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Background: Multifaceted factors play a crucial role in the prevention and

treatment of metabolic dysfunction-associated steatotic liver disease (MASLD).

This study aimed to utilize multifaceted indicators to construct MASLD risk

prediction machine learning models and explore the core factors within

these models.

Methods: MASLD risk prediction models were constructed based on seven

machine learning algorithms using all variables, insulin-related variables,

demographic characteristics variables, and other indicators, respectively.

Subsequently, the partial dependence plot(PDP) method and SHapley Additive

exPlanations (SHAP) were utilized to explain the roles of important variables in the

model to filter out the optimal indicators for constructing the MASLD risk model.

Results: Ranking the feature importance of the Random Forest (RF) model and

eXtreme Gradient Boosting (XGBoost) model constructed using all variables found

that both homeostasis model assessment of insulin resistance (HOMA-IR) and

triglyceride glucose-waist circumference (TyG-WC) were the first and second

most important variables. The MASLD risk prediction model constructed using the

variables with top 10 importance was superior to the previous model. The PDP and

SHAP methods were further utilized to screen the best indicators (including HOMA-

IR, TyG-WC, age, aspartate aminotransferase (AST), and ethnicity) for constructing

the model, and the mean area under the curve value of the models was 0.960.

Conclusions: HOMA-IR and TyG-WC are core factors in predicting MASLD risk.

Ultimately, our study constructed the optimal MASLD risk prediction model using

HOMA-IR, TyG-WC, age, AST, and ethnicity.
KEYWORDS

metabolic dysfunction-associated steatotic liver disease, machine learning, insulin
resistance, triglyceride glucose, risk prediction model
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Introduction

In June 2023, the international consensus group introduced the

term “ Steatotic Liver Disease (SLD)” as an inclusive term covering

all different etiologies of hepatic steatosis, including metabolic,

alcohol-related, drug-induced, and cryptogenic causes (1).

Metabolic dysfunction-associated steatotic liver disease (MASLD),

previously known as Non-alcoholic fatty liver disease (NAFLD), is

one of the most common chronic liver diseases worldwide, affecting

approximately 30% of the global population (2). MASLD typically

progresses over time, potentially leading to hepatic inflammation

(metabolic dysfunction-associated steatohepatitis, MASH), liver

fibrosis, and ultimately, the development of cirrhosis or even

hepatocellular carcinoma (3). With the continued increase in

obesity and diabetes mellitus (DM), the prevalence of NAFLD

and associated healthcare costs are expected to rise, significantly

impacting global public health. MASLD is also considered a hepatic

manifestation of metabolic syndrome, as it is closely associated with

metabolic disorders such as obesity, dyslipidemia, and DM. Early

screening and effective intervention measures help reduce and delay

the occurrence of adverse prognostic events associated with

MASLD. Liver biopsy has long been considered the gold standard

for histological assessment, diagnosis, and prognosis determination

of liver fibrosis (4). However, its invasive nature, potential risk of

bleeding, and sampling errors due to uneven distribution of liver

parenchymal lesions make it difficult to be widely used in clinical

practice (5), resulting in a large number of MASLD patients missing

the optimal timing for diagnosis and treatment. Therefore,

exploring accurate and non-invasive biomarkers for the diagnosis

of MASLD is crucial to reduce the need for invasive liver biopsy and

identify patients at high risk of liver and metabolic complications

early on.

Machine learning (ML) is a branch of artificial intelligence with

the capability to handle large, complex, and entirely different
Abbreviations: MASLD, Metabolic Dysfunction-Associated Steatotic Liver

Disease; NHANES, National Health and Nutrition Examination Survey;

HOMA-IR, Homeostasis Model Assessment of Insulin Resistance; DM,

Diabetes Mellitus; NAFLD, Non-Alcoholic Fatty Liver Disease; ML, Machine

Learning; AUC, Area Under Curve; US-FLI, United States Fatty Liver Index; PIR,

Family Income Poverty ratio; PA, Physical Activity; WC, Waist Circumference;

WtHR, Waist To Height Ratio; BMI, Body Mass Index; TyG, Triglyceride

Glucose; LDL-C, Low-Density Lipoprotein Cholesterol; HDL-C, High-Density

Lipoprotein Cholesterol; TC, Total Cholesterol; TG, Triglyceride; AST, Aspartate

Aminotransferase; ALT, Alanine Transaminase; FBG, Fasting Blood Glucose;

CVD, Cardiovascular Disease; DII, Dietary Inflammatory Index; SII, Systemic

Immune-Inflammation Index; OBS, Oxidative Balance Score; CDAI, Composite

Dietary Antioxidant Index; VAI, Visceral Adiposity Index; LAP, Lipid

Accumulation Product; XGBoost, eXtreme Gradient Boosting; RF, Random

Forest; SVM, Support Vector Machine; KNN, k-Nearest Neighbor; NBM,

Naïve Bayes Model; BPNN, Backpropagation Neural Network; LG, Logistic

Regression; ROC, Receiver Operating Characteristic; FPR, False Positive Rate;

FNR, False Negative Rate; PPV, Positive Predictive Value; NPV, Negative

Predictive Value; PDP, Partial Dependence Plot; SHAP, SHapley

Additive exPlanations.
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datasets, creating complex analytical models based on learning

frameworks, thereby improving and optimizing prediction

accuracy (6). Therefore, an increasing number of researchers are

beginning to develop disease risk prediction models through ML

(7–11). Numerous studies have utilized clinical data and machine

learning algorithms to construct NAFLD risk prediction models.

Zhou et al. (11) developed a NAFLD risk prediction model based on

obese children, which demonstrated good clinical discriminative

ability, with an area under the curve (AUC) value of 0.821 for the

receiver operating characteristic (ROC) curve. Liu et al. (12)

constructed a NAFLD risk prediction model based on a

population undergoing health checkups, using machine learning

algorithms. eXtreme Gradient Boosting (XGBoost) demonstrated

excellent clinical predictive value, with an AUC value of 0.926 for

the ROC curve. Huang et al. (13) developed a risk prediction model

for NAFLD within a population based on prospective cohort

studies, utilizing various machine learning algorithms. The best

model, Categorical Boost (CatBoost) achieved a predictive

performance of AUC = 0.810.

However, available MASLD risk prediction models are scarce

currently, and previous studies have seldom explored the roles of

various indicators in NAFLD risk prediction models, making it

difficult to assess which indicators play a core role in predicting

MASLD risk. Therefore, in this study, we aimed to utilize

multifaceted indicators from the National Health and

Nutrition Examination Survey (NHANES) data from 2005-

2010 and 2015-2018 to construct MASLD risk prediction

machine learning models and explore the core factors within

the models.
Materials and methods

Study design and population

Study data is from NHANES and includes 5 cycles from 2005-

2010 and 2015-2018. The exclusion criteria adopted in this study

were as follows (1) participants younger than 20 years of age; (2)

participants with liver disease caused by other factors, including 1)

iron metabolic disorders, indicated by ferritin concentration

exceeding 200ug/L; 2) alcohol-related liver disease, characterized

by heavy drinking (≥3 drinks per day for females and ≥4 drinks per

day for males) or binge drinking (≥5 drinks on a single occasion); 3)

hepatitis virus infection, identified by the presence of hepatitis B

surface antigen or hepatitis C confirmation antibody; 4) self-

reported liver cancer; 5) taking steatogenic medications for at

least 6 months(including amiodarone, methotrexate, tamoxifen,

aspirin, ibuprofen, nucleoside reverse transcriptase inhibitors,

p ro t ea s e inh ib i t o r s , v a lp ro i c a c id , c a rbamazep ine ,

glucocorticoids); (3) participants who lacked the information used

to assess MASLD; and (4) participants who were missing other

covariates. The detailed flowchart is shown in Figure 1. 3,158

participants were finally included, consisting of 2,368 non-

MASLD patients and 790 MASLD patients.
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Definition of MASLD

The diagnosis of MAFLD typically relies on techniques such as

abdominal ultrasonography, magnetic resonance imaging, and

other imaging modalities aimed at identifying liver fat

accumulation. Further confirmation may necessitate a liver

biopsy. However, the latter is not commonly employed due to its

high operator dependence, cost considerations, and the

requirement for significant steatosis, typically exceeding 20-30%

of liver cells, for detection. Consequently, alternative approaches

have been developed to address these limitations. One such method

is the United States Fatty Liver Index (US-FLI), pioneered by

CERuhl, designed specifically for assessing fatty liver disease

within the U.S. population (14). The specific calculation formula

for the United States fatty liver index (US-FLI) was as follows:
FIGURE 1

Flow chart of subject inclusion and exclusion in the 2005-2010,
2015-2018 U.S. National Health and Nutrition Examination Survey.
US − FLI =
e−0:8073 ∗ non−Hispanic black+0:3458 ∗Mexican American+0:0093 ∗ age+0:6151 ∗ loge (GGT)+0:0249 ∗waist circumference+1:1792 ∗ loge (insulin)+0:8242 ∗ loge (glu cos e)−14:7812

1 + e−0:8073 ∗ non−Hispanic black+0:3458 ∗Mexican American+0:0093 ∗ age+0:6151 ∗ loge (GGT)+0:0249 ∗waist circumference+1:1792 ∗ loge (insulin)+0:8242 ∗ loge (glu cos e)−14:7812
∗ 100
In the exclusion of other liver diseases associated with the

aforementioned factors, when US-FLI≥30, we considered the

participant to have MASLD.
Study covariates

In this study, we considered several covariates that could

potentially confound the outcomes: 1) Demographic variables:

age, gender, ethnicity, education level, military status, marital
Frontiers in Endocrinology 03
status, sleep status, smoke status, the family income poverty ratio

(PIR), physical activity (PA); 2) Examination variables: waist

circumference (WC), waist to height ratio (WtHR), and body

mass index (BMI); 3) Laboratory variables: low-density

lipoprotein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C), total cholesterol (TC), triglyceride (TG),

alanine transaminase (ALT), aspartate aminotransferase (AST),

bilirubin, albumin, fasting blood glucose (FBG), triglyceride

glucose (TyG) index–related parameters, including the TyG,

TyG–BMI, TyG-WtHR, and TyG-WC, Homeostasis Model

Assessment of Insulin Resistance (HOMA-IR); 4) Medical history:

diabetes mellitus (DM), hypertension, cardiovascular disease

(CVD); 5) Other indexes: dietary inflammatory index (DII),

systemic immune-inflammation index (SII), oxidative balance

score (OBS), composite dietary antioxidant index (CDAI), visceral

adiposity index (VAI), lipid accumulation product (LAP).
Statistical analyses

In this study, data were analyzed and visualized using R 4.0.1

software. Continuous variables were described using mean ±

standard deviation (SD) or median (IQR), while categorical

variables were expressed as percentages. The Shapiro-Wilk test

was employed to assess the normality of continuous variables,

and the independent sample t-test or Mann-Whitney test was

used for between-group comparisons of continuous variables.

Between-group comparisons of categorical variables were

conducted using the chi-square test or Fisher’s exact test.
Construction of the machine
learning model

Research data was split between 70% as training sets (n = 2,211)

and 30% as testing sets (n =947).

In this study, seven different machine learning algorithms,

namely Random Forest (RF), Support Vector Machine (SVM), k-

Nearest Neighbor (KNN), eXtreme Gradient Boosting (XGBoost),

Naïve Bayes Model (NBM), Backpropagation Neural Network

(BPNN), and Logistic Regression (LG), were used to evaluate the
predictive effectiveness of various variable characteristics on

MASLD, each with its own features. RF can handle high-

dimensional data and has a strong resilience to noise. It is robust

against overfitting when hyperparameters are optimized, but has

high time complexity with large datasets (15). SVM is effective for

both linear and non-linear classification tasks and performs well on

high-dimensional datasets. It is less affected by outliers, but its time

complexity also can be high when working with large sample sizes

(16, 17). KNN is simple to implement and highly accurate, making

it ideal for data without strict assumptions. It handles outliers well
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but can be computationally expensive and slow when the dataset is

large (18, 19). Known for its high accuracy and efficiency, XGBoost

is well-suited for complex, high-dimensional datasets. It includes

options for regularization to prevent overfitting, although it can be

computationally intensive if not properly tuned (20). NBM is

efficient and works well with small datasets, especially when the

assumption of feature independence is approximately met.

However, it may perform poorly with data where features are

heavily correlated or when feature distribution assumptions are

violated (21, 22). BPNN is powerful for capturing complex patterns

in large datasets and is capable of handling non-linear relationships.

However, it requires significant computational resources and

training time, and it is prone to overfitting without proper

regularization or dropout methods (23–25). LR is interpretable

and effective for binary classification tasks with linear

relationships. It has low time complexity, making it efficient for

large datasets, but it may underperform with non-linear or complex

patterns (26, 27). To evaluate the predictive effect of various types of

variables on MASLD, we constructed models utilizing 1) all

variables; 2) insulin-related indexes (HOMA-IR, TyG index-

related parameters); 3) demographic characteristics variables; and

4) other indexes, respectively. Subsequently, to develop a more

accurate and parsimonious risk prediction model, we selected the

feature variables from the best-performing model among the four

evaluated models, ranking them by importance. The top 10

variables were chosen based on their importance rankings and

used to construct a refined MASLD risk prediction model. To avoid

overfitting the models, we performed hyperparameter optimization

for each model. In addition, considering the robustness and

generalizability of the models, we integrated multiple evaluation

metrics of seven machine learning algorithms and performed 10-

fold cross-validation for each model.
Interpretable methods pipeline of
prediction models

We applied interpretability techniques, specifically Partial

Dependence Plots (PDPs) and SHapley Additive exPlanations

(SHAP), to better understand each variable’s contribution to

MASLD risk prediction. PDPs were used to illustrate the

marginal effect of each individual variable on MASLD risk by

showing how the predicted risk changes across a range of values

for each variable while keeping other features constant. This helps

isolate the impact of each feature on the outcome and provides a

clearer picture of its direction and strength in influencing

MASLD risk.

In addition, SHAP was employed to quantify and visualize the

contributions of each variable across different predictions, offering

insights into feature importance and interaction effects. SHAP

values reveal how much each variable pushes the prediction

toward or away from higher MASLD risk in individual cases. By

integrating insights from both PDP and SHAP analyses, we

identified the most influential features and refined our model to

retain only those with substantive predictive power, thereby

constructing an optimized final model.
Frontiers in Endocrinology 04
Evaluation of machine learning model

The performance of the model was assessed by various

evaluation metrics including receiver operating characteristic

curve (ROC), area under the receiver operator curve (AUC),

accuracy, sensitivity/recall, specificity, false positive rate (FPR),

false negative rate (FNR), positive predictive value (PPV),

negative predictive value (NPV) and the F1 score. The AUC was

mainly used as an evaluation metric for performance comparison

between models. The variance inflation factor (VIF) was used to

evaluate multicollinearity in the multivariate analysis based on the

intercorrelation between variables.
Results

Characteristics of the study population

Table 1 displays the general characteristics of the study

participants. A total of 3,158 U.S. adults were included in the

study, with a greater proportion of MASLD patients being male,

non-Hispanic whites. Hypertension, DM, and CVD may all be risk

factors for MASLD. In addition, compared with participants

without MASLD, participants with MASLD have higher levels of

HOMA-IR, TyG index-related parameters, DII, SII, VAI, and LAP

index relative to participants without MASLD.
Evaluation and comparison of the
predictive models

Figure 2 depicts the ROC curves for each of the seven models

constructed using different variables. The results of other evaluation

metrics of the models can be viewed in Supplementary Tables S1-

S4. In the test set, the overall effect of the models constructed using

insulin-related indexes was slightly better than that of the models

constructed using all variables, but the effect of the overall ROC

curve of the seven models constructed using all variables (average

AUC: 0.942) was slightly higher than that of the models constructed

using only insulin-related indexes (average AUC: 0.941). In

addition, in the analysis of multicollinearity between the two

models, it was found that there was multicollinearity between

several variables in both models (VIF>10).
Predictive models constructed with top
10 variables

To further explore the optimal solution for constructing the

MASLD risk prediction model, we selected the two predictive

models (RF and XGBoost) with the highest AUC values among

the seven models constructed with all variables and filtered out the

top 10 importance variables in the two predictive models. Figure 3

illustrates the top 10 variables of importance for the two models.

Focusing on the top 10 variables, which contribute most
frontiersin.org
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significantly to model output, allows us to provide clearer insights

into the key factors influencing MASLD risk without overwhelming

the interpretation with too many variables.

Therefore, we constructed disease prediction models for

MASLD using the top10 variables in importance in RF and

XGBoost, respectively (Hereafter referred to as RF top10 models

and XGBoost top10 models). It was found that the mean AUC

values of the RF top 10 models and the XGBoost top 10 models did

not differ much (slightly higher in the XGBoost top 10 models), but

both were higher than the model constructed using only the insulin-

related indexes. Figure 4 illustrates the results of the ROC curves for

the models, and the results for the other evaluation metrics are

shown in Supplementary Tables S5, S6.
TABLE 1 Baseline characteristics of participants.

No MASLD
(N=2,368)

MASLD
(N=790)

P

Age (mean ± SD) 48.79 ± 17.13 55.41 ± 15.50 <0.001

PIR (mean ± SD) 2.94 ± 1.63 2.75 ± 1.64 <0.05

TC (mean ± SD) 5.08 ± 1.03 5.08 ± 1.06 0.995

HDL (mean ± SD) 1.49 ± 0.41 1.20 ± 0.30 <0.001

LDL (mean ± SD) 3.04 ± 0.91 3.06 ± 0.94 0.651

TG (median, IQR) 1.05 (0.73) 1.61 (1.11) <0.001

BMI (mean ± SD) 26.73 ± 5.26 33.33 ± 5.94 <0.001

WC (mean ± SD) 93.06 ± 12.96 111.66 ± 13.20 <0.001

FBG (median, IQR) 5.38 (0.72) 6.00 (1.22) <0.001

ALT (median, IQR) 20.00 (10.00) 26.00 (14.00) <0.001

AST (median, IQR) 23.00 (7.00) 24.00 (8.00) <0.001

Bilirubin (mean ± SD) 13.77 ± 5.19 13.76 ± 5.18 0.951

Albumin (mean ± SD) 42.45 ± 3.07 41.88 ± 2.92 <0.001

PA (median, IQR) 1,280.00
(3300.00)

1250.00
(2980.50)

0.173

TyG (mean ± SD) 8.45 ± 0.55 9.03 ± 0.52 <0.001

HOMA-IR (median, IQR) 1.78 (1.41) 5.05 (3.61) <0.001

WtHR (mean ± SD) 0.55 ± 0.08 0.66 ± 0.08 <0.001

TyG-BMI (mean ± SD) 226.59 ± 49.97 300.77 ± 55.96 <0.001

TyG-WC (mean ± SD) 788.83 ± 135.39 1,008.07
± 134.32

<0.001

TyG-WtHR (mean ± SD) 4.69 ± 0.81 5.95 ± 0.79 <0.001

DII (mean ± SD) 1.33 ± 1.90 1.51 ± 1.80 <0.05

SII (mean ± SD) 519.20 ± 307.72 561.82 ± 295.45 0.001

OBS (mean ± SD) 20.08 ± 8.60 18.84 ± 8.06 <0.001

CDAI (mean ± SD) 0.82 ± 4.08 0.52 ± 3.76 0.061

VAI (median, IQR) 1.16 (1.11) 2.25 (1.93) <0.001

LAP (median, IQR) 32.58 (18.50) 77.42 (54.69) <0.001

Gender (N, %) <0.001

Female 1,222 (51.6) 287 (36.3)

Male 1,146 (48.4) 503 (63.7)

Ethnicity (N, %) <0.001

Non-Hispanic White 1,233 (52.1) 436 (55.2)

Non-Hispanic Blacks 534 (22.6) 86 (10.9)

Mexican 270 (11.4) 166 (21.0)

Other 331 (14.0) 102 (12.9)

Education (N, %) <0.001

Elementary and
secondary education

429 (18.1) 202 (25.6)

(Continued)
TABLE 1 Continued

No MASLD
(N=2,368)

MASLD
(N=790)

P

High school 539 (22.8) 193 (24.4)

Bachelor degree or higher 1,400 (59.1) 395 (49.9)

Military (N, %) <0.001

No 2,073 (87.5) 632 (80.0)

Yes 295 (12.5) 158 (20.0)

Marital (N, %) <0.001

Married or Living
with partner

1,508 (63.7) 552 (69.9)

Widowed, Divorced,
or Separated

476 (20.1) 170 (21.5)

Never married 384 (16.2) 68 (8.6)

Sleep status (N, %) 0.473

Short 898 (37.9) 311 (39.4)

Normal 1,305 (55.1) 433 (54.7)

Long 165 (7.0) 46 (5.8)

Smoke status (N, %) <0.001

Never 1,385 (58.5) 421 (53.3)

Former 583 (24.6) 267 (33.8)

Now 400 (16.9) 102 (12.9)

Hypertension (N, %) <0.001

No 1,569 (66.3) 321 (40.6)

Yes 799 (33.7) 469 (59.4)

DM (N, %) <0.001

No 2,087 (88.1) 530 (67.1)

Yes 281 (11.9) 260 (32.9)

CVD (N, %) <0.001

No 2,208 (93.2) 671 (84.9)

Yes 160 (6.8) 119 (15.1)
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Interpretation of ML models

Since the difference in the overall predictive performance

between the RF top 10 models and the XGBoost top 10 models is

very small, to further explore the models, we chose to generate

PDPs for the Random Forest model selected from both the RF top

10 models and the XGBoost top 10 models to interpret the

predictive models. As presented in Figures 5, 6, the application of

PDPs allowed for a broader interpretation of model performance,

which displayed the relationship between the features and MASLD.

The PDP analysis of the RF top 10 models indicates that increases in

nine continuous variables included in the model are associated with

elevated risk predictions for MASLD. Specifically, HOMA-IR, TyG-

WC, and TyG-WtHR exhibit the most significant effects. More

specifically, as the levels of HOMA-IR range from approximately 0

to 10, TyG-WC range from approximately 818 to 1091, and TyG-

WtHR range from approximately 5 to 6, the risk prediction values

for MASLD show an increasing trend. The PDP analysis results of
Frontiers in Endocrinology 06
the XGBoost top 10 models are generally consistent with those of

the RF top 10 models. It is noteworthy that, unlike HOMA-IR and

TyG-WC, which only impact the risk prediction values for MASLD

within specific ranges, the risk prediction values for MASLD

increase with age across the entire age range.

PDPs can also provide insights into the interaction performance

of a model. Supplementary Figures S1, 3 show the overall

interaction strength between variables in the two models,

respectively. Supplementary Figures S2, 4 display the synergistic

effects of variables’ levels on MASLD risk. The results still indicate

that HOMA-IR, TyG-WC, and TyG-WtHR dominate in predicting

MASLD in the RF top 10 models; In the XGBoost top 10 models,

the predicted values of MASLD are mainly determined by HOMA-

IR, TyG-WC, and age.

Due to the limitations of PDPs, we could not assess the role of

ethnicity in the model. Meanwhile, we observed that variables such as

ALT and AST seem to play a role in predicting MASLD risk. To

further explore the optimal model configuration, we conducted a
FIGURE 2

Receiver Operating Characteristic (ROC) curves for seven machine learning models are constructed using different variables. (A) all variables;
(B) insulin-related indexes; (C) demographic characteristics variables; (D) other indexes.
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SHAP analysis on the two models mentioned above (Supplementary

Figures S5, S6). The results from the SHAP dependency plots indicate

that SHAP values vary across different ethnic groups, suggesting that

ethnicity might be a potential risk factor for MASLD and that the

effect of TyG-WC may vary across ethnicities. From the color

mapping in the SHAP plots, it can be observed that AST is not

influenced by HOMA-IR in the model, while ALT is significantly

influenced by TyG-WC. In the HOMA-IR plot, where color mapping

represents Age, data points with lighter colors (representing older

age) are distributed in regions with higher HOMA-IR values and

SHAP values, indicating that HOMA-IR may have a greater impact

on MASLD risk in older populations.
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Construction and evaluation of the optimal
MASLD prediction model

Taking into account the effects of the variables in both the PDPs

and SHAP results on MASLD risk prediction performance as well as

interactions and covariances, we further screened the variables used

to construct the model. Eventually, we utilized 5 factors (including

HOMA-IR, TyG-WC age, AST, and ethnicity) to construct the

optimal MASLD risk prediction model (Figure 7, average

AUC=0.960). We also calculated the VIF of all the variables in

this model and proved that there is no multicollinearity between

them (VIF<10).
FIGURE 3

The contribution of the top 10 variables in predictive models. (A) The contribution of the top 10 variables in the RF predictive model; (B) The
contribution of the top 10 variables in the XGBoost predictive model.
A B

FIGURE 4

ROC curves for seven machine learning models are constructed using the top 10 variables of importance. (A) model uses the top 10 variables of
importance in the RF model; (B) model uses the top 10 variables of importance in the XGBoost model.
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Discussion

MASLD, the most common chronic liver disease worldwide, is

mediated by various factors including genetic susceptibility, dietary

habits, obesity, insulin resistance, and the endocrine effects of many

diseases. Consequently, extensive research is underway to explore

non-invasive, practical, and reliable disease prediction models to

identify and manage individuals at high risk of MASLD, ultimately

alleviating the disease burden. In this large cross-sectional study, our

primary aim is to investigate how to construct the optimal MASLD

prediction model and the role played by indicators in the model.

Despite NAFLD being eventually renamed as MASLD, studies have

shown excellent consistency between the definitions of NAFLD and

MASLD, with approximately 99% of NAFLD patients meeting

MASLD criteria (28). Therefore, while this study focuses on

MASLD, it also discusses NAFLD and MAFLD simultaneously.

Previous studies have already indicated that obesity is an

independent risk factor for NAFLD (29). The new nomenclature

and definition more intuitively reflect that metabolism (obesity and

DM) is a key etiology of fatty liver disease. Our study results also

found that the average BMI and HOMA-IR of MASLD patients

were 33.33 kg/m2 and 5.06, respectively. Additionally, the

proportion of participants with diabetes mellitus (DM) was much
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higher in MASLD patients compared to those without MASLD.

Furthermore, our study found that MASLD patients had higher SII

and DII compared to participants without MASLD, consistent with

the findings of Yan et al. (30–33).

Inflammation plays a crucial role in the progression of MASLD

to MASH, liver fibrosis, and even liver cancer (34). In addition to

the direct effects of immune-inflammatory factors, these cytokines

also promote the development of IR and T2DM through activation

of intracellular pathways, thereby influencing MASLD (35). Studies

have also found that higher levels of OBS have a protective effect on

MASLD, and Tan et al. (36) suggested that OBS may influence

MASLD by reducing insulin resistance levels. Previous studies

consistently demonstrate a negative correlation between PA and

NAFLD, suggesting that even mild exercise can prevent and treat

NAFLD to some extent (37, 38). However, this study did not

observe an association between PA and MASLD, speculating that

most MASLD patients in the early stages of liver disease prefer to

improve their disease burden by adjusting dietary habits.

Additionally, MASLD patients are mostly obese and may be less

inclined to choose increased physical activity as a means to improve

their condition. VAI and LAP are also positively correlated with

MASLD, consistent with the findings of previous studies by Vural

et al (39, 40). Additionally, Peng et al. (41) suggested that LAP may
FIGURE 5

Partial dependence plots (PDPs) of the RF top 10 model (A) HOMA-IR’ PDP of the RF top 10 model; (B) TyG-WC’ PDP of the RF top 10 model; (C)
TyG-WtHR’ PDP of the RF top 10 model; (D) WC’ PDP of the RF top 10 model; (E) WtHR’ PDP of the RF top 10 model; (F) LAP’ PDP of the RF top 10
model; (G) TyG-BMI’ PDP of the RF top 10 model; (H) BMI’ PDP of the RF top 10 model; (I)FBG’ PDP of the RF top 10 model.
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have better predictive performance than VAI, a viewpoint

supported by our results. However, studies by Boden et al.

(42–44) suggest that increased visceral adipose tissue may be

achieved through pathways such as oxidat ive stress ,

inflammation, and IR. Despite the multifactorial etiology of

MASLD, IR, and obesity remain core driving factors in its
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development. Therefore, for research aiming to predict and assess

MASLD risk, it is imperative to delve deeper into these core driving

factors and explore their role in MASLD risk assessment through

model construction.

HOMA-IR, as a commonly used index for measuring IR, has

been widely applied. However, its requirement for fasting insulin
FIGURE 6

Partial dependence plots (PDPs) of the XGBoost top 10 model (A) ALT’ PDP of the XGBoost top 10 model; (B)) AST’ PDP of the XGBoost top 10
model; (C) WC’ PDP of the XGBoost top 10 model; (D) Age’ PDP of the XGBoost top 10 model; (E) HOMA-IR’ PDP of the XGBoost top 10 model; (F)
TC’ PDP of the XGBoost top 10 model; (G) PIR’ PDP of the XGBoost top 10 model; (H) TyG-WC’ PDP of the XGBoost top 10 model; (I) SII’ PDP of
the XGBoost top 10 model.
FIGURE 7

ROC curves for seven machine learning models are constructed using HOMA-IR, TyG-WC, age, AST, and ethnicity.
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levels to some extent limits its practicality in clinical settings. In

contrast, the TyG index addresses this limitation, becoming a

simple, reproducible, and reliable indicator for assessing IR.

Previous studies have demonstrated that TyG-related indices have

good predictive performance for MAFLD (45). Xue et al. (46) used

logistic regression to explore the association between insulin-related

indexes and MAFLD, evaluating the predictive performance of

individual indicators on MAFLD. They found that TyG-WC had

the best predictive performance for MAFLD (AUC=0.832). Similar

results were obtained by Peng et al. (41). Therefore, this study

integrated insulin-related indexes to construct models for

predicting MASLD risk. The performance of the LR model

(AUC=0.957) was far superior to the models constructed by Peng

(41) and Xue (46) et al. using single indicators. This significant

performance difference emphasizes the predictive capability of the

composite index model. To further obtain indicators that more

comprehensively reflect MASLD risk and construct the optimal

MASLD risk prediction model, we selected the top 10 variables of

importance in the RF model and XGBoost model constructed using

all variables. We found that HOMA-IR and TyG-WC were ranked

first and second, respectively, fully reflecting the importance of

insulin resistance in MASLD. Additionally, ethnicity and WC also

appeared in the top 10 of importance in both models. The

genotypes and lifestyle habits of different ethnic groups may be

major factors influencing MASLD. WC, as an important indicator

of central obesity, can also reflect the risk of MASLD to some extent.

However, its importance is much lower than that of TyG-WC,

possibly because TyG-WC integrates indicators of IR and central

obesity, making it more prominent in predicting MASLD risk.

We further constructed MASLD risk prediction models using

the top 10 variables of importance separately (the RF top 10 models

and the XGBoost top 10 models mentioned in the results section)

and found that the overall predictive performance of these models

was higher than those constructed using only insulin-related

indexes. Subsequently, we used the PDP method and SHAP

method to interpret the RF top 10 models and the XGBoost top

10 models separately, further confirming the central role of HOMA-

IR and TyG-WC in predicting MASLD risk. It is worth noting that

in the XGBoost top 10 models, age consistently influences the

occurrence and development of MASLD across the entire range.

Obviously, with increasing age, the body’s metabolism, liver

function, and fat metabolism abilities weaken, particularly the

decreased ability of liver cells to metabolize fat, leading to fat

accumulation in the liver and thereby increasing the risk of

MASLD. Additionally, as age increases, the incidence of chronic

diseases such as hypertension, DM, and CVD rises. These chronic

diseases have a mutually influencing relationship with MASLD, and

they may worsen due to the influence of MASLD, further

exacerbating the disease burden of MASLD, and forming a vicious

cycle (47, 48). Furthermore, AST can reflect the degree of liver cell

damage, liver inflammation, and fibrosis (49). Therefore, it plays a

supplementary role in predicting MASLD risk, thereby optimizing

the effectiveness of MASLD risk prediction models. Although the

variables included in the two types of models differ significantly, and

there are also differences in the ranking of importance, the overall
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predictive performance of the RF top 10 models and the XGBoost top

10 models does not differ significantly. We believe the main reason is

that HOMA-IR and TyG-WC play a primary role in predicting

MASLD risk, while other indicators further complement aspects not

captured by these two indicators. Considering that TyG-related

parameters simultaneously enter the model, there may be

multicollinearity issues, leading to the model repetitively capturing

the biological information or metabolic status reflected by TyG-

related indicators and neglecting other potential indexes. The study

also found that MASLD incidence risk varies significantly across

different ethnicities, which may be attributed to differences in

metabolic characteristics between ethnic groups, particularly in

insulin resistance, lipid metabolism, and fat distribution. Mexican

Americans tend to exhibit higher levels of insulin resistance and

abdominal obesity (50), while Non-Hispanic Blacks individuals

typically have a higher proportion of subcutaneous fat, with

relatively less visceral fat, which may confer some protection to

liver health (51). Additionally, factors such as diet and lifestyle, as well

as socioeconomic status, may also contribute to the differences in

MASLD incidence risk among ethnicities.

Based on the PDP and SHAP results of the RF top 10 models

and the XGBoost top 10 models, we further screened the variables

and constructed the optimal MASLD risk prediction model using

HOMA-IR, TyG-WC, age, AST, and ethnicity. This model not only

has the largest average AUC value, but also other evaluation metrics

are overall better than the previously constructed model. Therefore,

we believe that although insulin resistance and obesity (especially

central obesity) are core factors in developing MASLD, considering

other factors that reflect liver function simultaneously helps

improve the effectiveness of constructing clinical prediction

models for MASLD risk.

Although the predictive performance of the final models

constructed in this study is superior to that of previous research,

there are still some limitations. Firstly, this study relied solely on the

NHANES database, which includes data from the American

population, without incorporating external datasets to further

validate and optimize the model’s performance. Moreover, the

cross-sectional nature of the NHANES data limits the ability to

establish causal relationships between variables and MASLD, which

should be acknowledged as a constraint on causal inference in this

study. In addition, there may be other factors affecting the

prediction of MASLD risk that were not considered in this study

or were not collected in the NHANES database, such as indicators

of fibrosis, other indicators of inflammation, and so on, which may

play a role in the diagnosis and prediction of MASLD.
Conclusions

Our study found that HOMA-IR and TyG-WC are core factors

in predicting MASLD risk. However, integrating multiple factors

can further enhance the model’s predictive performance.

Ultimately, our study constructed the optimal MASLD risk

prediction model using HOMA-IR, TyG-WC, age, AST,

and ethnicity.
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