 entry into host cells, it also offers

protection against lung injury by reducing inflammation, fibrosis, and

pulmonary arterial hypertension (56). Metformin was extensively

studied for its potential anti-COVID-19 effects. Based on lack of

efficacy in the TOGETHER and COVID-OUT trials, metformin is
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not recommended for treatment of patients with COVID-19 in

international guidelines; however, interest remains in identifying

subsets of patients in whom it may be beneficial (57–60). IM156, a

novel biguanide more potent than metformin in activating AMPK,

offers protection following CLP by enhancing bacterial clearance,

regulating cytokine release, and preventing lymphocyte apoptosis

(61). IM156 also inhibits ROS generation and formation of

neutrophil extracellular traps in response to LPS, so the mechanism

underlying its survival benefit following sepsis is likely to

be multifactorial.

Cytomegalovirus (CMV) reactivation is frequently seen in

critically ill patients without primary immunodeficiency diseases

(62). CMV relies on AMPK for glycolytic activation during its

replication and suppressing AMPK activity can hinder CMV

replication (63). Additionally, the effects of AMPK activation on

bacterial infections vary based on the specific host cells infected and

the nature of the pathogen. A comprehensive review of the impact

of host AMPK activation on various microbial species has been

conducted and can be found elsewhere (64).
Regulation of epithelial/endothelial tight
junction assembly

AMPK activation exerts beneficial impacts on tight junction

assembly. For instance, AMPK activation using metformin and

AICAR has been shown to counteract airway epithelial barrier

disruption caused by Pseudomonas aeruginosa, a significant

microorganism linked to hospital-acquired infections in critically

ill patients (65).

The intestinal epithelium serves as a dynamic protective barrier,

separating the host from its external environment. This barrier’s

integrity is regulated by both tight junction-dependent and

independent mechanisms (66, 67). Gut barrier dysfunction

characterized by intestinal hyperpermeability is associated with

various diseases and systemic inflammation (68). AICAR bolsters

ZO-1 formation, leading to a reduction in intestinal paracellular

permeability following heat stress in rats (69). In a model of

experimental colitis, metformin-induced AMPK activation

upregulates the expression of occludin, ZO-1, and claudin-1,

mitigating colonic damage (70). Current evidence suggests that

sepsis impairs tight junctions in two different pathways (pore and

leak), associated with intestinal hyperpermeability and unfavorable

outcomes (67, 71). To our knowledge, there have been no studies

investigating the impact of AMPK activation on intestinal barrier

function in sepsis.

Disruption of endothelial tight junction proteins also worsens

microvascular permeability and exacerbates multiple organ

dysfunction (72). A number of investigations have centered on

the interplay between AMPK activity and endothelial permeability

in the context of LPS stimulation. AMPKa1-deficient mice display

elevated cardiac vascular permeability, reduced endothelial ZO-1
Frontiers in Endocrinology 05
expression, and myocardial edema post-LPS exposure (73).

Conversely, in wild-type mice, these adverse effects are

counteracted by AICAR. Additionally, both metformin and

AICAR are effective in alleviating LPS-induced pulmonary

endothelial permeability in rats (74).
AMPK activation as a therapeutic target
in sepsis

Regardless of the degree of AMPK activation in tissues

following sepsis, a large number of pre-clinical studies have

demonstrated beneficial effects of AMPK activation following

either CLP-induced sepsis or sterile inflammation in LPS-induced

endotoxemia. Table 1 summarizes the effects of AMPK activators or

drugs/agents that can positively mediate AMPK pathway in animal

studies (22, 23, 25, 47, 61, 74–104). Notably, a single dose of

metformin administered 1 hour after CLP improves survival

associated with preservation of metabolic fitness (25).

Additionally, Dexmedetomidine, a sedative commonly used for

critically ill patients, enhances hepatic autophagy through AMPK

activation and leads to improved survival compared to vehicle in

mice subjected to CLP (22).
Drawbacks of AMPK activation

While a substantial body of evidence highlights the beneficial

effects of AMPK activation, data also suggest that inhibiting AMPK

can reduce liver injury. The AMPK inhibitor compound C reduces

hepatocyte apoptosis and mitigates liver damage by inhibiting the

pro-apoptotic protein JNK in a model of LPS/D-galactosamine-

induced fulminant hepatitis (105). Additionally, inhibiting AMPK

improves LPS-induced liver damage by suppressing the ROS/NF-

kB signaling pathway (106). The role of AMPK in myocardial

ischemic injury remains debated, with conflicting views on whether

it is beneficial or harmful (107). Furthermore, in certain tumor

types or under conditions of limited nutrients or hypoxia, AMPK

has been observed to promote tumor growth (13).
Discussion

Although AMPK activation shows promise in the treatment of

sepsis, several barriers remain prior to translation to bedside use

above and beyond the absence of clinical trials supporting the efficacy

of this approach. First, sepsis is a highly heterogeneous condition

characterized by the presence of multiple suphenotypes, each with

distinct pathophysiological mechanisms and clinical outcomes (108–

116). Additionally, subtype strategies using clinical, biomarker and

transcriptomic data do not identify comparable patient populations

with sepsis (117), suggesting precision medicine approaches to
frontiersin.org
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TABLE 1 Effects of AMPK activation on CLP-induced sepsis or LPS-induced inflammation.

Mechanisms References
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elial activation.
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(77)
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g via AMPK activation.
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h Sirt3 signaling.
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TABLE 1 Continued

Mechanisms References

G alleviated kidney injury by enhancing lactate/Sirtuin 3/
PK-regulated autophagy.

(86, 87)

xmedetomidine enhanced kideny autophagy via the a2-
renoreceptor/AMPK/mTOR pathway.
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T1/AMPK pathway.
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Model Species AMPK activator Dosage Survival benefit Target organ

CLP Mouse
2-deoxy-D-glucose

(2-DG, glycolysis inhibitor)
2 g/kg
3 h before CLP surgery

Yes Kidney
2-
A

LPS Rat Dexmedetomidine
30 µg/kg
30 min before LPS injection

N.A. Kidney
D
ad

CLP Mouse Dexmedetomidine
20 mg/kg
0, 2, and 4 h after
CLP surgery

Yes Liver
D
SI

CLP Mouse
Ginsenoside Rg3

(Rg3, extract of ginseng)
10 or 20 mg/kg
1 h before CLP surgery

Yes Liver
R
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CLP Mouse IM156 5, 10, 15 mg/kg post-CLP Yes Lung Se
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10 mg/g
30 min before LPS injection
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Ir
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LPS injection

N.A. Lung
B
th
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(13-MB)

1 mg/kg
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LPS injection
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1 and 6 h after CLP surgery
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identifying which patients might respond to AMPK-targeted

therapies would be challenging. Next, the diversity of cell types

involved in the septic response further complicates the potential

usage of AMPK activation strategies due to potential of unwanted off-

target effects. Additionally, immunometabolic paralysis – a state of

metabolic dysfunction in immune cells – is another potential barrier

to effective sepsis treatment with AMPK activation. While AMPK is a

central regulator of cellular metabolism, its role in reversing

immunometabolic paralysis in sepsis is not yet fully understood.

Emerging evidence suggests that AMPK activation may influence

immune cell function, but the effects appear to be context-dependent,

requiring more precise targeting strategies. Future research should

focus on elucidating the specific pathways through which AMPK

modulates immune metabolism during sepsis and developing

biomarkers to guide the use of AMPK-targeted therapies in

overcoming immunometabolic paralysis (44).

Recent studies have identified itaconate, a metabolite derived

from the TCA cycle, as a significant modulator of immune

responses, contributing to disease tolerance in sepsis (118).

Itaconate is mainly produced by activated macrophages through

the enzyme immune-responsive gene 1 (IRG1) and inhibits

ferroptosis of macrophages via Nrf2 pathways in sepsis-induced

acute lung injury (119). As a central regulator of cellular energy

homeostasis, AMPK interacts with multiple metabolic pathways,

including those linked to the TCA cycle. This interaction suggests

that AMPK and itaconate may work together to modulate immune

responses and metabolic reprogramming in sepsis given the role of

mitochondrial TCA cycle metabolites in physiology and disease

(120). Additionally, AMPK may influence itaconate production by

regulating IRG1 expression, as AMPK can modulate inflammatory

responses through altering macrophage polarization (121). Given

that itaconate has been demonstrated to regulate AMPK signaling

in hepatocytes (122, 123), this suggests a complementary approach

to direct AMPK activation in modulating metabolic and

inflammatory responses in sepsis.

Ultimately, AMPK plays a crucial role in numerous biological

processes that are relevant to sepsis pathogenesis, and numerous

studies suggest that either AMPK activation or deficiency can

influence susceptibility to sepsis in ways that vary by age or sex

(124, 125). It is exciting to consider the possibility of AMPK as a

potential therapeutic target in human sepsis given the numerous

pre-clinical studies demonstrating a benefit of AMPK activation

and associative studies suggesting a potential benefit of metformin

in critical illness. However, there is currently insufficient human

evidence to support using metformin or other AMPK activators to

treat septic patients in the ICU. Ongoing and future clinical trials

may clarify the role (if any) in activating AMPK in human sepsis

while future research focused on tissue-specific and condition-

specific AMPK activators will hopefully clarify mechanisms

underlying potential efficacy.
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