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Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2

diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the

absence of any previous cardiovascular pathology in diabetic patients. Although

it is still lacking an exact definition as it combines aspects of both pathologies –

T2DM and heart failure, more evidence comes forward that declares DCM as one

complex disease that should be treated separately. It is the ambiguous

pathological phenotype, symptoms or biomarkers that makes DCM hard to

diagnose and screen for its early onset. This re-view provides an updated look

on the novel advances in DCM diagnosis and treatment in the experimental and

clinical settings. Management of patients with DCM proposes a challenge by itself

and we aim to help navigate and advice clinicians with early screening and

pharmacotherapy of DCM.
KEYWORDS
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1 Introduction

In recent decades, type 2 diabetes mellitus (T2DM) has emerged to become one of the

most serious metabolic diseases in the developed world. Incidence of T2DM has

skyrocketed as it became a ninth major cause of death. With the incidence of 1 out of

11 adults worldwide it is often described as a pandemic. T2DM, apart from its counterpart

type 1 diabetes mellitus (T1DM), is not a congenital disease and is developed during

human’s life. A shift from manual work to sedentary lifestyle during 20th century with the
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combination of longer lifespans both play parts in the emergence of

this civilization disease (1).

Although T2DM is usually described as a pathological

condition involving high blood glucose (hyperglycemia) and

insulin resistance (2), the most severe effects are its complications.

Hyperglycemia leads to micro- and macrovascular damage which

causes further damage of several organs, most notably nephropathy,

neuropathy, retinopathy, and cardiomyopathy (3). Other common

complications include diabetic foot, heart attack, stroke, gum

disease, sexual dysfunction or cancer (4).

In this review, we focus on diabetic cardiomyopathy (DCM),

hence it is considered as one of the most serious secondary

complications of T2DM. Type 2 diabetes mellitus has a negative

impact on morbidity and mortality of several cardiovascular (CV)

diseases and T2DM itself can be a triggering factor of these

pathologies and vice versa. On top of that, DCM is usually

diagnosed and treated as a separate disease (5). The

pathophysiology of DCM consists of cardiac muscle remodeling,

hypertrophy (6, 7) and cardiomyocyte cell death (8). However, it has

a slightly distinct molecular pathomechanism in contrast with non-

diabetic chronic heart failure (HF). There are currently no selective/

differentiative diagnostic, nor therapeutic options for these patients.

This review aims to summarize readily available diagnostic and

therapeutic tools for cardiologists and diabetologists in the

management of DCM patients as well as challenges that current

clinical guidelines and practice may pose. Ultimately, we provide an

insight into the advances of experimental research and its

translation to clinical practice.
2 Pathogenesis of DCM

DCM is usually characterized as a contractile dysfunction with

later onset of HF without association to dyslipidemia, hypertension

or coronary artery disease, but instead caused by metabolic and

humoral disruption in connection with hyperglycemia,

hyperinsulinemia and insulin resistance (9–11). Despite the great

clinical interest towards DCM, its diagnosis and mapping of its

distinctive phenotype, the exact pathogenesis of DCM is intricate.

The two main factors that drive DCM are long-term

hyperglycemia and insulin resistance. From there it gets complex.

The myocardium is metabolically active organ which is highly

flexible regarding its sources of energy. It is primarily fueled by

free fatty acids (FFA) (70%) and glucose (30%) (12), however,

during diabetes there is a reduction in glucose transporters (GLUT-

1 and GLUT-4) (13) making FFA the primary source. On one hand,

this situation contributes to the lipotoxicity (accumulation of lipid

intermediates) and accumulation of reactive oxygen species (ROS),

as b-oxidation saturates and fatty acid degradation increases. On

the other hand, excessive circulating glucose that could not be

employed in myocardium leads to generation of advanced glycation

end products (AGEs) through the hexosamine and polyol protein

kinase C (PKC)-activating pathways (12–14). AGEs propose a

threat as they induce protein structural changes, collagen cross-

links, exacerbates oxidative stress and inflammation, activate PKC

and cause irreversible damage to hearts microvasculature (15, 16).
Frontiers in Endocrinology 02
Long-term hyperglycemia therefore leads to chronically increased

oxidative stress in cardiomyocytes which can cause mitochondrial

and DNA damage, lipid peroxidation in the cell membrane and

activation of different forms of cell death (17).

Myocardial apoptosis was in fact found to be 85 times more

pronounced in diabetic hearts than in non-diabetic (18, 19).

Moreover, accumulating evidence has shown that iron-mediated

ferroptosis plays significant part in DCM. Main driving factor of

ferroptosis is intracellular accumulation of Fe2+ which oversaturates

lipid ROS synthesis while antioxidant pathways are inhibited (20).

Furthermore, necroptosis, which is another form of programmed

necrotic cell death, could be mediated in receptor-interacting

protein kinase 3 (RIPK3)-dependent manner upon activation of

Ca2+/calmodulin-dependent protein kinase II (CaMKII) in diabetic

mice (21). Knockout of RIPK3 leads to decreased activation of

CaMKII and to improvement of cardiac function, as well as

decreased extent of necroptosis. This is particularly interesting

because it has been shown that CaMKII can be upregulated in

hyperglycemic conditions and it worsens the heart function leading

to arrythmias or pathological remodeling (22, 23). Therefore, a

possible future therapy targeting CaMKII activity in heart could be

beneficial also for the T2DM and progression of DCM. Pyroptosis, a

proinflammatory type of PCD (24), is also involved in the

pathogenesis of the DCM and is the least studied one. Actual

evidence regarding pyroptosis in DCM encompass activation of

NLRP3 (NOD-like receptor 3) and AIM2 (Absent in Melanoma

protein 2) inflammasome. It has been suggested that high glucose

conditions promote activation of NLPR3 via nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB) signaling (25)

which in turn activates caspase-1, interleukin-1b (IL-1b) and K+

efflux (26). Moreover, activation of NLPR3 promotes the TGF-b/
Smad remodeling pathway leading to fibrosis in DCM even under

conditions when inflammasome is not activated (27).

Chronic myocardial inflammatory status is another factor that

contributes to DCM. T2DM-associated metabolic disorders

(hyperglycemia, hyperlipidemia) can directly induce cytokine

expression and release from cardiac cells (28, 29). Moreover, these

metabolic derangements can activate systemic and cardiac

inflammatory cells, which infiltrate and accumulate at the site of

cardiac fibrotic lesions. These cells secrete cytokines and chemokines

such as tumor necrosis factor (TNF) (28); interleukins, such as IL-6

(30), IL-1b, TGF-b (31); and interferon-g (32) that can induce or

aggravate cardiac hypertrophy and remodeling. Additionally, these

proinflammatory agents are involved in the development of rapid

cardiac contractile dysfunction (33, 34). Diabetes-related chronic

inflammatory state can therefore produce progressive qualitative

damage of myocardial tissue resulting in progressive left

ventricular, either systolic or diastolic, functional impairment.

Calcium handling is another aspect that is altered by DCM. Not

only is it crucial for excitation-contraction coupling and maintaining

cardiomyocyte homeostasis, but its dysregulation also plays role in

maladaptive changes that might lead to cardiomyocyte cell death.

DCM hinders the activity of multiple Ca2+-handling proteins,

including L-type Ca2+ channels or sarcoendoplasmic reticulum Ca2+

ATPase (SERCA), as well as promotes inflammation, oxidative stress

and mitochondrial damage (35).
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However, diabetes driven effects on heart should not be limited

on myocardium only. Coronary circulation is crucial in maintaining

blood flow even under pathological states like vessel occlusion or

stenosis (36). Micro-/macroangiopathies are well described vessel-

targeting phenomena when it comes to diabetic complications (37)

and the coronary vessels seem to be no exception. Insulin resistance

can generally lead to endothelial dysfunction as high level of ROS

hinders NO synthesis. This in turn results in protein kinase G

(PKG) downregulation and promotes cardiac hypertrophy (38).

These diverse mechanisms are some of the hidden players

responsible for the onset of cardiac remodeling which most

frequently manifests as early-on asymptomatic diastolic dysfunction

that later progresses into more severe pathological phenotype (9).
2.1 Remodeling and fibrosis in DCM

Long-term T2DM promotes proliferation of cardiac fibroblasts

leading to interstitial extracellular matrix (ECM) deposition and

myocardial interstitial fibrosis which contributes to LV anatomic

and functional remodeling (39). The consequences of these

maladaptive changes are increase in myocardial stiffness and

reduced ventricular compliance which play a vital role in the

development of LV diastolic dysfunction leading to heart failure

with preserved ejection fraction (HFpEF), the most common form

of HF in T2DM (40). Numerous humoral factors have already been

proved to contribute to the pathomechanism of DCM. The best

known include activation of the renin-angiotensin-aldosterone

system (RAAS), transforming growth factor-b (TGF-b) signaling
and advanced glycation end-products, among others.

A number of studies have shown that the RAAS is closely related

to myocardial hypertrophy and fibrosis in DCM (6, 7). Increased

angiotensin II (Ang II) levels stimulate angiotensin receptor-1 (AT1R)

acting directly on cardiac fibroblasts, increasing collagen synthesis and

decreasing collagen decomposition, resulting in cardiac hypertrophy

and fibrosis (41, 42). Myocardial inflammation in diabetic heart is also

mediated by the RAAS and thus promotes cardiac remodeling (7).

These changes manifest as reduced ventricular compliance and

cardiac systolic and diastolic dysfunction (41, 42).

It is suggested that TGF-b signaling is required for Ang II to induce
both cardiac hypertrophy and fibrosis (43). TGF-b is an essential

regulator of cardiac fibroblast proliferation and differentiation that

contributes to remodeling in DCM. TGF-b1 exerts a strong profibrotic
effect on cardiac fibroblasts, myofibroblasts, and other cardiac cells,

causing the progression of myocardial fibrosis (40, 44). The TGF-b
profibrotic signal in DCM may be due to the direct action of high

glucose on TGF-b secretion and activation (34, 45), due to

accumulation of AGEs (46), through Ang II pathway activation (47),

or as a consequence of changes in the expression of some microRNAs

(48). Ultimately, activated TGF-b in the myocardial tissue causes

abnormal ECM accumulation, leading to cardiac fibrosis in

diabetic heart.

Apart from RAAS or TGF-b, AGEs are specific for various

complication of T2DM, including atherosclerosis, heart remodeling

and fibrosis in DCM. High glucose levels result in non-enzymatic

addition-elimination reaction of sugar carbonyl groups with free
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amino acids of proteins (49). These defective proteins exert multiple

negative effects on vascular endothelial cells and cardiomyocytes,

including impairment of collagen degradation by matrix

metalloproteinases (MMPs) and cause collagen cross-links. This

leads to the loss of collagen elasticity and degradation, increase in

cardiac interstitial and perivascular fibrosis and subsequently to a

reduction of arterial and myocardial compliance (50, 51). Moreover,

AGEs bind to their receptors (RAGE) which are overexpressed in

DCM. Upon the activation of RAGE, excessive ROS formation and

increased mitogen-activated protein kinase (MAPK) signaling takes

place, further enhancing fibrosis, macrophage adhesion and

inflammation and ultimately leading to atherosclerosis and

cardiac remodeling (15, 16, 52, 53).
2.2 Metabolic impairment leading to DCM

There is a strong animal and clinical evidence that development of

T2DM is correlated with low thyroid function. People with lower

triiodothyronine (T3) levels have a greater risk of increased blood

glucose, impaired insulin sensitivity and T2DM development (54–57).

Conversely, patients treated with thyroid hormones gradually improve

their glycemic control (57). Low T3 level is not an exclusive risk factor

for T2DM although it has been observed in HF patients. Low T3 or

T3/T4 ratio inversely correlated with HF progression (NYHA

classification) and NT-proBNP serum levels (58–60).

T3 impacts heart after acute injury as a fetal-like feature to

induce proliferation and tissue repair. However, myocardium has a

very limited regenerative potential and undergoes remodeling that

can temporally compensate for the contractile dysfunction, until it

is met with low energy profile and becomes maladaptive which leads

to HF. Therefore, after stress stimuli diminish, a drop in T3 serum

levels takes place (61). This drop of T3 levels affects BNP serum

levels and, as it is experimentally suggested, has an impact on

microvascular blood flow (MBF). Clinically speaking, impaired

MBF is a sign of ischemic heart disease, idiopathic dilated

cardiomyopathy, DCM and ultimately HF (62).

Plenty of experimental evidence support these hypotheses. For

instance, low dose T3 treatment improved contractility in streptozocin

(STZ)-induced rat model of T2DM (63). In genetic model of DCM in

Syrian hamsters, mixture of T3 and T4 deceased loss of

cardiomyocytes mediated by improved MBF (64). Additionally,

observational studies found a significant association of low T3 with

high mortality in hospitalized patients with HF (65). Unfortunately,

current guidelines for the management of T2DM, HF or DCM does

not include thyroid hormone diagnostic screening and/or the therapy.
3 Novel trends in diagnosing DCM

3.1 Current approaches and challenges in
diagnostics of DCM

Diagnosing DCM alone poses a clinical challenge due to

potential symptom and imaging overlap with other heart diseases,

particularly chronic HFpEF (66). The progression of DCM is often
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gradual, spanning years or even decades, driven by chronic

exposure to metabolic abnormalities associated with diabetes (67).

This gradual onset makes pinpointing DCM difficult and can lead

to delayed diagnosis. Additionally, diabetic cardiomyopathy can

present with subtle or asymptomatic changes in cardiac structure

and function before overt HF symptoms emerge. This is in large

part the cause of missed early detection without routine screening

or specialized diagnostic tests (68). Unlike the other types of HF,

there are currently no specific diagnostic criteria or biomarkers

exclusively for DCM. Diagnosis relies on integrating clinical

evaluation, imaging studies, and biomarker analysis which may

lack specificity for this condition (69).

Therefore, a comprehensive evaluation is crucial for accurate

diagnosis and appropriate management. Although no approved

therapeutic strategies exist to treat or prevent progression of stage B

DCM, ongoing efforts target various pathological mechanisms.

Recent CV outcome trials (CVOTs) have identified newer

therapeutic agents with CV benefits, such as sodium-glucose

cotransporter-2 (SGLT-2) inhibitors reducing hospitalization for

HF and glucagon-like peptide-1 (GLP-1) receptor agonists reducing

major adverse CV events (MACE), albeit with inconsistent effects

on HF outcomes (70). Clinical practice guidelines recommend

screening high-risk patients for HF (71).

Diagnosing DCM typically involves a combination of clinical

assessment, imaging techniques, like echocardiography and

magnetic resonance imaging (MRI) for diastolic function and

ventricular mass assessment, or biomarker analysis (72).

Exclusion of coronary artery, valvular or congenital heart disease

is possible using coronary angiography and Doppler

echocardiography imaging. Endomyocardial biopsy is indicated

for infiltrative heart disease concerns. Magnetic resonance (MR)

spectroscopy, measuring myocardial triglyceride content, is an

emerging research tool for DCM diagnosis and pathogenesis (73).

Addressing these challenges necessitates a comprehensive CV

assessment in diabetic patients, including routine cardiac

dysfunction screening, awareness of DCM’s unique features and

utilization of advanced imaging modalities and biomarkers for early

detection and risk stratification. Collaborative efforts between

cardiologists, endocrinologists and primary care providers are

essential for optimalization of DCM diagnosis and management.

Ongoing research into novel markers and techniques holds promise

for future progress in this field.
3.2 Novel insights on the biomarkers
of DCM

In contemporary clinical practice, there is a notable lack of

specific markers for dilated cardiomyopathy. This deficiency arises

from two primary challenges: First, the identification of a definitive

marker for DCM is inherently difficult. Second, the relevance of

such markers has yet to be established in routine clinical practice.

Currently, asymptomatic patients with T2DM are monitored for

HF risk using standard HF markers, while HF patients—and indeed

all patients under medical care—are routinely assessed for

metabolic disturbances in a reciprocal manner. However,
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identifying early and highly sensitive diagnostic as well as

prognostic biomarkers is very important for preventing the

development of DCM and improving the prognosis of DCM

patients. Novel biomarkers could also provide a basis for

discovering new targeted interventions for DCM. Graphical

illustration of markers of DCM are depicted in Figure 1. Here, we

present an array of well-established markers for T2DM and heart

failure that are currently used in clinical practice for patients with

DCM. Additionally, we introduce new and experimental markers

that are under investigation.

3.2.1 Glycated hemoglobin
It has been documented that serum glycated hemoglobin

(HbA1c) levels are significantly higher in individuals with DCM

in comparison to those with T2DM alone (9). However, higher

HbA1c levels in patients with T2DM increase their risk of

developing HF but paradoxically in T2DM patients with already

developed HF are higher HbA1c levels associated with increased

survival in the 2-year horizon (74). The use of HbA1c as a potential

prognostic marker in patients with DCM is therefore still

ambiguous and requires further investigation. Moreover, the

impact of various medications on glycemic control in studied

patients cannot be underestimated.

3.2.2 Cardiac troponin I
Observational studies (75, 76) have found elevated cardiac

troponin I (cTnI) as a marker of cardiac damage in asymptomatic

diabetic patients. cTnI is considered one of the current clinical

markers of cardiac damage in diabetic patients, alongside C-reactive

protein (CRP) and electrocardiography (5). cTnI as a general

marker of cardiac damage is not specific for high glucose- or

T2DM-induced cardiac injury and thus cannot be considered a

specific marker of DCM. However, cTnI presents still a reliable

diagnostic tool for monitoring asymptomatic T2DM patients for

the development of HF risk.
3.2.3 Natriuretic peptides
Natriuretic peptides including atrial natriuretic peptide (ANP)

and brain natriuretic peptide (BNP) were proposed as potential

biomarkers of DCM before (9, 11, 77). Particularly BNP could be an

inexpensive and easily attainable marker of preclinical ventricular

diastolic dysfunction in T2DM patients (78). Recent studies

analyzing cohorts of T2DM patients suggested N-terminal of

prohormone BNP (NT-proBNP) as a relevant biomarker that

could help detect HF in T2DM (79, 80). On the other hand, in

T1DM patients, ANP but not BNP appears to be a sensitive

biomarker for early diastolic dysfunction (81).
3.2.4 O-linked N-acetylglucosamine
Increased O-linked N-acetylglucosamine (O-GlcNAc) levels

were previously linked to the adverse cardiac effects of T2DM,

including impaired contractility, calcium handling and abnormal

stress response (82). O-GlcNAcylation was further implicated in the

development of CV dysfunction in T2DM (83). Maladaptive O-

GlcNAc protein modification serves as a critical regulator of the
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diabetic phenotype in human hearts. Thus, restoring physiological

O-GlcNAc balance in the heart may also represent a novel

therapeutic approach for T2DM-induced HF (84).

3.2.5 Inflammatory, fibrotic and
antioxidant markers

Serum inflammatory mediators such as TNF-a, interleukins
and C-reactive protein (CRP), elevated fibrotic markers like TGF-b
and insulin-like growth factor binding protein-7 (IGFBP-7) and

decreased antioxidant markers adiponectin and leptin are suggested

to uncover early onset of DCM (85). Elevated levels of IL-12/23p40

were proposed as a potential indicators of disrupted heart rate

variability in T2DM (86). A panel of AGEs, IL-6, TNF-a, insulin
and creatinine might be used for early detection of diastolic

dysfunction in T2DM (87). Two fibrotic markers, transforming

growth factor-beta (TGF-b) and insulin-like growth factor-binding

protein 7 (IGFBP-7), are significantly elevated in patients with

diastolic dysfunction. Specifically, T2DM patients with diastolic

dysfunction exhibit higher levels of TGF-b and IGFBP-7 compared

to non-diabetic patients with diastolic dysfunction. Additionally,

T2DM patients without diastolic dysfunction show increased levels

of these markers when compared to healthy controls. This suggests

that TGF-b and IGFBP-7 may serve as markers for early heart
Frontiers in Endocrinology 05
dysfunction risk in asymptomatic T2DM patients (85). Very

recently, several new potential biomarkers for DCM have

emerged, including MMP-2 for detecting early fibrosis in

DCM (88).

Several other novel markers for DCM have been proposed by

recent studies, including galectin-3 (Gal-3) and adiponectin (85, 89, 90).

Gal-3, a chimeric galactose-lectin family protein, is strongly linked to

cardiac fibrosis and inflammation. Since cardiac fibrosis plays the key

role in the development of DCM, Gal-3 can be involved in the

progression of DCM through several different mechanisms. Gal-3

levels were found to be a good predictor of HFpEF in T2DM

patients (91) and additionally, elevated Gal-3 were observed in

T2DM patients compared to non-diabetic ones (92). This makes

galectin-3 (Gal-3) a promising candidate for diagnosing the potential

early onset of cardiomyopathy in T2DM patients.

Adiponectin is a member of adipokines that affect insulin

sensitivity and hyperadiponectinemia is considered an

independent risk factor for DCM (93). Low adiponectin levels in

adolescents with T2DM correlated with lower cardiac

circumferential strain. Since abnormal circumferential strain may

represent the earliest evidence of functional cardiac impairment in

T2DM, adiponectin may serve as an early biomarker of functional

changes in T2DM (89). In T2DM patients with acute coronary
FIGURE 1

Markers of diabetic cardiomyopathy include cardiac damage characterized by contractile dysfunction and cell death. Impaired cardiac metabolism is
also a feature, with oxidative stress playing a significant role. AGEs, advanced glycation end-products; HbA1c, glycated hemoglobin; miRNA, micro
RNA; lncRNAs, long noncoding RNAs; TGF-b, transforming growth factor b; IGFBP-7, insulin-like growth factor binding protein-7; MMP-2, matrix
metalloproteinase-2; cTnI, cardiac troponin I; NT-proBNP, N-terminus of prohormone brain-derived peptide; O-GlcNAc, O-linked N-
acetylglucosamine; TNF-a, tumor necrosis factor a; IL, interleukin; CRP, C-reactive protein. Created by BioRender.com.
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syndrome, high adiponectin was associated with increased risk of

hospitalization for HF, death from CV causes and all-cause

mortality (94).

3.2.6 Noncoding RNAs
New evidence also suggests several microRNAs (miRNAs) and

long non-coding RNAs (lncRNAs) as biomarkers of DCM (95),

especially those associated with cardiac inflammation (miRNA-21)

and redox signaling (miRNA-221, miRNA-146a, miRNA-34a,

miRNA-210, miRNA-19b, miRNA-125b, miRNA-27a, miRNA-

155) as well as with cardiac hypertrophy (miRNA-221) and

apoptosis (miRNA-34a, miRNA-125b, miRNA-146a, miRNA-155,

miRNA-210, miRNA-221) (95). LncRNAs may also participate in

the development of cardiac hypertrophy and HF in DCM via

regulating redox and inflammatory signaling. Particularly

lncRNAs H19 (96), NON-RATT007560.2 (97), Kcnq1ot1 (98),

HOTAIR (99) and ANRIL (100) associated with cardiac

remodeling in DCM via regulating cardiomyocyte apoptosis and

oxidative stress. Finally, several circular RNAs (circRNAs) involved

in the progres s ion of DCM inc luding c i rc_000203 ,

circRNA_010567, circHIPK3, CACR and circCDR1as were

discussed in correlation to DCM (101).

3.2.7 Metabolic markers
Some plasma biomarkers of abnormal metabolism have been

recently identified using liquid chromatography-mass spectrometry

(LC-MS)-based metabolomics (102). Among selected metabolites,

cytidine triphosphate (associated with pyrimidine metabolism), 11-

ketoetiocholanolone (metabolite of cortisol/steroid hormone

biosynthesis), saccharopine (metabolite of lysine), nervonic acid

(precursor of myelinization), and erucic acid (inhibition of

mitochondrial oxidation of other fatty acids, particularly in cardiac

tissues), have emerged as promising candidates for differential

diagnostics between T2DM and DCM. The precise role of nervonic

and erucic acids in HF are not yet fully understood, although they

may function as compensatory mechanism in reducing the

accumulation of very long-chain fatty acids (VLCFA), which

trigger various pathological processes such as mitochondrial

dysfunction, oxidative stress, and inflammation (103).

Saccharopine’s involvement in the disruption of normal

mitochondrial function has been documented (104) but has not

been studied in failing hearts. The role of cytidine triphosphate and

11-ketoetiocholanolone in DCM remain elusive, necessitating

further investigation.
4 Current therapeutic approaches to
mitigate the symptoms of
diabetic cardiomyopathy

To this date, there is no specific therapy for DCM. The

treatment consists of pharmacotherapy alongside lifestyle

modifications. The pharmacological treatment of DCM is

currently based on lowering high blood glucose and mitigation of

failing heart (Figure 2). Other therapeutic agents such as
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antihyperlipidemics, diuretics or anti-aggregants/anti-coagulants

are commonly prescribed as an adjuvant therapy.
4.1 Antidiabetic drugs

As mentioned in preceding paragraphs, hyperglycemia is a risk

factor for CV morbidity and increases the risk of hospitalization in

patients with DCM (39, 40). Therefore, various antidiabetic drugs

are used to prevent hyperglycemia from damaging blood vessels,

kidneys and ultimately the heart. It is important to clarify that

antihyperglycemic effect of antidiabetic agents alone does not

necessarily correlate with efficacy or safety in patients with DCM.

Several molecules seem to be beneficial; others have no significant

effect, and some may even increase the risk for hospitalization.

These clinical findings suggest that specific antidiabetic drugs may

influence DCM beyond their glucose-lowering effect. It has been

hypothesized that it can be, at least partially, explained by their

effect on body mass – newer antidiabetics with anti-obesity activity

have lower risk for hospitalization than those ones increasing the

body mass. Nevertheless, no direct scientific evidence has been

published yet.

Here we provide a list of medications commonly prescribed for

T2DM treatment. Our findings confer with current (year 2023)

practical guidelines of European Society of Cardiology (ESC) for the

management of CV disease in patients with diabetes (5) and are also

supported by several other independent sources. American Heart

Association/American College of Cardiology/Heart Failure Society

of America (AHA/ACC/HFSA) have not published such guideline

yet. Instead, their Guideline for the Management of Heart Failure

(105) provide a list of medication deleterious for HF prognosis,

including several agents used to treat T2DM. On the other hand,

this document is short with the information for how to treat HF

patients with T2DM, stating only the role of SGLT2

inhibitors (SGLT2i).

4.1.1 Glucagon-like peptide-1 receptor agonists
GLP-1 receptor agonists, or simply incretins, are a relatively

novel class of antidiabetics. The class consists of several synthetic

subcutaneously administered GLP-1 analogues such as shorter

acting exenatide, liraglutide, lixisenatide, longer acting

dulaglutide, albiglutide, efpeglenatide and semaglutide and a dual

GIP/GLP-1 agonist tirzepatide (106). Their antihyperglycemic effect

is provided by the stimulation of insulin release, while they

concurrently inhibit excessive glucagon release. On the top of

that, they possess a significant anti-obesity activity by inducing

anorexia (appetite suppression) and they also help to slow down

gastric emptying (107).

While they are known to be effective antidiabetic drugs, their

effects on CV morbidity and mortality are studied in a lesser extent,

unlike exenatide or liraglutide which are among the most studied

molecules. Only a handful of small trials have been conducted on

these molecules with slightly beneficial or neutral effect on HF

hospitalizations overall. On the other hand, they were linked with a

tachycardia, which raises a concern about their beneficial effects on

failing hearts (5, 107, 108). Ultimately, more comprehensive trials
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including newer molecules (e.g., dulaglutide or semaglutide) are

missing. Therefore, 2023 ESC guidelines mark GLP-1 agonists as a

second line therapy (therapy for consideration) for HF-related

outcome in patients with T2DM (5).

4.1.2 Dipeptidyl peptidase-4 inhibitors
Dipeptidyl peptidase-4 (DPP4) is an enzyme degrading

incretins, thus DPP4 inhibitors increase the activity of natural

incretins, somewhat mimicking the effects of GLP-1 agonists

(although not all). Current DPP4 inhibitors include sitagliptin,

vildagliptin, linagliptin, saxagliptin and alogliptin (109). Gliptins

have been studied even less thoroughly compared to incretins in the

case of CVOTs. Some small studies found inconclusive beneficial

and detrimental effects on the rate of hospitalizations. Larger

CVOTs with sitagliptin and linagliptin found a neutral effect.

Saxagliptin and alogliptin were more prone to increasing risk of

HF hospitalizations. Vildagliptin was the least studied member of

this class with no promising results (5, 105, 107, 108). These

inconclusive findings might be a result of baseline differences in

the use of metformin, thiazolidinediones and insulin which also

affect HF risk.

In conclusion, sitagliptin and linagliptin can be considered for

antihyperglycemic therapy in HF patients, saxagliptin and alogliptin

should be avoided (5, 105).

4.1.3 Insulins
Insulins are used in patients with unsatisfactory treatment with

oral antidiabetics. These patients are considered to have worse CV

outcomes (110). Two larger randomized trials [ORIGIN (111) and
Frontiers in Endocrinology 07
DEVOTE (112)] demonstrated that longer-acting basal insulins

(glargine and deglutec) have at least neutral effects on HF

hospitalizations. These two insulins can be considered in patients

with DCM (5).

4.1.4 Metformin
Metformin, as a single clinically used drug of biguanide group,

has been used as first-line therapy of T2DM. In the past, metformin

was contraindicated in diabetic patients with HF due to a possible

lactic acidosis. However, this contraindication was later on removed

(113, 114) as the frequency has been proved to be very rare – less

than 1 in 10, 000 patients according to the summary of product

characteristics (SPC) (115). Some sources (116) claim a higher

frequency of 1-10 in 10,000. Nowadays, metformin is considered to

be a safe option for patients with DCM with better clinical outcome

of HF than sulphonylureas or insulins (5). Nevertheless, it is still

contraindicated in decompensated HF due to the high risk of lactic

acidosis (114) and its particular outcome on HF hospitalizations,

due to lack of sufficient CVOTs, remains unclear.

4.1.5 Sulphonylureas
Sulfonylureas are a class of oral antidiabetics that stimulate the

release of insulin from pancreatic b cells. Despite being effective

antidiabetics in lowering high blood glucose and insulin resistance,

they increase the risk of hypoglycemia and body weight gain (117)

which are risk factors for HF. Clinical evidence for their role in CV

events is inconsistent. Earlier agents with higher risk of

hypoglycemia and body weight gain (such as 1st generation

tolbutamide and with a lesser extent 2nd generation
FIGURE 2

The clinical effects of antidiabetic and anti-heart failure medications on glucose tolerance, cardiac function, and hospitalization rates in DCM are
illustrated in the figure. However, certain secondary and tertiary effects are not depicted. Medications listed in italics are not considered first-line
treatments. Those marked with a † are either not recommended or contraindicated in DCM. CVS, cardiovascular; ACEi, angiotensin-converting
enzyme inhibitors; MRA, mineralocorticoid receptor antagonists; ARNI, angiotensin receptor blocker and neprilysin inhibitor; SGLT2i, sodium-
glucose co-transporter 2 inhibitors; SGLT2i*, effects of SGLT2i on glycemia are shown within HF treatment; ARB, angiotensin receptor blockers;
DPP-4i, dipeptidyl peptidase-4 inhibitors. Created by BioRender.com.
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glibenclamide, gliclazide or glipizide) tend to be increasing the risk

for the HF hospitalizations. On the contrary, newer agents (mostly

3rd generation glimepiride) seem to have a safer profile in the case

of HF complications (5, 107, 108). Nevertheless, sulphonylureas as a

whole group are not recommended for the use in diabetic patients

with HF according to the current guidelines (5).

4.1.6 Thiazolidinediones
Thiazolidinediones are a class of oral antidiabetics acting on

intracellular peroxisome proliferator-activated receptor-g (PPR-g)
which in turn stimulate expression of the genes leading to increase

of insulin sensitivity, improving lipid metabolism and other CV

effects (118). In spite of these beneficial properties, both

pioglitazone (119) and rosiglitazone (120–122) increase fluid

retention, edemas (due to the decrease in renal filtration and

diuresis) and body mass gain. Thiazolidinediones were shown to

significantly increase (by over two-fold) the risk of HF

hospitalizations in several clinical trials (119–122) and therefore

are considered contraindicated in all HF patients with or without

diabetes (5, 105).

4.1.7 Sodium–glucose co-transporter-2 inhibitors
Sodium–glucose co-transporter-2 inhibitors are a novel class of

oral antidiabetics with characteristic properties. The members

include empagliflozin, dapagliflozin, canagliflozin, sotagliflozin

and newer ertugliflozin. They increase renal glucose excretion

which in turn lowers glycemia (123). SGLT2i also decrease insulin

resistance, blood pressure and body mass, while not causing

hypoglycemia (124). However, in combination with other

antidiabetics they can increase the risk of hypoglycemia.

SGLT2i are the first class of antidiabetics with widely proven

clinical benefits on HF prognosis (5, 105).
4.2 Heart failure drugs

According to the current guidelines of ECS (5), diabetic patients

with HF are treated with standard therapy as patients without

diabetes. Importantly, diabetic patients with HF have higher

CV risk.

The standard 1st line therapy for HF includes quadruple

combination of SGLT2 inhibitor, ACEi (angiotensin converting

enzyme inhibitor)/ARNI (angiotensin receptor–neprilysin

inhibitor), betablocker and MRA (mineralocorticoid receptor

antagonist). Their efficacy has been proven in numbers of clinical

trials with positive impact on the rate of hospitalizations a survival

in patients with or without diabetes. The cardioprotection of this

combination includes improved cardiac contractility with partially

attenuated myocardial fibrosis, inflammation, remodeling and

decreased afterload and preload via several molecular

mechanisms (5, 71, 105). While these medications are commonly

used in patients with heart failure with reduced ejection fraction

(HFrEF), they have not been specifically clinically tested in patients

with T2DM, except for SGLT2 inhibitors. Furthermore, their

efficacy has not been specifically evaluated for DCM.
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As 2nd line therapy, ivabradine, vericiguat or ARB (angiotensin

receptor blocker) can be chosen in patients with insufficient

response to the treatment or in the case of adverse effects of 1st

line medications (5, 125). Data for DCM regarding the drugs

considered first-line treatments is even more limited.

The most interesting therapeutic group used in DCM are

SGLT2i. It’s the only therapeutic class with strong clinical

evidence of both antihyperglycemic and cardioprotective

properties (126), although they were initially developed as

antihyperglycemic drugs. Two of them, namely empagliflozin and

dapagliflozin, were later repurposed for the treatment of HF in the

presence or without the presence of diabetes (5, 125). Canagliflozin

has been successful in trials as well (127), however, it is not officially

indicated for HF. Another SGLT2 inhibitor, sotagliflozin, has

shown some positive effects on HF (128) although, it is available

for the US market only. It was withdrawn from the European Union

in 2022 at the request of the marketing-authorization holder (129).

SGLT2i exert a complex cardioprotective mechanism

independent from their antihyperglycemic effects. The inhibition of

SGLT2 leads to decreased Na+ reabsorption, thus increased Na+

concentration in distal tubule which enhances diuresis. This simple

change in Na+ homeostasis leads to enhanced tubuloglomerular

feedback mechanism, decreased intraglomerular pressure and

decreased heart preload and afterload (due to the diuresis).

Decreased intraglomerular pressure presumably attenuates the

activation of sympathetic and renin-angiotensin-aldosterone

system, thus leading to the amelioration of cardiac remodeling and

inflammation, improved diastolic function, together with improved

renal function. These ‘off-target’ mechanisms also include

improvement in hematocrit, blood pressure and body weight which

can all contribute to positive renal and heart effects (130–134).

4.2.1 ACE inhibitors
ACE inhibitors have been found to be beneficial in improving

insulin sensitivity and glycemic control (135–138). The proposed

mechanism behind this follows decreased bradykinin metabolism

and its increased plasma levels, activation of soluble guanylate

cyclase (sGC) upon bradykinin B2 receptor activation with

subsequent nitric oxide release and vasodilatation leading to the

increased GLUT4 translocation in peripheral tissues (139).

4.2.2 Betablockers
There are 4 betablockers currently indicated for the chronic HF

treatment: 2nd generation (b1-selective) metoprolol (140) and

bisoprolol (141); 3rd generation (with vasodilatory effect)

carvedilol (142) and nebivolol (143). Moreover, several smaller

studies have explored the use of atenolol and labetalol, which are

currently considered off-label in HF treatment. The use of atenolol

has been associated with positive outcomes on hemodynamic

functions (144–146), although inferior to nebivolol (144, 145).

Data for labetalol use in HF is lacking some evidence, although it

may be considered at least safe in HF patients (147).

We understand that betablockers are effective in treatment of

chronic HF, however, the official ESC guidelines for the

management of HF patients with T2DM (5) do not explicitly
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address their effects on glycemic control and that is what we aimed

for in the following paragraphs.

1st generation non-selective betablockers block both b1 and b2
receptors, thus decreasing insulin secretion, glycolysis and lipolysis,

while increasing glycogenolysis and gluconeogenesis and are prone

to mask the symptoms of hypoglycemia (148, 149). 1st generation

betablockers (such as propranolol) also decrease peripheral

vasodilatation (150). On the other hand, they also affect glucagon

release (151) with increased risk of hypoglycemia (152). These

effects are slightly improved within the 2nd generation (153),

although they are still linked with increased glycemia and HbA1c.

Metoprolol displays more negative metabolic effects compared to

metabolic-neutral bisoprolol (154), due to its higher b1-selectivity.
3rd generation vasodilatory carvedilol (155) and nebivolol (145)

provide better results, while nebivolol seems to be superior (156).

Likewise in ACE inhibitors, vasodilation is connected to the

increased insulin sensitivity and better glycemic control (157).

Despite the negative metabolic effects, clinical trials proved that

betablockers are beneficial in all HF patients with or without T2DM

(140). Official guidelines don’t prefer any particular betablocker

over the others in the case of T2DM patients with HF (5), however,

based on the available data, most notably nebivolol, carvedilol or

bisoprolol are preferable for HF patients with concomitant T2DM.

Metoprolol and atenolol should be considered only as 2nd or 3rd

line, respectively. Labetalol lacks the necessary data for this

treatment setup, although it possesses a theoretically favorable

pharmacological profile for HF patients with T2DM.

4.2.3 Mineralocorticoid receptor antagonists
Mineralocorticoid receptor antagonists (MRAs) spironolactone

and eplerenone exert similar cardioprotective effects [eplerenone

showcasing slightly more pronounced cardioprotection (158)],

however, they differ in their structure, selectivity, duration of

action, side effects and therapeutic indications. Besides all these

differences, their effect on glycemic control and T2DM prognosis

remains elusive. Only a few small clinical trials have been conducted

to study their effect on glycemic control with inconsistent and

inconclusive results. Spironolactone showed increased HbA1c in

hypertensive patients with T2DM (159) and with HF patients (160).

Eplerenone has presumably no effect on HbA1c (160–162), blood

glucose levels (163) and insulin resistance It does not increase the

risk of triggering new onset of T2DM (164) and it doesn’t increase

the need for antidiabetics (161). Its cardioprotective effect is

independent of the presence of T2DM (163). In the case of the

head-to-head comparison, one study (160) observed eplerenone as

superior, however, another study did not find any strong evidence

for eplerenone supremacy over spironolactone in the context of

glycemic control (161). The guidelines (5) don’t provide any

information about the preferred MRAs in patients with DCM.

A new MRA, finerenone, was found to express some

cardioprotective effects in patients with chronic kidney disease

(CKD) and T2DM (165–167), although it is currently indicated

for CKD in T2DM only. Therefore, conducting bigger trials to

screen for its effects on HF or glycemia is essential for follow-

up research.
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4.2.4 ARNI
ARNI is a fixed combination of angiotensin receptor type 1

antagonist valsartan with neprilysin inhibitor sacubitril. Neprilysin

is a proteolytic enzyme degrading several vasoactive peptides, most

notably atrial, brain, C-type natriuretic peptides (ANP, BNP, CNP)

and others, including bradykinin. Moreover, neprilysin degrades

endothelin-1 and it is responsible for the conversion of Ang II to

vasoprotective Ang (1-7). Thus, sacubitril monotherapy was not

satisfactory and valsartan is used to block undesirable RAAS

activation (168).

ARNI has been shown to have a better outcome on morbidity

and mortality compared to enalapril with or without diabetes (138).

One smaller study (169) (12 participants) showed increased

postprandial glycemia with ARNI compared to placebo which

contradicts a huge PARADIGM-HF trial (170). In a post-hoc

analysis, they managed to find a significant and persistent

decrease in HbA1c compared to enalapril in the course of 3 years.

In addition, ARNI decreased the need for the administration of new

oral antidiabetics and insulin in these patients. This superiority of

ARNI over ACE inhibitor enalapril could be described by its

complex mechanism of action not only on heart, but also by

several pleiotropic (vascular, renal and metabolic) effects. Of

particular interest, ARNI provides a beneficial effect on the

development of T2DM, affecting increased incretin levels,

improved insulin sensitivity, lipolysis and lipid oxidation (168).

4.2.5 Angiotensin receptor blockers
Angiotensin receptor blockers (ARBs) are used only when ACEi

or ARNI are not tolerated (5) because of insufficient data regarding

their effects on morbidity and mortality. Despite the fact, various

ARBs (171–173) have been proven to be a safe alternative for HF

patients with or without diabetes.

4.2.6 Ivabradine
Ivabradine is indicated for patients with sinus rhythm (SR) who

do not tolerate betablockers or have an unsatisfactory response to

betablocker therapy (5). Ivabradine seems to be safe in HF patients

with T2DM and its effect is independent of the presence of T2DM

(146, 174).

4.2.7 Digoxin
Digoxinmay be considered the drug of choice to reduce the risk of

hospitalization in patients with HFrEF with SR when standard 1st-line

therapy is insufficient with or without present T2DM (5). Data on the

negative effects of digoxin on glucose tolerance are limited to small

studies and case reports (175, 176). On the other hand, larger trial with

1933 patients in diabetic group showed no detrimental effects on HF-

related hospitalizations compared to non-diabetic group, although it

had no effect on overall mortality in both groups and diabetic patients

experienced more frequently digoxin-toxicity-related hospitalizations.

HbA1c or FPG values were not tested during this trial (177). Digoxin

has also been used in HF patients with atrial fibrillation (AF) which is

the official therapeutical indication, even though its safety in these

patients is even more questionable and it should be used only if other

therapeutical options are not available (71).
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4.2.8 Vericiguat
Vericiguat, a soluble guanylate cyclase (sGC) inhibitor, is a

novel drug in the array of anti-HF agents. It has also been studied in

T2DM patients (178), nonetheless, its effect on glycemic control

remains unknown.

4.2.9 Mavacamten
Mavacamten is another novel drug acting as myosin inhibitor

and is indicated for the treatment of cardiac hypertrophy. Although

there were diabetic patients included in the trials (179), no glycemic

studies were conducted.
4.3 Adjuvant therapy

4.3.1 Diuretics
Although there is not enough evidence for the use of diuretics in

the prevention of CV events in patients with HF, they are still used

to alleviate the sign of fluid congestion (5). Thiazide diuretics

include several agents from which hydrochlorothiazide (HCT) is

the most frequently used. HCT has been linked to a negative

metabolic effects such as increased fasting plasma glucose (FPG),

HbA1c, low-density lipoprotein-cholesterol (LDL-C) (180), unlike

indapamide (181). Despite that, HCT cannot be substituted with

indapamide due to its practically zero diuretic effects (HCT effects

are more pronounced in blood vessels, rather than enhancing

diuresis) (182). Another thiazide, chlorthalidone, may represent

an alternative with better metabolic profile (183), although it has

not been specifically tested for the treatment of HF.

Loop diuretics, such as furosemide, exert more potent diuretic

effect. Similarly to HCT, they can cause glucose homeostasis

impairment with reduced tissue sensitivity to insulin (184). The

mechanism is independent of its diuretic properties as it solely relies

on off-target tissue mechanisms. They supposedly interfere with

basal tissue glycolysis by direct and indirect effects on glycolytic

enzymes (185, 186) which is a shared mechanism with HCT. The

use of loop diuretics in diabetic patients was linked to a negative

impact on morbidity and mortality with worse impact on HF

patients. SGLT2i, such as empagliflozin, are similarly effective in

the alleviation of congestive symptoms in HF with better clinical

and safety results (187).

4.3.2 Lipid-lowering therapy
Statins are indicated in patients with combined dyslipidemia

and hyperglycemia. They are generally well tolerated, except of their

negative effects on glycemic control and liver toxicity. A meta-

analysis from 2018 of 23 smaller and intermediate clinical studies

(groups of 8-167 patients) showed differential effects of statins on

the glycemic control. More favorable effect on FPG and HbA1c have

pitavastatin (2mg), simvastatin (10-40 mg) and fluvastatin (20-40

mg). The greatest negative impact on glycemic control was observed

in atorvastatin 80 mg, atorvastatin 10-40 mg and rosuvastatin 10-

40mg. Pravastatin (10-20 mg) was in-between (188). Neutral

glycemic effect was also observed with lovastatin (40 mg) (189).
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Needless to say, these differences do not correlate with their clinical

efficacy in lowering LDL-C and overall effect on CV

hospitalizations. High-intensity statins (atorvastatin, rosuvastatin)

are used in patients with high CV risk as they lower LDL-C by 40–

63% and significantly reduce the incidence of major cerebral and

coronary complications (190). This beneficial effect outweighs the

potential diabetogenic effect of these drugs, estimated as a 9%

increased risk of incident diabetes, especially in older patients and

in patients that are already at risk of developing diabetes (191, 192).

In patients with inadequate LDL-C control, ezetimibe can be

added to statin. Ezetimibe does not impact FPG or HbA1c and

ezetimibe with low-dose statin compared with high-dose statin

therapy may have a beneficial tendency of effects on glycemic

control (193). In resistant hypercholesterolemia, proprotein

convertase subtil is in/kexin type 9 (PCSK9) inhibitors

(evolocumab and alirocumab) are effective and safe choice, hence

they do not alter glucose homeostasis and they do not trigger new

onset of diabetes (194–196). Although, some Mendelian

randomization analyses concomitant with post-marketing

monitoring reports evidence of mild increase of hyperglycemia,

rather than diabetes, in the first 6 months of the therapy with

PCSK9 inhibitors (197).

Inclisiran is indicated for patients not tolerating PCSK9

inhibitors with the mechanism similar to that of PCSK9

inhibitors, except it acts as a gene-silencing therapy. As inclisiran

is still a new drug, there is a lack of data concerning its effect on

glycemic control and the possibility of new-onset T2DM cannot be

completely ruled out (197). Patients with good lipid control but

intolerating statins can be treated with bembedoic acid. Bembedoic

acid is another novel hypolipidemic drug inhibiting cholesterol

synthesis. Apart from statins, its bioactivation occurs mainly in liver

(practically not in muscles) and it significantly reduces myalgia

(198) and the new onset or worsening T2DM risk (199, 200).

PPAR-a agonists (fenofibrate, bezafibrate, clofibrate) are

indicated for patients with hypertriglyceridemia. Their use is,

however, limited due to their hepato- and nephrotoxic potential

with low clinical benefit in randomized clinical trials (RCTs), aside

from patients with very high triglyceride levels. Pemafibrate is a

novel PPAR-a agonist with higher efficacy, and it has shown no

clinically adverse effects on renal or hepatic function (5, 201).
5 Ongoing research and
future therapy

Current guidelines and medications for the management of

DCM are based on treating T2DM and HF separately, as there is no

medication indicated specifically for the treatment of DCM.

Additionally, the impact of the present pharmacotherapy is

unsatisfactory with only little effect on overall progress of the

disease and subsequent prognosis. This might change in near

future as new medications are being developed and tested. Here

we provide a brief summary of some interesting and promising

therapeutic tools and targets.
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5.1 Experimental drugs and approaches for
the treatment of DCM

Novel pharmaceuticals need to provide a unique approach for

treating DCM. The main targets of recent development are cardiac

metabolism, oxidative stress, inflammation and cardiac fibrosis and

hypertrophy. As currently available drugs do not provide required

efficiency the research is very important. The list of experimental

drugs is described in Table 1. Please note that most of the agents

affect multiple pathological mechanisms (or one mechanism affects

the other), thus we focus on their main therapeutic goal.

5.1.1 Cardiac metabolism
The most promising new drug targeting cardiac metabolism

that made it to the clinical trial is caficrestat (formerly known by its

generic name AT-001). Caficrestat acts as an aldose reductase (AR)

inhibitor. The physiological purpose of AR is to reduce glucose into

sorbitol. During DCM, the expression of AR is increased which

causes an exacerbation of various deleterious effects of DCM, such

as ROS generation or fatty acid b-oxidation which in turn

deteriorates energetic homeostasis of cardiac cells. Inhibition of

AR by caficrestat improves diastolic function and decreases cardiac

fibrosis and hypertrophy in patients with DCM (231). While the

caficrestat is being investigated in phase 3 clinical trial (ARISE-HF,

NCT04083339) (202), more efficient agents can potentially surpass

it. Cemtirestat is a dual AR inhibitor with antioxidant activity. It is

effective in fructose/STZ diabetic rats and serves as a good candidate

for future clinical studies (203).

Another drug being tested in clinical trials is ninerafaxstat

(IMB-1018972). Ninerafaxstat is 3-ketoacyl-CoA thiolase (acetyl-

CoA acyltransferase) inhibitor. 3-ketoacyl-CoA thiolase is a catalyst

of mitochondrial b-oxidation of long chain fatty acids, more

specifically, it catalyzes the final step of b-oxidation in which 3-

ketoacyl-CoA is cleaved by the thiol group of another molecule of

coenzyme A (232). Ninerafaxstat is a cardiac mitotrope, it increases

myocardial metabolic efficiency by shifting substrate utilization

towards glucose through reduction in fatty acid oxidation (233).

Its beneficial effect in clinical setup is being investigated in phase 2

clinical trial on cardiac energetics in T2DM and obesity with HFpEF

(IMPROVE-DiCE trial, NCT04826159) (204).

Sulfo-N-succinimidyl oleate (SSO) is a lipid-derivative-based

inhibitor of a membrane protein complex called fatty acid

translocase/cluster of differentiation 36 (FAT/CD36). In the

model of STZ/high-fat diet diabetic mice it decreases myocardial

fatty acid oxidation rate and triglyceride concentration and

increasing fatty acid metabolism, glycolytic rate and pyruvate

dehydrogenase activity, improving cardiac function after hypoxia

and reoxygenation (207). On the contrary, recombinant fibroblast

growth factor 21 (FGF21) (205) or administered as a gene via

adenovirus-associated virus (AAV) vector (206) in animal models

with STZ/high-fat diet diabetic mice they both attenuated cardiac

lipotoxicity by the activation of b-oxidation. As a result, it was

accompanied by decreased ROS generation, inflammation,

apoptosis and fibrosis. The proposed mechanism is complex,

including AMPK (AMP-activated protein kinase)–Akt2–Nrf2-
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mediated antioxidative pathway and AMPK–ACC (acetyl CoA

carboxylase)–CPT-1 (carnitine palmitoyl transferase 1)-mediated

lipid-lowering effect in the heart. This mechanism is a little bit

controversial, since cardiac b-oxidation inhibition [for instance by

trimetazidine (234)] is a well-established cardioprotective

mechanism in coronary artery disease. Thus, the cardioprotective

effect of FGF21-induced b-oxidation activation could be rather

caused by its effects on off-target organs, e.g., liver, where it

controls the systemic lipid profile and metabolism (235).

Moreover, the underlying cardioprotective mechanisms caused by

FGF21 might not be fully understood and need more investigation,

while no paper has discussed any overlap between FGF21 and

trimetazidine or challenged this hypothesis so far.

5.1.2 Cardiac oxidative stress
Pathophysiology of most cardiometabolic diseases involves

increased ROS production and oxidative stress. Various

antioxidants have been investigated in several models of cardiac

injury which produced conflicting results (236). In the models of

DCM, several agents attenuated cardiac oxidative stress, at least at a

secondary level [e.g. pyrrolidine dithiocarbamate (PDTC) (230),

flavonoids (237–241), melatonin (242), capsaicin (243),

sulforaphane (244–247), oxymatrine (248), rFGF21 (205, 206),

MSCs (249, 250), vardenafil (224), MCC950 (225) and

trimetazidine (251)]. Currently, there is no antioxidant indicated

for any CV disease [except for dexrazoxane in anthracycline toxicity

(252) which can produce severe adverse effects and its use is limited

(ref)] due to few and small clinical trials which were not necessarily

following the results from preclinical studies.

To include some innovative approaches, SIRT3 gene

administration as AAV in STZ-diabetic mice was studied mainly

for its antioxidant properties leading to alleviation of mitochondrial

dysfunction via inducing AMPK/FGF21/SIRT3 signaling axis (208).

True chemical antioxidant properties possesses an experimental

drug mito-TEMPO (209) and a mucolytic agent N-acetylcystein

(NAC) (210–213). They both were able to decrease fibrosis and

hypertrophy with improvement of systolic and diastolic contractile

function as a result of decreased mitochondrial ROS.

5.1.3 Cardiac fibrosis and remodeling
Fibrosis, remodeling and hypertrophy are the most crucial

pathomechanisms within HF (39, 40). Their progress can be

slowed down by ACEi, ARB, MRA, SGLT2i (5) or mavacamten

(179), although not completely stopped or even reversed. Among

the novel experimental drugs, recombinant relaxin [H2-RLX (214)

and H3RLX (215)] and orally active TGF-b inhibitors [FT23 (216)

and FT011 (217)] in the model of Ren2 hypertensive STZ-induced

diabetic rats decreased heart collagen deposition with improvement

of diastolic function (as a consequence of reduced myocardial

stiffness). H2/3-RLX’s antifibrotic effect is mediated by the

induction of MMP-1 and MMP-13 and enzymatic degradation of

collagens (214). Additionally, relaxins reduce activation of pro-

apoptotic caspases and inflammation by the inhibition of NLRP3

inflammasome and decreased IL-1b and IL-18 levels (215). TGF-b
plays a crucial role in the activation of fibroblasts and production of
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extracellular matrix (253). These experimental drugs could be a

game-changers because of their potent antifibrotic activity and high

perspective as candidates for clinical trials in humans.

There is growing evidence showing the role of epidermal growth

factor receptor (EGFR) family (including tyrosine kinase receptors,

such as EGFR/ErbB/HER) in the development of DCM. EGFR has

been linked to cardiac fibrosis, remodeling, hypertrophy, oxidative

stress and inflammation (254). A selective EGFR inhibitor

(gefitinib) decreased oxidative stress and attenuated diabetes-

induced myocardial collagen deposition and fibrosis in STZ-

induced diabetic mice. Moreover, it improved Ca2+ homeostasis

and contractility by preventing the depletion of SERCA2a and

NCX1 (sodium-calcium exchanger-1) (218). However, it seems

that EGFR has a dual activity in CV morbidities. Despite being

detrimental in the chronic setup, EGFR exerts pro-survival effects

on acute myocardial injury (254, 255) and more advanced research

on this topic is fairly required.
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Alternative renin-angiotensin system (RAS) pathway - ACE2/

Ang (1-7)/Mas axis plays a cardioprotective role in several CV

morbidities and is gradually gaining more interest. ACE2/Ang (1-

7)/Mas axis is often called a cardioprotective counterpart of

canonical RAS. A sudden peak of attention was observed during

COVID-19 pandemic because of SARS-CoV-2 viral particles using

ACE2 to enter host cells. ACE2/Ang (1-7)/Mas axis counteracts

Ang II by inducing vasodilatation and decreasing vascular/cardiac

oxidative stress, inflammation, and fibrosis. Simultaneously, it can

be downregulated in numerous hypoxic CV pathologies (256).

Administration of exogenous Ang (1-7) peptide (or its analogue

AVE-0991) improved vascular tone responsiveness, cardiac

contractility and decreased oxidative stress in diabetic rats, while

the inhibition of Ang (1-7) formation by ACE2 inhibitor DX600 or

blockade of its active site by Mas receptor antagonist A779

deteriorated the cardiomyopathy (257–259). ACE2 activator

diminazene aceturate (DIZE) was examined in db/db mice for its
TABLE 1 An overview of experimental therapies in various models of DCM.

Primary
beneficial effect

Agent Molecular
target
(pharmacodynamics)

Model References

Cardiac metabolism caficrestat (AT-001) aldose reductase (inhibitor) Phase 3 RCT (202)

cemtirestat fructose/STZ diabetic rats (203)

ninerafaxstat (IMB-1018972) 3-ketoacyl-CoA thiolase (inhibitor) Phase 2 RCT (204)

rFGF21 FGF21 (recombinant) STZ/high-fat diet diabetic mice (205, 206)

sulfo-N-succinimidyl oleate (SSO) fatty acid translocase/cluster of
differentiation 36 – FAT/
CD36 (inhibitor)

STZ /high-fat diet diabetic rats (207)

Oxidative stress SIRT3 AAV SIRT3 (adeno-associated virus vector) STZ -induced diabetic mice (208)

mito-TEMPO superoxide (antioxidant) STZ -induced diabetic mice (209)

N-acetylcystein glutathione peroxidase (precursor,
antioxidant); PKCb2 and eNOS
signaling induction

STZ -induced diabetic mice and rats (210–213)

Fibrosis and remodeling H2-RLX, H3-RLX relaxin (recombinant) Ren2 hypertensive STZ -induced
diabetic rats

(214, 215)

FT23 TGF-b (inhibitor of
unknown pharmacodynamics)

Ren2 hypertensive STZ -induced
diabetic rats

(216)

FT011 TGF-b (inhibitor of
unknown pharmacodynamics)

Ren2 hypertensive STZ -induced
diabetic rats

(217)

gefitinib EGFR (tyrosine kinase inhibitor) STZ-induced diabetic mice (218)

Ang (1-7) Mas (agonist) STZ -induced diabetic rats (219–221)

DIZE ACE2 (inhibitor) db/db mice (222)

tadalafil PDE5 (inhibitor) Phase 4 RCT (223)

vardenafil PDE5 (inhibitor) ZDF rats (224)

Inflammation MCC950 NLRP3 (inhibitor) high-sucrose and high-fat diet
diabetic rats

(225)

Fingolimod S1P-R (functional antagonist) STZ -induced diabetic mice and rats (226–228)

SB 203580 p38 MAPK (inhibitor) STZ -induced diabetic mice (229)

pyrrolidine dithiocarbamate (PDTC) NF-kB (inhibitor) obese db/db diabetic mice (230)
RCT, randomized clinical trial; ZDF, Zucker Diabetic Fatty; STZ, streptozotocin.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1451100
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Galis et al. 10.3389/fendo.2024.1451100
effect on DCM. DIZE was able to significantly attenuate cardiac

fibrosis, remodeling and hypertrophy. In addition, this effect was

accompanied by decreased oxidative stress and improved cardiac

contractility (222). Similar results were observed after exogenous

Ang (1-7) administration (219–221) with additive effect in the

combination with perindopril (41). Moreover, direct antidiabetic

effects have been observed as well. Pancreatic ACE2 gene therapy

prevented the loss of b-cells, increased insulin production and

improved fasting glycemia with no impact on insulin sensitivity

(260), thus ACE2/Ang (1-7)/Mas axis acts as a pro-survival

compensatory mechanism during DCM.

PDE5 inhibitors have been used as drugs for erectile

dysfunction or pulmonary hypertension for many years now

(261). Recently, tadalafil (20 mg once daily for 20 weeks) was

investigated for its vasodilatory effect in diabetic hearts

(RECOGITO trial, NCT01803828). It was successful in

decreasing heart remodeling and inflammation with improved

renal function, however, this effect was only observed in male

participants, unlike their female counterparts (223). Additional

beneficial results (decreased cardiomyocyte apoptosis, oxidative

stress, myocardial hypertrophy and fibrosis with improved

diastolic function) were observed in Zucker Diabetic Fatty

(ZDF) rats treated with vardenafil l (224).

Some other agents are able to mitigate fibrosis via their primary

target and include caficrestat (231), mito-TEMPO (209), fingolimod

(226), NAC (211–213), MSCs (250, 262), melatonin (242),

flavonoids (237), capsaicin (243) and sulforaphane (244–247).

5.1.4 Cardiac inflammation
To this date, there is currently no medication approved

specifically for the treatment of myocardial inflammation. Few

papers focused on this issue in DCM models trying to solve this

problem. p38 MAPK inhibitor SB 203580 might have decreased

cardiac inflammation but did not change cardiac fibrosis and

diastolic dysfunction compared to placebo (229). Better results

were obtained with NLRP3 inflammasome inhibitor MCC950

which was able to ameliorate cardiac inflammation with

additional decrease in apoptosis, oxidative stress and fibrosis

(225). Some positive effects were also found with fingolimod

treatment which promoted improved myocardial blood perfusion,

contractility and decreased fibrosis (226–228). Pyrrolidine

dithiocarbamate (PDTC) acting as an inhibitor of pro-

inflammatory NF-kB in obese db/db diabetic mice mitigated

oxidative stress, improved mitochondrial structural integrity,

increased ATP synthesis and ultimately restored cardiac

function (230).

H3-RLX (215), FT23 (216), FT011 (217), AAV FGF21 (206),

tadalafil (223), MSCs (249, 250), oxymatrine (248), flavonoids

(239), capsaicin (243), ginsenosides (263) and sulforaphane (244–

247) also exert anti-inflammatory properties as a secondary effect.

Nevertheless, none of these studies looked at overall systematic

side effects with the concern for general immunosuppression and

negative CV side effects observed with many common

immunosuppressants (264). Ultimately, small studies (13-50

patients per group) found etanercept (265–267), methotrexate

(268) and thalidomide (269) safe and effective for improving
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quality of life. On the other hand, larger studies (270) (>300

patients per group) did not find any significant improvement of

immunosuppression in HF. Clinical benefit of prednisone and

azathioprine in dilated cardiomyopathy with possible myocarditis

is similarly controversial (271, 272).

5.1.5 Cardiac cell death
Necroptosis poses a novel approach in the understanding of

cardiomyocyte cell death. As we mentioned above (22, 23), RIPK3

and CaMKII may play an important role in the pathophysiology of

DCM. Although there are several studies of RIPK3 inhibition

(GSK’872) during I/R injury (273) and cardiac fibrosis (274)/

hypertrophy (275) via CaMKII pathway, there are no record on

DCM yet. Ultimately, apoptosis and necroptosis are under the

physiological conditions the last resort of defense against cancer

(276) and viral infections (277, 278), thus systemic side effects of

their inhibition cannot be underestimated and must be taken

with precaution.

5.1.6 Dietary and herbal therapeutics for patients
with DCM

Among the numerous experimental drugs for DCM, there are

also some experimental studies involving several natural products

(see Table 2). Ginsenosides from plant Panax ginseng can inhibit

ROS production, stimulate NO production, increase blood

circulation, ameliorate vasomotor tone and adjust lipid profile

(280). In the animal model of DCM, ginsenosides were observed

to decrease cardiac inflammation via inflammasome and

pyrroptosis inhibition (263). Sophora flavescens, a plant from

Chinese medicine, contains a quinolizidine alkaloid oxymatrine

possessing anti-inflammatory, antifibrotic and antioxidant

properties (248, 279, 281) in models of HF, I/R injury and

DCM. Flavonoid compounds are natural plant antioxidants
TABLE 2 Herbal and dietary components in the treatment of DCM.

Natural
product

Mechanism Plant
of origin

References

ginsenosides various Panax ginseng (263)

oxymatrine various/
unknown

Sophora
flavescens

(279)

capsaicin TRPV1
(agonist/
activator)

Capsicum
annuum

(243)

flavonoids
(quercetin, apigenin,
dihydromyricetin,
naringenin…)

various various (237–241)

sulforaphane Nrf2 (activator) Brassica oleracea
(broccoli,
brussels
sprouts,
cabbage…)

(244–247)

melatonin free radical
scavenger
and others

ubiquitous
(animals,
plants, fungi…)

(242)
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(282) found ubiquitously in the plant kingdom. Quercetin (237,

238), apigenin (239), dihydromyricetin (240) and naringenin

(241) were identified to decrease oxidative stress and

inflammation in animal models of DCM which manifested as

improved contractility and decreased cardiac fibrosis. Within the

flavonoid chemical group, diosmin, hesperidin and oxerutin (283,

284) are already well-established compounds in the treatment of

various circulatory diseases, such as hemorrhoids, chronic venous

insufficiency and others. Increasing evidence suggests that

cardioprotective effects of flavonoids in various cardiometabolic

diseases should not be underestimated as they propose good

candidates for bigger clinical trials targeting not only the blood

vessels but also the heart.

Besides herbal medicine, common dietary components were

also found to improve symptoms of DCM. The main and best-

known spicy constituent of peppers (Capsicum annuum),

capsaicin, activates not only sensory but also vascular and

cardiac TRPV1 ion channels and modulates multiple

pathological processes in diabetic hearts (243). Cultivars of

Brassica oleracea (broccoli, brussels sprouts, cabbage, etc.) are

known to decrease cardiac oxidative stress, hypertrophy, and

fibrosis with increase of systolic function through their

metabolite sulforaphane, a Nrf2 activator (244–247). Melatonin

was first discovered in animals but later also found in plants, fungi,

and bacteria. It has a profound antioxidant effects acting primary

as a free radical scavenger, while it also stimulates antioxidative

enzymes, increases the efficiency of mitochondrial oxidative

phosphorylation and reduces electron leakage thus lowering free

radical generation (285). Beyond the effects on OS, mitochondria

and myocardial cell metabolism, melatonin reduces vascular

endothelial cell death, reverses microcirculation disorders,

reduces myocardial fibrosis and regulates cell autophagy and

apoptosis (242).
5.2 Future therapeutic promises

Based on current and experimental therapeutic options for

DCM discussed in this review, it is obvious that extensive

research is yet to come. In fact, treatment itself will not affect the

disease prognosis in most cases. It is based on improving the quality

of life and postponing hospitalization for a relatively brief period,

thus only symptomatic, not causal. The main reason is a poor

understanding of underlying pathophysiology of DCM. Fibrosis is

one the main drivers of HF (39), though it can be only slowed down,

not reversed. Fibrosis is accompanied by chronic inflammation (39)

but again, current (nor experimental) drugs are not very efficient or

selective in its treating. Finally, the cell death of cardiomyocytes is

almost not addressed at all. Although some experimental drugs

already exist, they are not selective for cardiac tissue and can be very

toxic (e.g., risk of cancer) (286).

The answer (for at least maximizing efficacy with limited toxicity)

can be using specialized drug delivery systems (287–289), such
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as nanopolymers, lipid-based nanocarriers, cyclodextrins and

gene delivery. This might be a game changer in treating HF;

nevertheless, massive research is still to be done. It is theoretically

plausible even to reverse the damage of the heart. There is some

evidence for MSCs and their exosomes to be able to restore pancreatic

b-cells (290) or to replace dead cardiomyocytes (262), although this

mechanism has become controversial in recent years (291) (injected

stem cells do not survive for a long period of time and paracrine

regulation is becoming a more popular theory). Therefore, the real

cure for DCM lies ahead.
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59. Turić I, Velat I, Busǐć Ž, Čulić V. Circulating thyroid hormones and clinical
parameters of heart failure in men. Sci Rep. (2023) 13:20319. doi: 10.1038/s41598-023-
47391-3

60. Chen P, Li S, Lei X, Liu Z, Wu D, Luo Y, et al. Free triiodothyronine levels and
short-term prognosis in chronic heart failure patients with type 2 diabetes. Am J Med
Sci. (2015) 350:87–94. doi: 10.1097/MAJ.0000000000000524

61. Mantzouratou P, Malaxianaki E, Cerullo D, Lavecchia AM, Pantos C, Xinaris C,
et al. Thyroid hormone and heart failure: charting known pathways for cardiac repair/
regeneration. Biomedicines. (2023) 11:975. doi: 10.3390/biomedicines11030975

62. Wang K, Ojamaa K, Samuels A, Gilani N, Zhang K, An S, et al. BNP as a new
biomarker of cardiac thyroid hormone function. Front Physiol. (2020) 11:729.
doi: 10.3389/fphys.2020.00729

63. Weltman NY, Ojamaa K, Schlenker EH, Chen YF, Zucchi R, Saba A, et al. Low-
dose T3 replacement restores depressed cardiac T3 levels, preserves coronary
microvasculature and attenuates cardiac dysfunction in experimental diabetes
mellitus. Mol Med. (2014) 20:302–12. doi: 10.2119/molmed.2013.00040

64. Khalife WI, Tang YD, Kuzman JA, Thomas TA, Anderson BE, Said S, et al.
Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss
and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am J Physiol
Heart Circ Physiol. (2005) 289:H2409–15. doi: 10.1152/ajpheart.00483.2005

65. Sato Y, Yoshihisa A, Kimishima Y, Kiko T, Kanno Y, Yokokawa T, et al. Low T3
syndrome is associated with high mortality in hospitalized patients with heart failure. J
Card Fail. (2019) 25:195–203. doi: 10.1016/j.cardfail.2019.01.007

66. Patel RB, Shah SJ. Drug targets for heart failure with preserved ejection fraction:
A mechanistic approach and review of contemporary clinical trials. Annu Rev
Pharmacol Toxicol. (2019) 59:41–63. doi: 10.1146/annurev-pharmtox-010818-021136

67. Kannel WB, McGee DL. Diabetes and cardiovascular disease. Framingham Study
Jama. (1979) 241:2035–8. doi: 10.1001/jama.1979.03290450033020

68. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock
SJ, et al. Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE): explanation and elaboration. Ann Intern Med. (2007) 147:W163–94.
doi: 10.1097/EDE.0b013e3181577511

69. Halliday BP, Gulati A, Ali A, Guha K, Newsome S, Arzanauskaite M, et al.
Association between midwall late gadolinium enhancement and sudden cardiac
death in patients with dilated cardiomyopathy and mild and moderate left
ventricular systolic dysfunction. Circulation. (2017) 135:2106–15. doi: 10.1161/
CIRCULATIONAHA.116.026910

70. Butt JH, Nicolau JC, Verma S, Docherty KF, Petrie MC, Inzucchi SE, et al.
Efficacy and safety of dapagliflozin according to aetiology in heart failure with reduced
ejection fraction: insights from the DAPA-HF trial. Eur J Heart Fail. (2021) 23:601–13.
doi: 10.1002/ejhf.2124

71. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al.
ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure:
Frontiers in Endocrinology 16
Developed by the Task Force for the diagnosis and treatment of acute and chronic heart
failure of the European Society of Cardiology (ESC) With the special contribution of
the Heart Failure Association (HFA) of the ESC. Eur Heart J. (2021) 42:3599–726.
doi: 10.1093/eurheartj/ehab368

72. Lorenzo-Almorós A, Tuñón J, Orejas M, Cortés M, Egido J, Lorenzo Ó.
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