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Diabetes mellitus is a complex chronic disease, considered as one of the most

common metabolic disorders worldwide, posing a major threat to global public

health. Ferroptosis emerges as a novel mechanism of programmed cell death,

distinct from apoptosis, necrosis, and autophagy, driven by iron-dependent lipid

peroxidation accumulation and GPx4 downregulation. A mounting body of

evidence highlights the interconnection between iron metabolism, ferroptosis,

and diabetes pathogenesis, encompassing complications like diabetic

nephropathy, cardiomyopathy, and neuropathy. Moreover, ferroptosis inhibitors

hold promise as potential pharmacological targets for mitigating diabetes-related

complications. A better understanding of the role of ferroptosis in diabetes may

lead to an improvement in global diabetes management.

In this review, we delve into the intricate relationship between ferroptosis and

diabetes development, exploring associated complications and current

pharmacological treatments.
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1 Introduction

Diabetes mellitus (DM) is defined as a group of metabolic disorders characterized by

chronic hyperglycemia resulting from deficiencies in insulin secretion, insulin action, or

both. Globally, the prevalence of diabetes has surged to epidemic levels. Presently, it is

estimated that over half a billion individuals are affected by diabetes worldwide, reflecting a

global age-standardized diabetes prevalence of 6.1%. By 2050, projections indicate that this
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prevalence will more than double, with an estimated 1.31 billion

individuals living with diabetes. Consequently, the prevention and

management of diabetes remains a major challenge (1).

Ferroptosis is a specific and emerging form of cell death linked with

various conditions including cancer, neurodegenerative diseases,

cardiovascular diseases, diabetes, infections, inflammatory bowel

disease, chronic lung disease, and acute kidney disease.

Biochemically, ferroptosis is characterized by the accumulation of

iron, increased production of lethal lipid reactive oxygen species

(ROS), excessive lipid peroxidation, and depletion of the lipid repair

enzyme glutathione peroxidase 4 (GPx4). It is considered a non-

apoptotic regulated cell death mechanism, as it does not necessitate

the involvement of caspases — a family of aspartate-specific cysteine

proteases critical for the initiation and execution of apoptosis through

the cleavage of specific intracellular substrates (Table 1). Ferroptosis is

triggered by an iron-dependent accumulation of ROS and subsequent

peroxidation of membrane polyunsaturated fatty acid phospholipids,

leading to extensive oxidative damage. Morphologically, ferroptosis is

characterized by mitochondria exhibiting shrinkage, high membrane

density, reduced or vanished cristae, and a ruptured outer

mitochondrial membrane. The major distinction between autophagy

and ferroptosis lies in the absence of the formation of a classical closed

bilayer membrane structure in the latter (2).

Understanding the interplay between diabetes and ferroptosis holds

potential for the development of novel pharmacological strategies.

In this review, we delve into the connection between ferroptosis

and diabetes pathogenesis, associated complications, and

potential treatments.
2 Mechanisms of ferroptosis and
historical perspectives

The groundwork in ferroptosis research traces back to the 1950s,

initiated by Harry Eagles, who demonstrated that the deprivation of

the amino acid cysteine induced cell death in HeLa cells and mouse
Frontiers in Endocrinology 02
fibroblast strain L (3). In 1973, Mitchell identified that

acetaminophen induced hepatic cell necrosis in rats was dependent

on cysteine and glutathione (GSH) (Figure 1) (4). A few years later,

Bannai showed that cysteine depletion in the medium or the

inhibition of cystine transport let to reversible cell death mediated

by GSH depletion, which could be prevented by vitamin E (5, 6).

Concurrently, in 1982, GPx4 was identified as a selenoprotein capable

of safeguarding against membrane lipid peroxidation in a GSH-

dependent peroxidase manner (7). GPx4 belongs to the glutathione

peroxidase enzyme family, consisting of a total of 8 members (Gpx1-

8), all capable of degrading fatty acid peroxide, alkyl peroxide, and

hydrogen peroxide. However, Gpx4 remains the only enzyme with

the capacity to degrade complex lipids and lipoproteins derived from

cholesterol and phospholipids (8).

A significant milestone in the identification of ferroptosis

occurred in 2003 with the discovery, through high-throughput

screening, of a small molecule named erastin. Erastin was found

to selectively induce non-apoptotic cellular death in an iron-

dependent manner, specifically targeting oncogenic RAS (9). This

form of cell death was found the be distinct from other types of cell

death, such as apoptosis, autophagy, necroptosis, or pyroptosis, in

terms of biochemical, morphological, and genetic characteristics. In

2012, the term ‘ferroptosis’ was coined to define this specific form of

cell death, characterized by iron-dependent accumulation of

reactive oxygen species. The Stockwell group described a novel

non-apoptotic form of cell death induced by the inhibition of the

amino acid antiporter system XC
−, which facilitates the cellular

uptake of cysteine and glutamate. This system is essential for

providing cysteine, the precursor for GSH biosynthesis (10).

Two years later, the same research team published a study

demonstrating that GPx4 is an essential regulator of this pathway

(11). Preclinical investigations further confirmed the critical role of

GPx4, as inducible Gpx4(-/-) mice generated in subsequent studies

succumbed to acute kidney failure within two weeks of Gpx4 loss

(12). These findings underscore the importance of ferroptosis in

both physiological and pathological conditions, highlighting the
TABLE 1 Table: Characteristics of Different Types of Cell-Death.

Feature Biochemical Morphological Genetic Pathway
Activation

References

Ferroptosis Iron-dependent lipid
peroxidation, Glutathione
depletion, GPX4 inhibition

Mitochondrial shrinkage, cristae
condensation, Membrane rupture

Upregulation of ACSL4, SLC7A11,
and TFR1, Downregulation of GPX4

Iron metabolism
pathways,
ROS generation

(14, 88, 89)

Apoptosis Caspase activation, DNA
fragmentation, Cytochrome
c release

Cell shrinkage, chromatin
condensation, Membrane
blebbing, apoptotic
bodies formation

Upregulation of pro-apoptotic genes
(e.g., BAX), Downregulation of anti-
apoptotic genes (e.g., BCL-2)

Intrinsic
(mitochondrial) and
extrinsic (death
receptor) pathways

(90–92)

Autophagy Autophagosome formation,
LC3 conversion,
mTOR inhibition

Double-membrane
autophagosomes,
Cytoplasmic vacuolization

Upregulation of ATG genes,
Downregulation of mTOR

AMPK and
ULK1 pathways

(93–95)

Necroptosis RIPK1, RIPK3, and MLKL
activation, TNF-a signaling,
ROS generation

Cell swelling, plasma membrane
rupture, No formation of
apoptotic bodies

Upregulation of RIPK1, RIPK3,
MLKL phosphorylation

TNF-a, RIPK1/
RIPK3 complex

(96–98)

Pyroptosis Caspase-1/4/5/11 activation,
GSDMD cleavage, IL-1b
and IL-18 release

Cell swelling, pore formation in
plasma membrane, Cellular lysis

Upregulation of NLRP3, IL-1b, and
GSDMD, Caspase-1/11
dependent pathways

Inflammasome
activation

(99–101)
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need for a thorough understanding of its precise mechanisms and

implications (13). Following these groundbreaking discoveries,

numerous studies underscored the potential of ferroptosis and its

modulat ion across various disease models , including

neurodegenerative diseases, cardiovascular diseases, metabolic

disorders, aging and oncology (14–16). These advances have

enhanced our understanding of the complex molecular regulation

of ferroptosis, which is discussed below.
3 Regulation of ferroptosis

There are several distinct cellular mechanisms that regulate the

development of ferroptosis. GPx4 is widely recognized as a master

regulator of ferroptosis, however, both GPx4 dependent and

independent pathways are associated with this process. GPx4,

which is present in both the cytosol and mitochondria, serves as

the primary defense against lipid peroxidation by catalyzing the

reduction of toxic lipid peroxides to non-toxic alcohols (17).

Pharmacological or genetic inhibition of GPx4 is associated with

rapid lipid peroxidation and the characteristic features of ferroptosis

(11) (Figure 2). Acyl—CoA synthetase long-chain familymember4

(ACSL4) also play a crucial role in promoting ferroptosis by

regulating the metabolism of arachidonic acid, eicosapentaenoic

acid and lipid peroxidation that is linked to GPx4 (18).

Recently accumulating evidence indicated the existence of

GPX4-independent pathways in the suppression of ferroptosis

(13, 19). Ferroptosis suppressor protein 1 (FSP1), also known as

AIFM2, has emerged as a significant player in ferroptosis

suppression independent of GPX4 (20, 21). FSP1 regenerates

reduced CoQ10 using NADPH, a critical source of cellular

reducing power. Reduced CoQ10 scavenges lipid peroxidation

intermediates, thus preventing ferroptosis (Figure 2). The role of

NADPH in regenerating CoQ10 has been highlighted as a

biomarker for ferroptosis resistance in cancer cell lines, with the

cytosolic phosphatase MESH1 influencing ferroptosis sensitivity by

modulating NADPH levels (22, 23). Another pivotal mechanism
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involves GTP cyclohydrolase 1 (GCH1), which produces

tetrahydrobiopterin (BH4). BH4 acts as a lipophilic antioxidant

similar to CoQ10, preventing lipid peroxidation and remodeling

lipid membranes to increase reduced CoQ10 while decreasing

PUFA-PLs (Figure 2) (24, 25). CRISPR screens have identified

GCH1 as a critical regulator of ferroptosis sensitivity (25).

Additionally, dihydroorotate dehydrogenase (DHODH) functions

within mitochondria to reduce CoQ10, offering another layer of

protection against ferroptosis (26). Cells with high DHODH

expression are more resistant to ferroptosis, while those with low

expression are more sensitive. Further expanding the landscape of

GPX4-independent ferroptosis suppression, interleukin-4-induced-

1 (IL4i1) generates indole-3-pyruvate (In3Py), which not only

scavenges radicals but also modulates gene expression to reduce

lipid peroxidation (27). This pathway suggests the potential

existence of other endogenous metabolites that can suppress

ferroptosis by interfering with radical intermediates or gene

regulation. The identification of these diverse mechanisms

underscores the complexity of ferroptosis regulation and

highlights multiple therapeutic targets for diseases where

ferroptosis plays a crucial role. Each mechanism provides unique

insights into cellular defense strategies against lipid peroxidation,

opening new avenues for research and therapeutic development.
4 Iron metabolism and ferroptosis

Iron is an important trace element involved in various cellular

processes, such as erythropoiesis, oxygen transport, and energy

metabolism. The primary source of iron is dietary, with absorption

occurring in the intestines in the form of heme iron or free Fe2+.

Approximately 60% of iron is bond to erythrocytes, while a quarter

is stored in ferritin and hemosiderin within bone marrow, spleen,

and liver. Another 5% in found in myoglobin, with less than 1%

transported by transferrin.

Iron homeostasis is finely regulated, balancing intracellular

utilization, storage, and uptake processes. Physiologically, ferritin
FIGURE 1

“Timeline of Key Discoveries in Ferroptosis Research”. This timeline outlines significant milestones in the study of ferroptosis, starting from the initial
discoveries to the latest research advancements. It includes the identification of ferroptosis, the roles of GPx4 and lipid peroxidation, and the impact
of ferroptosis on various diseases. Notable years and events such as the coining of the term “ferroptosis” by the Stockwell group, and the
progression of research into its implications in health and disease are marked.
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sequesters and stores iron as a protective measure against iron-

induced oxidative stress. Circulating iron exists predominantly as

Fe3+, which is imported into cells by transferrin. The transferrin

receptor (TfR1) mediates the endocytosis of iron and transferrin

within clathrin-coated vesicles. Following endocytosis, Fe3+ is

reduced to Fe2+ within the lysosomes. Subsequently, the zinc iron

regulatory protein family 8/14 (ZIP8/14) and the divalent metal

transporter 1 (DMT1) release the oxidized form of iron into the

labile iron pool. Excessive levels of Fe2+ promote the production of

ROS through the Fenton reaction, amplifying lipid peroxidation

and consequently triggering the initiation of ferroptosis. The

induction of ferroptosis then appears as a factor favoring the

pathogenesis of diabetes via several actions that are discussed below.

5 Role of ferroptosis and iron
metabolism in pancreatic b-
cells dysfunction

Iron deficiency or excess can affect glucose metabolism, and

conversely, hyperglycemia can lead to iron overload. This close

relationship between iron and glycemia is illustrated by the

association between elevated ferritin levels and the development
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of type 2 diabetes (28–30). The deleterious effects of iron overload

were initially identified in pathological conditions of excess iron,

such as hereditary hemochromatosis, characterized by the presence

of several elements including diabetes, hepatic steatosis, and

cardiomyopathy. The disruption of glucose homeostasis stems

from a defect in insulin secretion caused by pancreatic b-cells
dysfunction induced by iron overload, which can be mitigated by

phlebotomy or iron chelation.

Iron metabolism and ferroptosis both play roles in glucose

homeostasis, affecting both insulin secretion and resistance. At the

level of the b-cells of the pancreas, iron is involved in insulin

secretion. It is incorporated into b-cells of the pancreas by the

mechanism discussed in section 4 (31). Inside the cell, iron

participates in the mechanism of insulin secretion by promoting

ROS production through the Fenton reaction, which is considered

an enhancing signal for insulin secretion (32). Iron overload can

lead to pancreatic b-cells failure and apoptosis through several

mechanisms, such as ROS generation, reduced capacity of

detoxification enzymes, or the enhancement of amylin ß-sheet

formation, leading to aggregate deposition (33). Furthermore,

iron serves as a cofactor for various enzymes and plays a

significant role in Fe-S cluster formation, impacting b-cell
proliferation, differentiation, and insulin secretion (34). Pancreatic
FIGURE 2

“Schematic Diagram of the Signaling Pathway of Ferroptosis”. This figure illustrates the key molecular mechanisms and pathways involved in
ferroptosis, a regulated form of cell death dependent on iron and characterized by the accumulation of lipid peroxides. Key elements include the
cystine/glutamate antiporter (system Xc-), glutathione (GSH), glutathione peroxidase 4 (GPx4), and the roles of iron chelators such as Deferoxamine
(DFO) and Ciclopirox (CPX) in inhibiting ferroptosis. The diagram highlights how the disruption of these pathways can lead to the execution of
ferroptosis. BH2:, dihydrobiopterin; BH4, tetrahydrobiopterin; CoQ10, coenzyme Q10; CoQ10H2, ubiquinol; CPX, Ciclopirox; CPX; DMT1, divalent
metal transporter 1; DFO, Deferoxamine: FDFT1, farnesyl-diphosphate farnesyltransferase; FSP1, Ferroptosis suppressor protein 1; GCH1, GTP
cyclohydrolase-1; GCL, glutamate-cysteine ligase; GLS, glutaminases; GPX4, glutathione peroxidase 4; GSH, glutathione; GSS, glutathione
synthetase; GSSG, oxidized glutathione; LOXs, lipoxygenases; POR, cytochrome p450 oxidoreductase; RSL3, RAS-selective lethal 3.
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b-cells from iron-deficient mice exhibit reduced glucose-induced

insulin secretion (GSIS) capacity (35). Taken together, these

findings suggest that both iron depletion and overload adversely

affect pancreatic b-cells. Therefore, iron levels should be carefully

regulated to avoid excess or deficiency, in order to preserve the

secretory function of islet b-cells.
Evidence suggests that ferroptosis is implicated in pancreatic b-

cell function and survival. These cells have low expression levels of

several antioxidant enzymes, such as catalase, GSH peroxidase, and

superoxide dismutase, which may predispose them to the

accumulation of ROS and consequently, the induction of

ferroptosis (36). On one hand, in vitro studies have shown that

erastin, a ferroptosis inducer, reduces GSIS. On the other hand,

iron-1, a ferroptosis inhibitor, exhibits protective effects on GSIS

ability (37). Pancreatic b-cell death is a critical factor in the

development and progression of diabetes, and ferroptosis appears

to play a role in this process. In pancreatic b-cells, the induction of

ferroptosis is linked to significantly accelerated cell death.

Conversely, inhibiting ferroptosis with Ferrostatin-1 has been

shown to enhance the survival of these cells (37). A recent study

demonstrated that in pancreatic islets, RSL3 induces oxidative

stress, leading to an increase in intracellular iron and elevated

expression of ACSL4 protein, which in turn results in a

significant reduction in islet function (38). Collectively, these

findings suggest that inhibiting ferroptosis may protect pancreatic

b-cell function and survival.
6 Insulin resistance

In addition to their involvement in b-cell function and survival,

iron and ferroptosis are also implicated in insulin resistance (IR), a

multifaceted pathophysiological state characterized by a reduced

response of insulin-depend cells such as hepatocytes, skeletal

muscle cells, or adipocytes. In the liver, iron accumulation in

pathological states such as hemochromatosis has been shown to

trigger gluconeogenesis, impacting glucose levels (39, 40). Excess

iron in hepatocytes induces the generation of ROS via the Fenton

reaction, similar to observations in other cell types. This leads to the

activation of several enzymes such as NADPH oxidases (NOXs) and

arachidonate lipoxygenases (ALOXs), triggering lipid peroxidation,

cellular membrane destruction, and ultimately, ferroptosis (41).

In preclinical models of non-alcoholic steatohepatitis (NASH),

ferroptosis is associated with the development of hepatic

inflammation, while inhibition of ferroptosis may protect against

NASH progression (42, 43). Ferroptosis exacerbates hepatic

steatosis and IR by triggering the unfolded protein response,

which in turn stimulates hepatic lipogenesis. This sets off a

vicious cycle involving iron accumulation, ferroptosis, hepatic

lipid accumulation, and IR, ultimately impairing glucose

homeostasis (44).

Adipocytes also play a crucial role in the association between

ferroptosis and diabetes through several mechanism. Firstly, the

inflammatory state observed in adipose tissue in diabetes may

inhibit the NRF2-GPX4 pathway, leading to ferroptosis in the

vagus nerve. This reduces the nerve’s capacity to transmit signals
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detected and collected by sensory nerves to the central nervous

system, causing autonomic imbalance and disrupting adipose tissue

homeostasis. Secondly, regarding the immunological aspect of

adipose tissue, the accumulation of iron often observed in

diabetes can activate ferroptosis in M2 macrophages, T regulatory

cells, and B lymphocytes by reducing the levels of NRF2 and GPx4.

Further research is needed to elucidate the precise mechanisms

linking ferroptosis in adipose tissue and diabetes (45).

Skeletal muscle cells play a pivotal role in insulin sensitivity/

resistance, as they are responsible for approximately 80% of total

body insulin-stimulated glucose uptake. Excess iron has been shown

to induce insulin resistance, leading to disruption in glucose

homeostasis. However, the role of ferroptosis in skeletal muscle

tissue remains less studied thus far (46). The control and

modulation of ferroptosis may therefore represent a potential

avenue for maintaining glucose homeostasis.
7 Ferroptosis and diabetes treatment

Several pharmacological treatments for diabetes may modulate

ferroptosis. Metformin, a synthetic biguanide and the first line-

therapy for type 2 diabetes, is the most widely used pharmacological

treatment. Its mechanisms of action are complex. Metformin

appears to act by activating the adenosine monophosphate-

activated protein kinase (AMPK) signaling pathway, as well as

other AMPK-independent pathways. These actions suppress

hepatic gluconeogenesis and enhance insulin-stimulated

peripheral glucose uptake, altogether leading to improved glucose

regulation in diabetic individuals (47). Some in vitro and preclinical

studies suggest that metformin modulates ferroptosis. In several

breast cancer cell lines, metformin induces ferroptosis via different

mechanisms, such as inhibiting UFMylation of SLC7A11 and

targeting the miR-324-3p/GPX4 axis, suggesting another potential

anti-cancer property of metformin (48, 49). In an in vivo study with

a rat-model of vascular calcification, metformin attenuated vascular

smooth muscle cell (VSMC) calcification through anti-ferroptosis

effects (50). Among the potential molecular mechanisms by which

metformin influences ferroptosis, a reduction in iron overload in

the liver has been demonstrated in a preclinical model of non-

alcoholic fatty liver disease (NAFLD) via the AMPK-ferroportin

pathway (51). Another identified mechanism involves metformin’s

modulation of the gut microbiota, which is characterized by an

increase in gamma-aminobutyric acid (GABA)-producing bacteria,

leading to the inhibition of ferroptosis (52)..

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a

pharmacological therapeutic class that decreases glycemia by

blocking glucose reabsorption in the proximal tubules, leading to

glucosuria. This therapeutic class has not only shown

improvements in blood sugar levels but also cardiac and renal

protection benefits in both diabetics and non-diabetics, leading to

an increase in its use. SGLT2 inhibitors may reduce ferroptosis and

promote various beneficial effects observed in preclinical studies.

These effects include enhancing the revascularization of ischemic

hindlimbs in diabetic mice, improving cardiac function in a rat

model of heart failure with preserved ejection fraction, and
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promoting tubular kidney function (53–55). Overall, SGLT2

inhibitors promote cardiometabolic health, at least partly through

a reduction of ferroptosis. Mechanistically, this reduction is

mediated through the induction of sirtuin-1 and an increase in

intracellular levels of glutathione, both of which enhance

glutathione-dependent glutathione peroxidase 4 (56).

Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are

widely used treatments for individuals with type 2 diabetes,

known to improve glucose homeostasis and promote weight loss

in overweight or obese patients. Preclinical studies suggest a

potential reduction of ferroptosis by liraglutide, with a decrease in

hepatic iron accumulation observed in db/db mice, thereby

reducing insulin resistance and the development of hepatic

steatosis (57). Additionally, another study showed a reduction in

iron deposition in the hippocampus, leading to reduced damage in

hippocampal neurons and improvement in synaptic plasticity,

thereby favoring cognitive function restoration in db/db mice (58).

Dipeptidyl-peptidase-4 (DPP-4) inhibitors act on glucose levels

by blocking the degradation of GLP-1 and glucose-dependent

insulinotropic peptide (GIP). Interestingly, the activity of the

DPP-4 enzyme appears to be involved in ferroptosis due to its

interaction with the tumor suppressor P53. In human colorectal

cancer cells (CRC), the loss of P53 counteracts the deposition of

nuclear DPP4 and instead promotes the formation of a complex

between DPP-4 and NADPH oxidase 1 (NOX1) at the plasma

membrane, thus promoting lipid peroxidation. Conversely, P53

inhibits ferroptosis by decreasing DPP-4 activity. Furthermore,

several DPP4 inhibitor molecules completely inhibit erastin-

induced ferroptosis in CRC cells, suggesting a bidirectional

relationship between DPP-4 and P53 in the context of

ferroptosis (59).
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8 Ferroptosis in diabetes-
related complications

DM is associated with several complications that are

traditionally categorized into macro- and microvascular based on

the diameter of the vessels of the affected organs. Macrovascular

complications involve diseases such as coronary heart disease

(CAD), cerebrovascular disease, and peripheral arterial disease

(PAD). Microvascular complications, on the other hand,

encompass conditions like diabetic retinopathy (DR), diabetic

kidney disease (DKD), and diabetic peripheral neuropathy (DPN)

(Figure 3). Ferroptosis may contribute to the development of

complications associated with diabetes due to shared cellular

metabolic pathways and disturbances characteristic of this form

of cell death. These include dysregulation of iron homeostasis, iron

overload, reduced antioxidant capacity, ROS accumulation, and

mitochondrial and endothelial dysfunction. Moreover, the

hyperglycemic environment in diabetes further promotes the

activation of pathways linked to ferroptosis. This suggests

potential connections and reciprocal effects between diabetes,

ferroptosis, and the associated complications.
8.1 Diabetic retinopathy

DR is characterized by damage to the retina, which can lead to

vision impairment and affects approximately one-third of individuals

with DM. Prolonged hyperglycemia in DM induces microvascular

injury, promoting retinal hypoxia, neovascularization, reduced retinal

permeability, microaneurysms, hemorrhages, and macular edema.
FIGURE 3

“Implications of Ferroptosis in Diabetic Complications”. This figure presents the involvement of abnormal ferroptosis in various diabetic
complications including diabetic nephropathy, endothelial dysfunction, pancreatic b-cell dysfunction, diabetic cardiomyopathy, and hepatic steatosis.
The diagram shows how dysregulated ferroptosis contributes to the pathophysiology of these conditions, emphasizing the potential of targeting
ferroptosis pathways for therapeutic interventions in diabetes-related diseases.
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The precise molecular and cellular mechanisms underlying the

development of DR remain only partially understood but include

oxidative stress with the accumulation of ROS, leading to

mitochondrial dysfunction, inflammation, neuroglial dysfunction,

endothelial progenitor cell dysfunction, and cellular apoptosis,

ultimately resulting in progressive alterations in the function and

the structure of the retina.

Chronic hyperglycemia reduces the proliferation of human

retinal capillary endothelial cells (hRCE), a phenomenon that can

be amplified by ferroptosis through the ubiquitination of GPX4,

enhanced by TRIM46 (60). TRIM46 facilitates the induction of

increasing the permeability and inflammation of hRCE by

ferroptosis via the ubiquitination of IkBa (61). Furthermore,

inhibition of the adipokine FABP4 has been shown to reduce

lipid peroxidation in a mice model of DR through the

modulation of ferroptosis, highlighting another aspect of the

involvement of ferroptosis in DR. However, further research is

needed to fully understand the role of ferroptosis in DR (62).
8.2 Diabetic kidney disease

Diabetic kidney disease (DKD) represents the leading cause of

chronic kidney disease and end-stage kidney disease (ESKD),

necessitating dialysis or renal transplantation. It is characterized

by a progressive decline in glomerular filtration rate and/or

proteinuria. The involvement of ferroptosis in DKD has been

more widely studied, with more data available compared to DR.

Several in vitro, preclinical animal, and human studies have shown

evidence of the implication of ferroptosis in the development of

DKD, including excess iron content or transferrin levels in tubular

kidney cells, as well as increased expression levels of GPX4 and

SLC7A11 (63, 64). The precise mechanisms linking the presence of

diabetes to the development of the biological phenomenon of

ferroptosis at the renal level remain to be elucidated.

Nevertheless, it can be hypothesized that the hyperglycemic state

and the production of ROS participate in the induction

of ferroptosis.

Ferroptosis in the kidney appear to affect several cell types

including mesangial cells, podocytes, or tubular cells. The increase

in the expression of GPX4 and SLC7A11, along with the reduction

of iron accumulation via upregulation of Prdx6, allows for a

reduction in in vitro damage to podocytes in a model of DKD

(65). High mobility group box 1 (HMGB1) is a molecule frequently

found in cases of inflammatory damage, particularly in cases of

DKD. Its inhibition reduces in vitro ferroptosis in mesangial cells

induced by a medium high in glucose, as evidenced by a decrease in

ACSL4 and an increase in GPX4 (66). Podocytes, a cell type playing

a major role in glomerular filtration barrier integrity, has been

shown to display ferroptosis activation upon high glucose exposure

through the antioxidant molecule peroxiredoxin 6 (Prdx6) (65).

Ferroptosis is also implicated in the process of renal tubular cell

death, as evidenced by a reduction in GPx4 levels, accumulation of

lipid peroxidation, and an increase in the expression level of acyl-

CoA synthetase in both in vitro and in vivo preclinical models of

renal tubular epithelial cell apoptosis (63).
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Several hypotheses currently link diabetic kidney disease (DKD)

to ferroptosis. For instance, renal ischemia, commonly observed in

diabetes, induces the overexpression of hypoxia-inducible factor

(HIF), particularly heme oxygenase-1 (HO1). This leads to the

mobilization of the labile iron pool in the kidneys, potentially

promoting ferroptosis (67, 68). Another proposed mechanism

involves the hyperglycemic state, which inhibits nuclear factor

E2-related factor 2 (Nrf2), a regulator with antioxidant and anti-

inflammatory properties, thereby inducing ferroptosis in the

kidneys (66). Additionally, recent research has shown that

hydrogen sulfide (H2S) or sulfide metabolism, which is being

explored as a promising approach for renal protection, can inhibit

renal ferroptosis and the progression of DKD by reducing basement

membrane thickening, mesangial expansion, and renal fibrosis

(69, 70).

All of this indicates an involvement of ferroptosis in various

mechanisms and cell types, suggesting that it could represent a new

potential avenue for therapeutic approaches to DKD.
8.3 Diabetic cardiomyopathy

Diabetic cardiomyopathy (DCM) is defined by adverse

myocardial structural remodeling and altered function in the

absence of classical etiologies such as coronary artery disease,

valvopathy, or hypertension. The pathogenesis of DCM is the

subject of extensive research; it appears complex, involving

numerous pathways, and remains only very partially elucidated.

Among the mechanisms contributing to DCM are mitochondrial

dysfunction, excessive production of ROS, cardiomyocyte death,

endoplasmic reticulum stress, endothelial damage, and cardiac

fibrosis. There is growing evidence indicating a role for

ferroptosis in the pathogenesis of DCM. For instance, the

accumulation of lipids and ROS within cardiomyocytes

exacerbates the development of DCM. Additionally, the

importance of iron metabolism in myocardial function and its

accumulation in DCM suggest a role for ferroptosis in this

condition. Furthermore, mitochondrial dysfunction, which is also

present in DCM, can promote ferroptosis (71).

Firstly, in a preclinical model of type 2 diabetes, a high-fat, high-

sucrose diet was shown to cause hypertrophy, lipid peroxidation,

and mitochondrial dysfunction in the heart (72). Further evidence

for the involvement of ferroptosis comes from the fact that

overexpression of mitochondrial phospholipid hydroperoxide

glutathione peroxidase 4 (mPHGPx) provides cardiac protection

in a model of DCM induced by streptozotocin (73). Additionally,

several studies have demonstrated the role of NRF2, a major actor in

the cellular antioxidant response, particularly by acting as

transcriptional regulator of anti-ferroptotic genes in DCM (74,

75). Indeed, the inhibition of NRF2 via autophagy in a model of

cardiomyocyte-restricted (CR) knockout of the autophagy-related 5

gene (CR-Atg5KO) accelerates the progression of DCM in mice

(76). Conversely, the induction of NRF2 levels by sulforaphane

increases metallothionein, leading to protection against the

development of DCM (77, 78). On the other hand, NRF2

activators such as 6-gingerol and curcumin have shown a
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protective effect in vitro and in vivo (79, 80). Inhibition of

ferroptosis via activation of NRF2 could therefore represent a new

therapeutic avenue in the treatment of DCM.
8.4 Endothelial dysfunction

Diabetes is a major risk factor in the development of

atherosclerosis and associated diseases such as coronary heart

disease, ischemic stroke, or peripheral arterial disease. Chronic

hyperglycemia, acute glucose fluctuations, and IR elicit oxidative

stress, inducing endothelial dysfunction (ED). This phenomenon is

characterized by reduced nitric oxide (NO) bioavailability,

vasoconstriction, and a pro-inflammatory and pro-thrombotic

state. ED serves as a major hallmark and a poor prognostic marker

for micro- and macrovascular complications associated with diabetes.

Several markers of ferroptosis activation in vascular smooth muscle

cells (VSMCs), vascular endothelial cells (VECs), and macrophages

are positively correlated with the development of atherosclerotic

plaques (81). Ferroptosis induction may aggravate the atherogenic

process, while anti-ferroptosis molecules such as Fer-1 may inhibit

atherosclerosis development. Therefore, inhibiting ferroptosis may

represent a potential therapeutic target to prevent the development of

ischemic diseases, particularly among diabetic individuals.
8.5 Ferroptosis modulation to
target diabetes

While preclinical data on the impact of modulating ferroptosis in

diabetes and its complications are promising, available human clinical

data remain limited. Among the candidate molecules, Bardoxolone

methyl (BXM), currently in phase 3 clinical trials for the treatment of

diabetic kidney disease (DKD), inhibits ferroptosis by promoting Nrf2

activation. Rosiglitazone, a peroxisome proliferator-activated receptor-

gamma (PPAR-g) agonist, also exhibits ferroptosis-inhibitory activity

by blocking ACSL4, thereby reducing iron overload and lipid

peroxidation (82). Although Rosiglitazone has shown positive effects

in diabetes, particularly by increasing insulin sensitivity, it is

potentially associated with an increased risk of cardiovascular

problems and certain cancers ( (83). Quercetin, a plant flavonoid,

also possesses anti-ferroptotic properties and has demonstrated

beneficial effects on blood glucose control and diabetes

complications in some clinical trials. However, large-scale and long-

term studies are necessary to confirm the efficacy of this compound in

diabetes treatment (84). Curcumin, a polyphenol found in Curcuma

longa, has demonstrated anti-inflammatory, antioxidant, and

ferroptosis-blocking properties. It has shown potential in improving

various metabolic parameters, including glucose homeostasis, in some

clinical trials, and may offer protection against the progression of

diabetes complications such as DKD (85, 86).

A number of compounds targeting ferroptosis more specifically

are currently under development and evaluation, primarily at the

preclinical stage. These include GPx4 activators or inhibitors such

as ML162, ML210, and compound 1d4, as well as FSP1 activators

like NPD4928 and iFSP1 (87). Overall, more clinical data are
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needed to assess the potential of targeting ferroptosis as a

therapeutic strategy for diabetes.
9 Conclusion

Ferroptosis, a specific type of cell death characterized by a lethal

accumulation of ROS and peroxidation of membrane lipids in an

iron-dependent manner, remains only partially understood

regarding its mechanistic underpinnings and its involvement in

various medical conditions such as diabetes.

Ferroptosis and iron metabolism seem to play significant roles

in multiple aspects of diabetes pathophysiology, both in terms of

beta cell dysfunction and IR.

This review aims to consolidate the existing knowledge on the

involvement of ferroptosis in diabetes pathogenesis, its associated

complications, and the impact of anti-diabetic treatments

on ferroptosis.

Ongoing efforts are directed towards a comprehensive

understanding of ferroptosis, presenting promising therapeutic

avenues not only in diabetes but also in other fields like oncology.
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