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1Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Liaoning,
Shenyang, China, 2Department of Medical Oncology, The First Affiliated Hospital of China Medical
University, Liaoning, Shenyang, China, 3Department of Urinary Surgery, The First Affiliated Hospital of
China Medical University, Liaoning, Shenyang, China, 4Department of Thoracic Surgery, The First
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Background: Lung adenocarcinoma (LUAD) is the most common type of lung

cancer, and its pathogenesis remains not fully elucidated. Inflammation and

metabolic dysregulation are considered to play crucial roles in LUAD

development, but their causal relationships and specific mechanisms

remain unclear.

Methods: This study employed a two-sample Mendelian randomization (MR)

approach to systematically evaluate the causal associations between 91

circulating inflammatory factors, 1,400 serum metabolites, and LUAD. We

utilized LUAD genome-wide association studies (GWAS) data from the FinnGen

biobank and GWAS data of metabolites and inflammatory factors from the GWAS

catalog to conduct two-sample MR analyses. For the identified key metabolites,

we further used mediator MR to investigate their mediating effects in the

influence of IL-17A on LUAD and explored potential mechanisms through

protein-protein interaction and functional enrichment analyses.

Results: The MR analyses revealed that IL-17A (OR 0.78, 95%CI 0.62-0.99) was

negatively associated with LUAD, while 71 metabolites were significantly

associated with LUAD. Among them, ferulic acid 4-sulfate may play a crucial

mediating role in the suppression of LUAD by IL-17A (OR 0.87, 95%CI 0.78-0.97).

IL-17A may exert its anti-LUAD effects through extensive interactions with genes

related to ferulic acid 4-sulfate metabolism (such as SULT1A1, CYP1A1, etc.),

inhibiting oxidative stress and inflammatory responses, as well as downstream

tumor-related pathways of ferulic acid 4-sulfate (such as MAPK, NF-kB, etc.).

Conclusion: This study discovered causal associations between IL-17A, multiple

serummetabolites, and LUAD occurrence, revealing the key role of inflammatory

and metabolic dysregulation in LUAD pathogenesis. Our findings provide new
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evidence-based medical support for specific inflammatory factors and

metabolites as early predictive and risk assessment biomarkers for LUAD,

offering important clues for subsequent mechanistic studies and precision

medicine applications.
KEYWORDS

lung adenocarcinoma, inflammatory factors, blood metabolites, causal inference,
mediation analysis, mendelian randomization
1 Introduction

Lung cancer remains the leading cause of cancer-related

mortality worldwide. According to the latest global cancer

statistics, there were 2.2 million new lung cancer cases and 1.8

million deaths in 2020 (1). Traditionally, lung cancer is divided into

two main types: small cell lung cancer (SCLC) and non-small cell

lung cancer (NSCLC). NSCLC accounts for approximately 85% of

all lung cancers and mainly comprises two major subtypes: lung

adenocarcinoma (LUAD) and lung squamous cell carcinoma

(LUSC), with LUAD representing about 70% of NSCLC (2, 3).

Although smoking is one of the primary risk factors for LUAD, the

incidence of LUAD in non-smokers has been increasing in recent

years (4), suggesting that there may be other important etiological

factors and mechanisms beyond smoking that remain to

be elucidated.

Inflammation has emerged as a critical hallmark of cancer,

contributing to various stages of tumorigenesis, including initiation,

promotion, malignant conversion, invasion, and metastasis.

Chronic inflammation can create a tumor-promoting

microenvironment by inducing angiogenesis, suppressing adaptive

immunity, and promoting tumor cell survival and proliferation (5,

6). Numerous epidemiological studies have demonstrated that

chronic inflammatory conditions, such as chronic obstructive

pulmonary disease (COPD) and pulmonary fibrosis, are

associated with an increased risk of lung cancer, particularly

LUAD (7, 8). Moreover, elevated levels of circulating

inflammatory markers, such as C-reactive protein (CRP),

interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-a), have
been linked to poor prognosis and increased mortality in LUAD

patients (9, 10). However, the causal role of specific inflammatory

factors in LUAD development remains to be established.

Metabolic reprogramming, another hallmark of cancer, is

characterized by altered energy metabolism and nutrient

utilization to support the rapid growth and proliferation of cancer

cells (11). The Warburg effect, a shift from oxidative

phosphorylation to aerobic glycolysis, is a well-recognized

metabolic phenotype in many cancer types, including LUAD (12,

13). In addition, cancer cells exhibit increased glutamine

metabolism and lipid synthesis to meet their heightened demands
02
for biosynthetic precursors and energy (14, 15). Interestingly, recent

studies have revealed that metabolic alterations can modulate

inflammatory responses and shape the tumor microenvironment

(16). For example, the accumulation of lactate, a byproduct of

aerobic glycolysis, can promote the polarization of tumor-

associated macrophages towards an immunosuppressive M2

phenotype (17). Conversely, inflammatory signaling pathways,

such as NF-kB and STAT3, can regulate the expression of

metabolic enzymes and transporters, thereby reprogramming

cellular metabolism (18, 19). Despite these intriguing findings, the

complex interplay between inflammation and metabolism in the

context of LUAD development remains poorly understood.

Mendelian randomization (MR) analysis has emerged as a

powerful tool to assess the causal effects of exposures on

outcomes by leveraging genetic variants as instrumental variables

(20). By utilizing genetic variants that are randomly allocated at

conception and not influenced by confounding factors or reverse

causation, MR can provide more robust evidence for causal

inference compared to traditional observational studies (21). In

recent years, MR has been increasingly applied to investigate the

causal roles of circulating biomarkers, such as inflammatory factors

and metabolites, in various diseases, including cancer (22, 23).

However, to date, no comprehensive MR study has systematically

evaluated the causal effects of blood inflammatory factors and

metabolites on LUAD risk.

In this study, we aim to conduct a two-sample MR analysis to

systematically assess the causal relationships between blood

inflammatory factors, metabolites, and LUAD risk using

summary-level data from large-scale genome-wide association

studies (GWAS). Importantly, we will employ a mediation MR

design to investigate the potential mediating role of metabolites in

the causal pathway from inflammatory factors to LUAD

development. By integrating genetic, transcriptomic, and

metabolomic data, we seek to unravel the complex molecular

mechanisms underlying the inflammation-metabolism-LUAD axis

and identify novel targets and strategies for the prevention, early

detection, and treatment of LUAD. Our findings may provide new

insights into the etiology of LUAD and contribute to the

development of precision medicine approaches for this

devastating disease.
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2 Methods

2.1 Data sources

This study utilized three main data sources. First, we extracted

data on 1,590 lung adenocarcinoma (LUAD) cases and 314,193

controls from the Finnish FinnGen biobank database (https://

finngen.gitbook.io/documentation/data-download), with the

dataset identifier C3_NSCLC_ADENO_EXALLC. Second, we

leveraged GWAS results for 1,400 metabolites from the GWAS

Cata log database (ht tps : / /www.ebi .ac .uk/gwas/) ( ID:

GCST90199621 to GCST90201020) (24). Finally, we incorporated

GWAS data for 91 circulating inflammatory factors from the

Protein Research Department of Public Health and Primary Care

at the University of Cambridge (https://www.phpc.cam.ac.uk/ceu/

prote ins and GWAS Cata log ID: GCST90274758 to

GCST90274848) (25). Besides, the study participants in these

three databases were all of European ancestry.
2.2 Selection of instrumental variables

MR is a powerful genetic epidemiology method that uses genetic

variants as instrumental variables to infer causal relationships

between exposures and outcomes. This approach leverages the

random assortment of alleles during meiosis to mimic a

randomized controlled trial, thereby minimizing confounding and

reverse causation issues often encountered in observational studies.

To assess the causal relationships between blood metabolites,

inflammatory factors, and LUAD, we employed a two-sample MR

analysis approach. Two-sample MR allows us to use summary-level

data from large-scale GWAS, increasing statistical power and

enabling the investigation of multiple exposures simultaneously.

MR analysis relies on three key assumptions: (1) the selected

instrumental variables (genetic variants) must be strongly

associated with blood metabolites or inflammatory factors; (2) the

genetic variants must be independent of any potential confounders;

and (3) the genetic variants must affect LUAD only through blood

metabolites or inflammatory factors, and not through any other

direct causal pathways (26). If assumption (1) is not met, MR

analysis cannot be performed; if assumptions (2) and/or (3) are

violated, it may lead to false-positive results.

To identify strong instrumental variables that satisfy assumption

(1), we conducted an association analysis using summary data from

GWAS. Considering that the number of single nucleotide

polymorphisms (SNPs) obtained at a P-value threshold of 5×10-8

might be limited and insufficient to support further research, we

relaxed the threshold to a P-value less than 1×10-5. Moreover, to

ensure the independence of the selected instrumental variables, we

performed linkage disequilibrium (LD) pruning on the variant loci

using PLINK software, with a physical distance threshold of 10,000

kb and an R2 threshold of 0.001. By applying these stringent selection

criteria, we ultimately obtained a set of strong instrumental variables

that were closely associated with blood metabolites or inflammatory

factors and were independent of each other, thereby minimizing the

possibility of violating MR assumptions (2) and (3).
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To further ensure the validity of the instrumental variables, we

employed the F-statistic to assess their strength and excluded SNPs

with an F-value less than 10. The F-statistic is calculated using the

following formula: F = R2 × (N-2)/(1-R2), where R2 represents the

proportion of variance in the exposure variable explained by the

SNP, and N represents the sample size of the exposure data. The R2

value is calculated as: R2 = 2 × (1-MAF) × MAF × b2, where MAF is

the minor allele frequency, and b is the effect size of the SNP on the

exposure variable. By implementing these filtering criteria, we

aimed to select informative and reliable instrumental variables for

the MR analysis.

Furthermore, to explore the potential role of blood metabolites

and inflammatory factors in the pathogenesis of LUAD, we also

performed mediator MR analysis. Mediator MR analysis can help us

assess the role of a mediating factor in the causal pathway between

an exposure factor and an outcome. By comprehensively employing

both two-sample MR and mediator MR methods, we can gain a

more comprehensive understanding of the causal relationships

between blood metabolites, inflammatory factors, and LUAD, as

well as their potential mechanisms.
2.3 Statistical analysis

In this study, we employed multiple MR methods to

comprehensively assess the causal relationships between blood

inflammatory factors, metabolites, and LUAD, including Inverse-

Variance Weighted (IVW), MR-Egger regression, Weighted

Median (WM), Simple Mode, and Weighted Mode methods.

Considering the robustness of the IVW method in causal

inference (27), we selected it as the primary method for

estimating causal effects.

To evaluate the robustness of the MR results, we performed

several sensitivity analyses. First, we used the leave-one-out cross-

validation method to assess the influence of individual SNPs on the

overall causal effect estimates. Second, we employed MR-PRESSO

(Pleiotropy Residual Sum and Outlier) and MR-TRYX (Treasure

your exceptions) methods to detect and correct for pleiotropy bias.

Additionally, we used Cochran’s Q test to assess the heterogeneity

of causal effect estimates and the intercept term of MR-Egger

regression to test for the presence of directional pleiotropy bias (28).

To further investigate the causal relationships between blood

inflammatory factors, metabolites, and LUAD, we employed a two-

step MR analysis to evaluate the mediating role of metabolites in the

causal relationship between inflammatory factors and LUAD. In the

first step, we conducted a two-sample MR analysis to estimate the

total causal effect (a) of inflammatory factors on LUAD. We

primarily used the IVW method and performed sensitivity

analyses using MR-Egger regression and WM methods.

In the second step, we performed two separate two-sample MR

analyses. First, we assessed the causal relationship between

inflammatory factors and metabolites, obtaining the causal effect

estimate b1. Then, we assessed the causal relationship between

metabolites and LUAD, obtaining the causal effect estimate b2. In
both analyses, we again used the IVW method as the primary

method and MR-Egger regression and WM methods for sensitivity
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analyses. It is worth noting that when assessing the causal

relationship between metabolites and LUAD, we needed to

exclude genetic variants associated with inflammatory factors to

avoid violating the key assumptions of MR. This can be achieved by

conducting conditional analyses on inflammatory factors and

metabolites, i.e., including inflammatory factors as covariates in

the model when assessing the causal relationship between

metabolites and LUAD.

Finally, we calculated the indirect causal effect estimate b3 as the
product of b1 and b2. We then divided b3 by the total causal effect
estimate a to obtain the proportion of the mediating effect. To

assess the significance of the mediating effect, we used the Bootstrap

method to calculate the confidence intervals and p-values for the

indirect effect.

All MR analyses were performed using the R language (version

4.4.1) and related R packages such as “TwoSampleMR”

and “MRInstruments.”
3 Results

All MR analysis process are shown in Figure 1.
3.1 Assessment of the causal relationship
between circulating inflammatory factors
and LUAD

We used a two-sample MR approach to evaluate the causal

relationship between 91 circulating inflammatory factors and

LUAD. Preliminary results (Figure 2) showed that among all the

analyzed inflammatory factors, only Interleukin-17A (IL-17A) had

a statistically significant difference and was further identified as a

protective factor for LUAD based on the OR value (OR 95% CI =

0.7824 (0.6169−0.9923), p = 0.0430). This result suggests that an

increase in IL-17A levels may have a causal relationship with a

reduced risk of LUAD (b = -0.2454). However, no significant causal
Frontiers in Endocrinology 04
relationships were observed between other inflammatory factors

and LUAD.

To assess the robustness of the results, we performed multiple

sensitivity analyses (Supplementary Material S1). MR-Egger

regression and WM methods yielded results consistent with the

IVW method, further supporting the protective causal relationship

between IL-17A and LUAD. Moreover, Cochran’s Q test did not

detect significant heterogeneity (p > 0.05), and MR-PRESSO and

MR-TRYX analyses did not identify substantial pleiotropy bias.

To investigate whether LUAD conversely affects circulating

inflammatory factor levels, we performed a reverse MR analysis.

The results showed that LUAD had no significant causal effect on

any of the 91 circulating inflammatory factors. This finding

excludes the possibility that LUAD itself leads to changes in IL-

17A levels, further supporting the unidirectional causal effect of IL-

17A on LUAD.
3.2 Assessment of the causal relationship
between metabolites and LUAD

We used a two-sample MR approach to evaluate the causal

relationship between various metabolites and LUAD. Based on the

consistency of different MR methods, we classified the results into

three evidence levels: meeting inclusion criteria (only the IVW

method showed statistical significance), strong evidence (2-3

methods showed statistical significance), and very strong evidence

(≥4 methods showed statistical significance).

Among the metabolites meeting the inclusion criteria

(Figure 3), we found that several metabolites may be associated

with a reduced risk of LUAD, including Xanthurenate (OR 0.82,

95% CI 0.68-0.98), Glucuronate (OR 0.77, 95% CI 0.60-1.00), and 3-

indoxyl sulfate (OR 0.79, 95% CI 0.64-0.98). Simultaneously, some

metabolites such as 1-oleoylglycerol (18:1) (OR 1.18, 95% CI 1.01-

1.38), Pyridoxate (OR 1.26, 95% CI 1.04-1.53), and 5-dodecenoate

(12:1n7) (OR 1.49, 95% CI 1.13-1.96) may be associated with an

increased risk of LUAD.
FIGURE 1

MR Analysis Process Flowchart.
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Among the metabolites with strong evidence (Figure 4), 5-

hydroxylysine (OR 1.20, 95% CI 1.03-1.38), Linolenate [alpha or

gamma; (18:3n3 or 6)] (OR 1.34, 95% CI 1.07-1.68), and

Pregnenetriol sulfate (OR 1.18, 95% CI 1.04-1.34) were associated with

an increased risk of LUAD, while Homoarginine (OR 0.83, 95% CI 0.73-

0.94), Tryptophan betaine (OR 0.84, 95% CI 0.73-0.96), and Furaneol

sulfate (OR 0.78, 95% CI 0.64-0.94) may have a protective effect.
Frontiers in Endocrinology 05
Metabolites with very strong evidence (Figure 5) included 1-

linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) (OR 1.21, 95% CI

1.06-1.38), Pregnenetriol disulfate (OR 1.13, 95% CI 1.04-1.23),

X-13729 (OR 0.75, 95% CI 0.63-0.90), and Caffeine to paraxanthine

ratio (OR 1.43, 95% CI 1.23-1.67), suggesting that the causal

relationships between these metabolites and LUAD are

more reliable.
FIGURE 3

Forest plot of MR analysis for metabolites meeting inclusion criteria and LUAD risk.
FIGURE 2

Forest map of MR results of IL-7A and LUAD.
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Additionally, we found associations between some metabolite

ratios and LUAD risk. An increased Spermidine to histidine ratio

(OR 1.30, 95% CI 1.05-1.61) and a decreased Bilirubin (Z,Z) to

taurocholate ratio (OR 0.79, 95% CI 0.65-0.95) were associated with

an increased risk of LUAD, while a decreased Cytidine to N-

acetylglucosamine to N-acetylgalactosamine ratio (OR 0.73, 95%

CI 0.60-0.89) and a decreased Alanine to asparagine ratio (OR 0.85,

95% CI 0.75-0.97) may have a protective effect. The leave-one-out,

heterogeneity, and pleiotropy analyses for each metabolite and

LUAD are presented in Supplementary Material S2.
3.3 Assessment of the causal relationship
between circulating inflammatory factors
and metabolites

To explore the potential mediating role of metabolites between

inflammatory factors and LUAD, we further evaluated the causal

relationship between IL-17A (the protective inflammatory factor for

LUAD identified in the previous section) and related metabolites.

We used a two-sample MR approach, with IL-17A as the exposure

and metabolites as the outcome, to test the causal relationship

between the two.

The results from the IVW method (Figure 6) showed a

significant negative causal relationship between IL-17A and

Ferulic acid 4-sulfate levels (OR 0.87, 95% CI 0.78-0.97, p =

0.0137), suggesting that an increase in IL-17A levels may lead to

a decrease in Ferulic acid 4-sulfate levels (b1 = - 0.1394).
Frontiers in Endocrinology 06
Considering the previous results showing a positive correlation

between Ferulic acid 4-sulfate levels and LUAD risk (OR 1.08, 95%

CI 1.01-1.15, p = 0.0173), this finding suggests that Ferulic acid 4-

sulfate may play a mediating role in the protective effect of IL-17A

on LUAD. In other words, IL-17A may reduce the risk of LUAD by

lowering Ferulic acid 4-sulfate levels. For other analysis results, such

as heterogeneity, pleiotropy and sensitivity analysis, the

Supplementary Material S3 files showed the details.

However, we did not find significant causal relationships

between IL-17A and other metabolites (p > 0.05). Moreover, for

other circulating inflammatory factors, we did not observe

significant causal relationships between them and metabolites.

This suggests that metabolites may only play an important

mediating role in the pathway of IL-17A, while their role in the

pathogenic mechanisms of other inflammatory factors in LUAD

is limited.
3.4 Functional inference of IL-17A on
Ferulic acid 4-sulfate-related gene
metabolic networks

The previous MR analysis results suggest that IL-17A may

inhibit the occurrence and development of LUAD by reducing

Ferulic acid 4-sulfate levels. To further explore the underlying

molecular mechanisms, we used the GeneCards database (https://

www.genecards.org/) to query the genes related to Ferulic acid 4-

sulfate and constructed a protein-protein interaction (PPI) network
FIGURE 5

Forest plot of MR analysis for metabolites with very strong evidence and LUAD risk.
FIGURE 4

Forest plot of MR analysis for metabolites with strong evidence and LUAD risk.
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with the IL-17A gene (Figure 7A). The results showed that the genes

related to Ferulic acid 4-sulfate have extensive interactions with IL-

17A within the cell, suggesting that IL-17A may regulate the

expression or activity of these genes, thereby reducing Ferulic

acid 4-sulfate levels.

To reveal the functional enrichment of Ferulic acid 4-sulfate-

related genes regulated by IL-17A, we performed Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses on the genes in the PPI network.

The results of the GO analysis (Figure 7B) showed that these

genes were mainly enriched in biological processes such as

response to oxidative stress, response to xenobiotic stimulus,

and response to estradiol, as well as cellular components such
Frontiers in Endocrinology 07
as extracellular matrix and adherens junction. This suggests that

IL-17A may inhibit the occurrence and development of LUAD by

suppressing the oxidative stress and inflammatory responses

involving Ferulic acid 4-sulfate-related genes and by affecting

the extracellular matrix and cell junctions, thereby reshaping the

tumor microenvironment.

The results of the KEGG pathway enrichment analysis

(Figure 7C) showed that Ferulic acid 4-sulfate-related genes were

mainly enriched in pathways such as Rap1 signaling pathway, Fluid

shear stress and atherosclerosis, Estrogen signaling pathway, and

Relaxin signaling pathway. This suggests that IL-17A may exert its

anti-LUAD effect by inhibiting these signaling pathways, thereby

reducing Ferulic acid 4-sulfate levels.
FIGURE 7

Regulatory network and functional enrichment analysis of IL-17A on Ferulic acid 4-sulfate-related genes. (A) PPI network of IL-17A and Ferulic acid
4-sulfate-related genes. (B) GO functional enrichment bubble plot of Ferulic acid 4-sulfate-related genes. (C) KEGG pathway enrichment bar plot of
Ferulic acid 4-sulfate-related genes.
FIGURE 6

Forest plot of MR analysis for the causal effect of IL-17A on metabolites.
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4 Discussion

This study comprehensively evaluated the causal relationships

among circulating inflammatory factors, serum metabolites, and

lung adenocarcinoma (LUAD) using Mendelian randomization

(MR) analysis. Among 91 circulating inflammatory factors and

1,400 serum metabolites, we identified one inflammatory factor (IL-

17A) and 71 serum metabolites that exhibited potential causal

associations with LUAD. Specifically, we first employed a two-

sample MR approach to assess the causal relationship between

circulating inflammatory factors and LUAD. The results revealed

that IL-17A was inversely associated with LUAD risk (OR 0.78, 95%

CI 0.62-0.99), suggesting a protective role of IL-17A in LUAD

pathogenesis. Subsequently, we applied the same method to

evaluate the causal relationship between serum metabolites and

LUAD. Based on the consistency of results from different MR

methods, we classified the metabolites into three evidence levels.

Among the metabolites meeting the inclusion criteria, several

metabolites such as xanthurenate, glucuronate, and 3-indoxyl

sulfate were found to be potentially associated with a reduced risk

of LUAD, while 1-oleoylglycerol (18:1), pyridoxate, and 5-

dodecenoate (12:1n7) were potentially associated with an

increased risk of LUAD. In metabolites with higher evidence

levels, we further identified multiple metabolites associated with

an increased (e.g., 5-hydroxylysine and linolenate) or decreased

(e.g., homoarginine and tryptophan betaine) risk of LUAD.

Additionally, changes in the ratios of certain metabolites were

also related to LUAD risk. To explore the potential mechanisms

underlying the anti-LUAD effects of IL-17A, we further assessed the

causal relationship between IL-17A and metabolites using the

mediation Mendelian randomization approach. The results

showed that IL-17A significantly reduced the levels of ferulic acid

4-sulfate (OR 0.87, 95% CI 0.78-0.97), which was positively

correlated with LUAD risk. This finding suggests that ferulic acid

4-sulfate may play a crucial mediating role in the suppression of

LUAD by IL-17A. Subsequent protein-protein interaction network

and functional enrichment analyses further revealed that IL-17A

might exert its anti-LUAD effects by inhibiting oxidative stress,

inflammatory responses, and tumor-related signaling pathways

involving ferulic acid 4-sulfate-related genes.

Among the 91 circulating inflammatory factors analyzed, only

IL-17A exhibited a significant negative correlation with LUAD,

while no significant causal associations were found between other

inflammatory factors and LUAD. This result suggests that the

protective effect of IL-17A on LUAD may be specific and

independent of changes in other inflammatory factors. Moreover,

previous studies on the relationship between IL-17A and lung

cancer have yielded contradictory results. Some studies have

reported the overexpression of IL-17A in lung cancer tissues and

its promotion of lung cancer progression and metastasis (29, 30).

However, other studies have reported that IL-17A can inhibit lung

cancer growth and angiogenesis (31, 32). These discrepancies may

be attributed to factors such as study design, sample size, and tumor

heterogeneity. Unlike previous studies, we utilized the MR analysis

approach based on genome-wide association study data to evaluate

the causal relationship between IL-17A and LUAD at the
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population level, avoiding the influence of potential confounding

factors and reverse causality. In comparison, our results provide

more reliable evidence supporting the protective role of IL-17A

against LUAD. This finding not only highlights the unique role of

IL-17A in LUAD pathogenesis but also provides a solid theoretical

basis for targeting IL-17A as a specific target for LUAD prevention

and treatment.

In recent years, metabolomics research has been widely applied

in the field of lung cancer, with numerous studies revealing that

metabolite profiles in serum, urine, and tissue samples are closely

associated with the occurrence, progression, and prognosis of lung

cancer (33–35). However, due to the case-control design employed

in most previous studies, it is challenging to distinguish whether

metabolite changes are the cause or consequence of lung cancer.

Furthermore, factors such as small sample sizes and differences in

metabolomics platforms have limited the reproducibility and

generalizability of previous research findings.

In contrast to existing studies, the present study employed a

two-sample Mendelian randomization (MR) approach to

systematically evaluate the causal relationship between 1,400

serum metabolites and lung adenocarcinoma (LUAD). The results

demonstrated that changes in the levels of multiple metabolites

were significantly associated with LUAD risk. Among the

metabolites with strong and very strong evidence levels, various

categories were identified, including amino acids and their

derivatives, lipids, nucleotides, and organic acids, involving

multiple metabolic pathways. In terms of amino acid metabolism,

we discovered that several amino acid derivatives, such as 5-

hydroxylysine, homoarginine, tryptophan betaine, and N,N-

dimethylalanine, were significantly associated with LUAD risk

(36). Notably, 5-hydroxylysine is a derivative of hydroxylysine

and is involved in collagen synthesis and cross-linking (37), while

homoarginine is a homolog of arginine and has a regulatory effect

on nitric oxide synthase activity (38). These findings suggest that

amino acid metabolic disturbances may contribute to the

occurrence and development of LUAD through multiple

processes, such as post-translational protein modifications and

cell signaling transduction. Regarding lipid metabolism, we found

that several lipid metabolites, including linolenate, 1-linoleoyl-2-

arachidonoyl-GPC (18:2/20:4n6), and sphingomyelin (d18:1/25:0,

d19:0/24:1, d20:1/23:0, d19:1/24:0), were significantly associated

with LUAD risk (39–41). Linolenate is an w-3 polyunsaturated

fatty acid with various biological activities, such as anti-

inflammatory and anti-tumor effects (40), while sphingomyelin is

an essential membrane lipid involved in multiple biological

processes, including cell apoptosis and proliferation (42). These

results suggest that lipid metabolic dysregulation may play a crucial

role in the pathological process of LUAD by influencing the

composition and function of cell membranes and the activity of

related signaling pathways. In terms of nucleotide metabolism, we

discovered that pregnenolone steroid metabolites, such as

pregnenetriol disulfate and pregnenetriol sulfate, were

significantly associated with LUAD risk (43). These metabolites

are precursors or metabolic products of steroid hormones,

indicating that alterations in steroid hormone metabolism may be

closely related to the occurrence and development of LUAD.
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Additionally, we found that several sulfur-containing metabolites,

such as ferulic acid 4-sulfate and 3-methyl catechol sulfate, were

significantly associated with LUAD risk, revealing the important

role of phase II metabolic reactions, such as sulfation, in the

metabolomic changes associated with LUAD (44, 45).

Apart from changes in individual metabolite levels, we also

discovered that alterations in multiple metabolite ratios were

significantly associated with LUAD risk. For instance, elevated

ratios of spermidine/histidine, alpha-ketoglutarate/trans-4-

hydroxyproline, and serine/threonine were significantly associated

with an increased risk of LUAD (46–49), while elevated ratios of

adenosine 5’-diphosphate (ADP)/mannose, phosphate/asparagine,

and bilirubin (Z,Z)/taurocholate were significantly associated with a

decreased risk of LUAD (50–52). These findings suggest that the

relative balance between metabolites may play a critical regulatory

role in the occurrence and development of LUAD, and changes in

metabolite ratios may reflect disturbances in specific

metabolic pathways.

Further mediator analysis suggested that IL-17A may indirectly

suppress the occurrence of LUAD by reducing the levels of ferulic

acid 4-sulfate. This finding not only reveals the protective role of IL-

17A in LUAD pathogenesis but also indicates that ferulic acid 4-

sulfate may be an important downstream metabolite through which

IL-17A exerts its anti-tumor effects. Subsequent bioinformatics

analysis revealed extensive protein-protein interactions and co-

expression relationships between IL-17A and ferulic acid 4-sulfate

metabolism-related genes, such as SULT1A1 and CYP1A1.

Furthermore, ferulic acid 4-sulfate metabolism-related genes were

significantly enriched in key biological processes involved in tumor

occurrence and development, such as oxidative stress and

inflammatory responses. Among these genes, SULT1A1, CYP1A1,

and others encode enzymes involved in the metabolism of

endogenous and exogenous compounds, and their increased

activity can lead to DNA damage, cell apoptosis, and other pro-

tumorigenic effects. As an important anti-inflammatory factor, IL-

17A may exert its anti-tumor effects by inhibiting the expression of

these genes, thereby reducing the levels of oxidative stress and

inflammatory responses in the body. This hypothesis is consistent

with previous research findings on the role of IL-17A in tumor

immunity (53), but its specific molecular mechanisms still require

further experimental validation. In addition to directly regulating

ferulic acid 4-sulfate metabolism-related genes, IL-17A may also

exert anti-LUAD effects by inhibiting downstream signaling

pathways of ferulic acid 4-sulfate. Previous studies have shown

that ferulic acid and its derivatives can promote tumor cell

proliferation, invasion, and metastasis by activating signaling

pathways such as MAPK and NF-kB (54), while IL-17A can

inhibit the activity of these tumor-related signaling pathways (53).

Therefore, IL-17A may ultimately exert its anti-LUAD effects by

reducing the levels of ferulic acid 4-sulfate and subsequently

inhibiting its downstream pro-tumorigenic signaling pathways.

This hypothesis needs to be confirmed through cellular and

animal experiments in future studies.

Although MR analysis can effectively assess the causal

relationship between metabolites and LUAD, there are still

some limitations and potential biases. First, the effectiveness of
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MR analysis depends on the rationality of the selected

instrumental variables (55). Although we used multiple

independent GWAS datasets and conducted comprehensive

sensitivity analyses, we cannot completely exclude the potential

horizontal pleiotropy and weak instrument bias between genetic

instrumental variables and LUAD. Second, MR analysis has

difficulty exploring the nonlinear relationships and dynamic

changes between metabolites and LUAD. Moreover, our study

mainly focused on serum metabolites, while metabolite changes in

other tissues and cell types and their relationship with LUAD

remain to be further explored. Additionally, the metabolomics

data used in this study were derived from European populations,

with a relatively small sample size in the experimental group

compared to the control group, and the coverage of the metabolite

spectrum was limited. This may have affected our ability to

identify new metabolite biomarkers for LUAD. Furthermore,

differences between metabolomics platforms may also impact

the reproducibility and generalizability of the results. Future

studies need to conduct cross-validation using multiple

metabolomics platforms in larger sample sizes and different

populations to obtain more robust and comprehensive results.

Integrating metabolomics with other omics data (such as

proteomics and transcriptomics) and constructing multi-omics

integration models will also help better understand the role of

metabolite changes in the pathogenesis of LUAD. Finally, it is

worth noting that although we preliminarily explored the

molecular mechanisms of the interaction between IL-17A and

ferulic acid 4-sulfate through bioinformatics analysis, these results

are mainly based on published literature and database

information and still require experimental validation in cellular

and animal models. Future studies can use techniques such as

gene editing and RNA interference to manipulate the expression

of IL-17A and ferulic acid 4-sulfate-related genes in LUAD cell

lines and mouse models, observe their effects on tumor

occurrence and development, and explore the specific molecular

mechanisms of their interaction. Integrating multi-omics data

and constructing the regulatory network of IL-17A and ferulic

acid 4-sulfate in LUAD will help to more comprehensively

understand their functions and mechanisms of action.
5 Conclusion

In summary, this study employed two-sample MR and

bioinformatics analysis to systematically evaluate the causal

relationship between inflammatory factors, serum metabolites and

LUAD, revealing that inflammatory and metabolic disorders play a

key role in LUAD pathogenesis. The study also identified the

important roles of IL-17A and ferulic acid 4-sulfate and their

interaction in the occurrence and development of LUAD, as well

as several previously rarely reported LUAD-related metabolites and

metabolic pathways. Our research findings provide new evidence-

based medical evidence for the application of specific metabolites as

early prediction and risk assessment biomarkers for LUAD, and

offer important clues for subsequent mechanistic studies, drug

development, and precision medicine applications.
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Future research can build upon these findings to further explore

the molecular mechanisms of the relevant metabolites in LUAD

occurrence and development, develop early diagnosis and risk

prediction strategies for lung cancer based on inflammatory and

metabolomic interactions, and integrate them with proteomics,

transcriptomics, and other multi-omics data to construct

molecular network regulatory models for LUAD. This will help to

more comprehensively understand the molecular pathological

processes of LUAD and promote the application of precision

medicine in the field of lung cancer prevention and treatment.

Additionally, the relationship between IL-17A and ferulic acid 4-

sulfate levels and LUAD risk can be evaluated to develop lung

cancer risk prediction models and targeted intervention strategies

based on these two factors. By comprehensively utilizing these

strategies, it is hoped that the prevention, diagnosis, and

treatment of lung cancer can be significantly improved, bringing

more benefits to lung cancer patients.
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