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Central precocious puberty (CPP) is an endocrine disease in children,

characterized by rapid genital development and secondary sexual

characteristics before the age of eight in girls and nine in boys. The premature

activation of the hypothalamic-pituitary-gonadal axis (HPGA) limits the height of

patients in adulthood and is associated with a higher risk of breast cancer. How to

prevent and improve the prognosis of CPP is an important problem. Vitamin D

receptor (VDR) is widely expressed in the reproductive system, participates in the

synthesis and function of regulatory sex hormones, and affects the development

and function of gonads. In addition, gut microbiota plays an important role in

human health by mainly regulating metabolites, energy homeostasis, and

hormone regulation. This review aims to clarify the effect of vitamin D

deficiency on the occurrence and development of CPP and explore the role of

gut microbiota in it. Although evidence on the interaction between vitamin D

deficiency, gut microbiota, and sexual development remains limited, vitamin D

supplementation and gut microbiota interventions offer a promising, non-

invasive strategy for managing CPP.
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Background

Precocious puberty (PP) is characterized by the onset of secondary sexual characteristics

before age eight in girls and nine in boys, with central precocious puberty (CPP) being the

most common form. CPP results from early activation of the hypothalamic-pituitary-gonadal

axis (HPGA), and it affects girls 15-20 times more often than boys (1). This condition can

impact adult height and is associated with an increased risk of type 2 diabetes, cardiovascular

disease, breast cancer, and other complications in adulthood (2). While some causes of CPP

are known—including genetic predispositions like KISS1 andMKRN3 gene variations, as well

as endocrine-disrupting chemicals—many cases, particularly in girls (about 90%) and boys

(up to 60%), remain idiopathic (3). There is also a global trend towards earlier puberty onset,

necessitating better diagnostic and treatment approaches (4–7). While GnRH analogs remain
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the cornerstone of CPP treatment, novel sustained-release

formulations and personalized therapeutic approaches are actively

being developed.

Vitamin D plays a crucial role in children’s growth and

development, maintaining calcium homeostasis, promoting bone

growth, and regulating neuroendocrine and reproductive functions.

The vitamin D receptor (VDR) is present throughout the

hypothalamic-pituitary-gonadal axis (8–10). Adequate vitamin D

levels are essential for normal pubertal progression and

reproductive health, as demonstrated in mice (11). It significantly

influences sex hormone secretion, gonadal development, and

reproductive organ function. In humans, studies have linked

vitamin D levels to the timing of menarche and overall

reproductive health (12–15). Vitamin D deficiency (serum 25-

hydroxyvitamin D below 50 nmol/L) is associated with various

health issues, including immune dysfunction, obesity, metabolic

syndrome, infections, cancer, and cardiovascular diseases (16).

Recent meta-analyses indicate an inverse relationship between

vitamin D levels and precocious puberty. However, findings on

vitamin D deficiency prevalence in PP patients are inconsistent,

possibly due to a threshold effect of vitamin D status (17–19).

The gut microbiota refers to the diverse community of

microorganisms, including bacteria, archaea, viruses, and fungi, that

inhabit the gastrointestinal tract. It plays a crucial role in metabolic,

physiological, and immune functions and stabilizes to an adult-like

composition within 1-3 years after birth (20, 21). Significant differences

exist between the microbiota of children and adults, with microbial

community structure, diversity, and functional potential varying by age

and gender, especially during puberty (22, 23). The gut microbiota

began to show gender differences during puberty and interacted with

sex hormones, indicating that there was a relationship between gut

microbiota and sexual maturity (24, 25). Additionally, vitamin D is

vital for gastrointestinal health, influencingmucosal barriers, ILC3, and

T cells, thereby affecting the microbiota (26). Both clinical and animal

studies show that vitamin D can modulate the immune system

through changes in gut microbiota composition and antimicrobial

peptides (AMPs) regulation (27, 28). By promoting short-chain fatty

acid (SCFA)-producing bacteria, vitamin D helps reduce

inflammation, suggesting that vitamin D supplementation could

restore gut homeostasis and offer therapeutic benefits for CPP (26).

Given the diagnostic and therapeutic challenges of CPP, there is

an urgent need to explore its etiology further to possibly develop

also non-invasive approaches. Recent studies highlight a potential

link between PP, vitamin D, gut microbiota, and their metabolites,

though the mechanisms remain unclear. This review aims to

summarize the relationships between vitamin D, CPP, and gut

microbiota, providing insights for future interventions through

vitamin D supplementation and microbiota modulation.
Abbreviations: BA, bile acids; BSH, bile salt hydrolase; CPP, central precocious

puberty; FXR, farnesoid X receptor; GnRH, gonadotropin-releasing hormone;

GUS, b-glucuronidase; HFD, high-fat diet; HPGA, hypothalamic-pituitary-

gonadal axis; HSD, hydroxysteroid dehydrogenases; ICPP, idiopathic central

precocious puberty; LPS, lipopolysaccharides; PP, precocious puberty; SCFA,

short-chain fatty acid; SNP, single nucleotide polymorphisms; VDR, vitamin

D receptor.
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Methods

A systematic search of the PubMed database was conducted up

toMay 2024 to evaluate the literature on the interplay between CPP,

vitamin D, and gut microbiota. The review includes original articles,

meta-analyses, animal studies, and clinical studies. Search terms

used were “central precocious puberty”, “pubertal disorders”, “age

at menarche”, “timing of puberty”, “early menarche”, “puberty

time”, “vitamin D”, “vitamin D3”, “vitamin D deficiency”,

“microbiota”, “gut microbiota”, “microbiome”, “dysbiosis”, “sex

hormones”, “short chain fatty acid”, and “bile acids”.
The role and effect of vitamin D in
central precocious puberty

Vitamin D’s role in CPP has garnered significant attention. It

interacts with transcription factors, regulating vitamin D-sensitive

genes critical for bone and mineral metabolism and other biological

functions (29, 30). The vitamin D receptor (VDR) is widely distributed

in somatic cells and organs, including bone, parathyroid glands,

immune system components, and endocrine structures like the

pancreas, hypothalamus, pituitary gland, and adrenal cortex. It is also

present in reproductive tissues such as the testes, ovaries, and uterus

(31, 32). Studies indicate that vitamin D is essential for neuroendocrine

regulation, reproductive development, and immune function (33).

Studies in mammals have demonstrated that the active form

of vitamin D, 1,25(OH)2D3, also known as calcitriol, stimulates

the production of estradiol and estrone, while knockdown of the

VDR significantly reduces testosterone synthesis and secretion in

Leydig cells. This regulation may involve the expression of 3b-
hydroxysteroid dehydrogenase (3b-HSD) and StAR (34–36).

Vitamin D also promotes mitochondrial homeostasis, reduces

oxidative stress and tissue damage, and regulates cellular health.

Vitamin D deficiency, conversely, decreases mitochondrial activity

and increases oxidative stress and inflammation (37). 1,25(OH)2D3

has immunomodulatory properties on T cells and can reduce pro-

inflammatory cytokines such as IL-17, INF-g, and TNF-a, exerting
anti-inflammatory effects (38). Parathyroid hormone (PTH)

indirectly affects vitamin D synthesis by regulating calcium levels,

while vitamin D influences the secretion of pituitary gonadotropin

through interactions with PTH and its receptors. Genetic factors are

believed to account for 50-80% of the variation in puberty timing in

the general population (39). Genome-wide association studies have

identified numerous genetic loci influencing puberty timing across

various ethnic groups, including loci associated with PP (40). Single

nucleotide polymorphisms (SNP) are small modifications in the

nucleotide sequence between individuals, and some SNPs may

make subjects more susceptible to certain diseases. Recent genetic

studies suggest a potential etiological role for SNPs in/near a custom

list of genes related to nuclear hormone receptors including VDR

during puberty (41). A case-control study by Li et al. indicated that

VDR polymorphism may protect against CPP in Chinese girls by

affecting the peak FSH level in the gonadotropin-releasing hormone

(GnRH) stimulation test (42).
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Preclinical studies show VDR expression in the hypothalamus,

suggesting vitamin D may regulate reproductive system

development by affecting GnRH neuron function. Vitamin D is

involved in NMDA-mediated inhibition of GnRH neuronal activity,

potentially delaying the onset of puberty (3, 43). Although vitamin

D’s neuroprotective effects against reactive oxygen species (ROS)

and inflammation are known, its specific mechanisms on HPGA

remain unclear (44). Notably, vitamin D metabolic enzymes and

VDR are expressed in white adipose tissue, and low-dose 1,25(OH)

2-D3 inhibits apoptosis of differentiated 3T3-L1 adipocytes by

regulating the expression of uncoupling protein 2 (45). Another

study reports that 1,25(OH)2D3 mainly regulates the late stages of

adipogenesis (46). This reveals a potential mechanism between

obesity and CPP. Studies in female mice show that peripubertal

vitamin D deficiency delays vaginal opening and estrus, while

deficiency before weaning does not affect puberty (11, 47). VDR

knockout mice exhibit gonadal dysfunction, including reduced

sperm count and motility, and abnormalities in reproductive

organs (48). Interaction among ANXA1, ANXA5, and VDR may

influence gonadotropin secretion regulation in female rats (49).

Consistent with the “fetal programming” hypothesis, several

large-sample clinical birth cohort studies have found that the season

of birth and first trimester with seasonal variations in endogenous

vitamin D3 synthesis has been associated with age at menarche (50,

51). In addition, a single-center, matched cohort study found a low

vitamin D status during pregnancy determines the course of mini-

puberty in boys (52). Other evidence also suggests that 25(OH)D

modestly affects total testosterone and inhibin B levels in girls

during mini-puberty, indicating that 25(OH)D may influence

gonadal function in early life (53). A case-control study found

that vitamin D deficiency was associated with early menarche and

was an independent risk factor for idiopathic central precocious

puberty (ICPP) in girls (12, 54). Female gender and puberty were

negatively associated with 25(OH)D (55). However, randomized

clinical trials have yielded different results from animal studies,

showing no significant effect of vitamin D treatment on testosterone

or other hormone levels (56–58). This discrepancy may arise from

not accounting for factors such as vitamin D-binding proteins and

detection methods. Vitamin D deficiency might indirectly affect

hormone status by regulating the bioavailable portion of

testosterone, which requires further investigation considering age

and the degree of vitamin D deficiency. In summary, the exact role

and effect of vitamin D in the pathogenesis of CPP need further

study to determine its specific mechanisms. The possible molecular

mechanisms connecting vitamin D to puberty and the findings of

preclinical and clinical studies are summarized in Figure 1.
Difference in vitamin D concentration
between the central precocious
puberty group and the control group

It is postulated that a complex interplay of genetic, nutritional,

and environmental factors may precipitate endocrine and

physiological changes leading to puberty (3). Apart from potential
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adjustments in overall dietary patterns and lifestyle, certain

nutrients, including vitamin D, may hold promise in influencing

sexual maturation. However, there is no definitive consensus

regarding the correlation between vitamin D and the onset and

progression of CPP. Population-based epidemiological and clinical

investigations suggest that serum vitamin D levels are lower in

individuals with CPP compared to subjects with normal onset of

puberty, posing a risk factor for precocious puberty (17, 18, 54, 59–

64). Moreover, the proportion of vitamin D deficiency in the CPP

population was also higher than in the control group, as shown in

Supplementary Table 1. Meanwhile, a case-control study identified

a correlation between vitamin D levels and uterine volume

specifically among girls with ICPP, a relationship not observed in

their peers. Girls with ICPP exhibited lower vitamin D levels

alongside larger uterine volumes (60). The latest meta-analysis

corroborates the notion that severe vitamin D deficiency may

elevate the risk of precocious puberty, with patients diagnosed

with CPP exhibiting lower levels compared to other types of

precocious puberty (65, 66). However, certain clinical studies have

failed to establish a significant relationship between vitamin D

status and CPP (67, 68). The findings from a cross-sectional

study revealed that the vitamin D status among girls aged six to

eight with CPP was comparable to that of preadolescent girls. While

girls with CPP exhibited significantly elevated levels of parathyroid

hormone (67). In the future, further high-quality clinical studies are

warranted to validate the relationship between children’s vitamin D

levels and CPP. Specifically, large-scale prospective cohort studies

or randomized controlled trials with robust methodologies are

essential to ensure the reliability of the findings.
The role of gut microbiota in CPP and
vitamin D deficiency

The development of children’s gut microbiota undergoes a

dynamic process influenced by various factors. Among these, the

mode of delivery, breastfeeding, early exposure to antibiotics, and

host-related factors exert significant influence on early life (69–71).

While traditionally believed to stabilize within the first three years,

recent evidence suggests gut microbiota development continues

into childhood and early puberty (22, 72, 73). Puberty, influenced

by early nutrition and breastfeeding, sees dynamic changes in gut

microbiota, with breast milk offering a protective effect against early

puberty, whereas formula feeding is linked to premature puberty

(74). Additionally, gender differences in gut microbiota emerge

during adolescence and persist into adulthood.

Current research indicates no significant difference in gut

microbiota diversity between normal adolescents and prepubertal

children, but variations in composition and metabolites exist. A

Finnish population-based cohort study found that gut microbiota

development during puberty is sex-specific and associated with the

timing of puberty in girls. During puberty, the relative abundance of

Clostridiales and Bifidobacterium increased, especially

Ruminococcaceae, while Bacteroidales decreased (75). A case-

control study observed enrichment of Ruminococcus bromii,
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Ruminococcus gnavus, and Clostridium leptum in ICPP girls, with

FSH positively correlated with Fusobacterium and LH with

Gemmiger (76). Another cross-sectional study showed higher

alpha diversity and upregulated Bacteroides and Faecalibacterium

in girls with CPP (77). Li et al. also found that CPP girls had

significantly different gut microbiota from normal and overweight

girls, with elevated levels of Alistipes, Klebsiella, and Sutterella (78).

Functional predictions they conducted suggest peripheral

precocious puberty as a transitional stage between ICPP and

normal children. Gut bacteria alter sex hormone levels by

modifying active-to-inactive ratios, using enzymes like b-
glucuronidase (GUS), b-glucosidase, and hydroxysteroid

dehydrogenases (HSD) for degradation. Furthermore, The

Firmicutes to Bacteroidetes ratio decreases with higher serum

hormone levels, indicating an interaction between sex hormones

and gut microbes (79). Children with CPP have a higher breast

cancer risk in adulthood, and gut microbial b-glucuronidase
(gmGUS) inhibitors are a new approach to managing estrogen-

related diseases like breast cancer (80, 81).

CPP occurs due to premature activation of the HPGA, and gut

microbiota metabolites can influence hypothalamic neurotransmitters
Frontiers in Endocrinology 04
and gene expression (82). The gut-brain axis provides a two-way

communication pathway via neural, hormonal, and immune pathways,

influencing human physiology. Gut microbiota functional analysis

suggests the neuroactive compound nitric oxide synthesis is linked to

CPP progression (83). Notably, SCFAs, lipopolysaccharides (LPS), and

secondary bile acids (BA) are identified as key gut microbial

metabolites influencing puberty timing. Dietary carbohydrates

fermented by gut microbiota produce SCFAs like acetate, butyrate,

and propionate. Bacteroidetes mainly produce acetate and propionate,

while Firmicutes produce butyrate (84). In vitro studies show butyrate

can increase LH and FSH levels, correlating with clinical findings of

increased SCFA-producing bacteria in CPP children (85, 86). This

increase may promote the expression of leptin and HPG axis-related

genes, leading to puberty onset (76, 77, 87). However, excessive SCFAs,

particularly butyrate, are associated with promoting intestinal

inflammation and insulin resistance, disrupting glucose homeostasis

and intestinal mucosal barrier function, which may increase intestinal

energy harvesting and promote the development of obesity (88–93).

Recent studies indicate that SCFAs modulate GnRH release by the

GPR54-PKC-ERK1/2 pathway in the hypothalamus, affecting puberty

in female rats on a high-fat diet (HFD). Gut microbiota in precocious
FIGURE 1

Summary of molecular, preclinical, and clinical findings linking vitamin D to puberty.
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puberty rats show dysbiosis and reduced SCFA production. Adding

SCFAs to HFD can reverse precocious puberty in rats (94). Butyrate

also enhances VDR protein expression while suppressing inflammation

(95). The variability between experimental and clinical findings may be

due to diet interactions and confounding factors like genetics,

environment, and lifestyle. LPS, derived from Gram-negative

bacteria, enhances inflammation by inducing macrophage infiltration

and proinflammatory cytokines and inhibiting Treg cells. Prevotella

triggers TNF-a production, causing secretion of inflammatory

cytokines like IL-6, via an LPS-based mechanism (96). The gut

microbiome is involved in BA metabolism, regulating secondary BA

metabolism, and inhibiting BA synthesis in the liver via farnesoid X

receptor (FXR) signaling (97). In addition, BA functions as a signaling

molecule, binding to cell receptors. FXR impairs glucose homeostasis

(98). The bacterial enzyme bile salt hydrolase (BSH) canmodulate FXR

signaling by cleaving its antagonist tauro-b-naphthocholic acid (99).

Further studies using metagenomics and metabolomics are needed to

explore the associations between microbial-derived metabolites (LPS,

SCFAs, BAs) and CPP. The mechanisms involving gut microbiota in

CPP include differences in early feeding, LPS, SCFAs, energy

homeostasis, intestinal barrier maintenance, hormone regulation, and

the gut-brain axis, as shown in Figure 2.

Vitamin D plays a crucial role in regulating the gut microbiome,

and VDR is present in intestinal epithelial cells, immune cells, and
Frontiers in Endocrinology 05
gut microbiota. Vitamin D modulates gut microbiome composition

and diversity by regulating antimicrobial peptides and immune

responses (100). Vitamin D deficiency correlates with gut

microbiota imbalance, compromised intestinal defense

mechanisms, and increased intestinal permeability (101–103). A

genome-wide association study involving 2029 individuals

identified two VDR polymorphisms as significant contributors to

gut microbiota alterations (104). Vitamin D has shown protective

effects on gut microbiota in animal models of inflammatory bowel

disease. It induces macrophages to produce antimicrobial peptides,

enhances epithelial barrier integrity, regulates the expression of

various connexins, and defensins, modulates inflammatory

responses, and influences gut microbiota composition (105).

Consistent evidence from mouse and human studies indicates an

association between vitamin D and gut microbiota beta diversity,

but not alpha diversity (106). Clinical studies show that high-dose

vitamin D supplementation in adolescent girls improves vitamin D

status, increases Firmicutes and Bifidobacterium levels, and

decreases Bacteroidetes abundance (27). Vitamin D-deficient

children exhibit higher levels of Bacteroides massillensis and

Prevotella species (107). Bacteroides and Prevotella influence

inflammation by releasing lipopolysaccharides, which activate

macrophages. A cross-sectional study found Prevotella more

prominent in individuals with high vitamin D intake and lower
FIGURE 2

Association of enterotypes in gut microbiota with puberty timing and potential mechanism for CPP. The up and down arrows indicate increase and
decrease, respectively.
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LPS concentrations in those with better vitamin D status (108).

Chronic inflammation from vitamin D deficiency may be linked to

CPP through gut microbiota changes. Obesity also impacts gut

microbiota. High BMI in children is associated with decreased

Bacteroidetes and increased Firmicutes (109). Obese adolescents

have a gut microbiota predominantly composed of Firmicutes

(94.6%), while Bacteroidetes account for 3.2% (110). However, a

cohort study of 295 Dutch children found no correlation between

the Firmicutes to Bacteroidetes ratio and BMI (111). Another study

on HFD effects on gut microbiota and sexual development in mice

found inconsistencies between obesity and precocious puberty-

related microbiota changes, highlighting the need to control for

obesity when analyzing the gut microbiota-CPP relationship (112).

In conclusion, the complex relationship between gut microbiota,

vitamin D, and precocious puberty requires further investigation. Key

mechanisms likely involve sex hormones, inflammation, immune

regulation, and intestinal barrier maintenance. Understanding these
Frontiers in Endocrinology 06
interactions is crucial for elucidating CPP pathogenesis and identifying

potential treatments. The relationship between vitamin D, gut

microbiota, and CPP investigated in this review is shown in Figure 3.
Therapeutic potential of vitamin D
supplementation and regulation of gut
microbiota on precocious puberty

Recent studies highlight the crucial interaction between vitamin

D and gut microbiota in human health, particularly regarding

metabolism and immune function. PP stands as a significant

health concern in children, prompting increased scrutiny

regarding the relationship between CPP and vitamin D deficiency

and gut microbiota imbalance.

Previous studies have shown that vitamin D improves insulin

sensitivity in adolescents with obesity (113). A recent meta-analysis
FIGURE 3

Vitamin D, gut microbiota, and central precocious puberty - a possible three-way axis.
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suggests that combining vitamin D with drug therapy and a short-

term/high-dose supplementation strategy is beneficial for sexual

hormone and body indices in patients with precocious puberty (65).

This observation might explain the persistently high prevalence of

vitamin D deficiency despite recommended daily intakes (114, 115).

Long-term, low-dose vitamin D does not significantly increase 25

(OH)D levels in deficient patients, while high doses rapidly

normalize these levels without adverse effects. As shown in

Supplementary Table 2, clinical trials support the need for high-

dose vitamin D supplementation in children with vitamin D

deficiency to improve levels and address associated risks (116–130).

Despite these findings, clear and systematic vitamin D

supplementation guidelines for clinical practice are lacking. More

research is needed to establish guidelines for different pediatric

populations. A recent study suggests that lifestyle interventions,

such as the Mediterranean diet, may enhance vitamin D levels more

effectively than supplementation alone (131). Current research

suggests that higher doses of 1,25(OH)2D3 are needed to treat

vitamin D deficiency in obese individuals (115). This may be

because obesity can reduce circulating 25(OH)D by trapping this

lipophilic vitamin in adipose tissue. Addressing weight

management or providing vitamin D recommendations based on

BMI may be necessary.

Animal studies indicate that insulin resistance linked to gut

microbiota induced by HFD can promote early puberty, while

microbial remodeling can prevent it (132). Clinical studies have

identified Streptococcus as a potential marker for CPP therapy (83).

Probiotics have shown promise in upregulating VDR expression,

suggesting a synergistic effect with vitamin D. Targeted delivery of

vitamins to the colon to modulate gut microbiota is also being

explored (133). According to clinical studies, high-protein, complex

carb diets may help protect against CPP in girls (77). Probiotic and

vitamin D supplementation holds considerable promise for treating

precocious puberty, but larger studies are needed to determine

optimal dosages and effects. While dietary supplements, including

bioactive molecules, show potential, they should never replace

dietary or lifestyle modifications. Studies have shown that in

addition to vitamin D, other substances like the natural sweetener

glycyrrhizin may also have therapeutic potential in CPP, supporting

a more comprehensive approach to management in the

future (134).
Conclusion and prospect

This review discussed the extensive evidence demonstrating the

importance of the relationship between vitamin D and the gut

microbiota in CPP. Vitamin D and the gut microbiota profoundly

influence the onset and progression of puberty in many different

ways. For example, alterations in vitamin D/VDR signaling have

been associated with microbiome dysbiosis, which in turn has been

associated with CPP. On the other hand, vitamin D

supplementation can also improve microbiome composition in

cases of deficiency. While promising, further research is needed to

fully understand the potential role of vitamin D and probiotics in

modulating the risk of CPP. Correcting vitamin D deficiency and
Frontiers in Endocrinology 07
microbiota dysbiosis may offer complementary approaches to

standard CPP treatment in the future.

Key questions remain: (1) What novel signal transduction

pathways does vitamin D use to regulate gut microbiota and affect

puberty, and what are the molecular mechanisms? (2) What are the

beneficial impacts of vitamin D on CPP? (3)Why does vitamin D have

varying effects on puberty timing in clinical trials versus animal

studies? (4) What are the optimal dosage and concentration of

vitamin D for CPP patients, and how do they compare with other

treatments? More extensive clinical trials are needed to explore these

questions and understand the interplay between vitamin D, gut

microbiota, and CPP. Ensuring adequate vitamin D levels in CPP

children, through diet or supplementation, may be key to maintaining

healthy gut microbiota and supporting natural puberty onset.
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