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Aims: The objective of this study was to investigate the associations of dietary

and circulating antioxidant vitamins with metabolic syndrome (MetS), and to

assess causality using Mendelian randomization (MR).

Methods: This study included 10,308 participants from the National Health and

Nutrition Examination Survey. The associations of vitamins A, C, E and

carotenoids with MetS were assessed using multivariable weighted logistic

regression analysis. Subsequently, the MR approach was employed to test the

causal associations, with inverse variance weighted (IVW) serving as the

primary analysis.

Results: Observationally, dietary vitamin A (OR=0.852, 95%CI: 0.727-0.999), C

(OR=0.802, 95%CI: 0.675-0.952), carotene (OR=0.832, 95%CI: 0.706-0.982),

and b-carotene (OR=0.838, 95%CI: 0.706-0.995) in quartile 4 had lower

incidents of MetS, when compared to quartile 1. Circulating vitamin C and

carotene were also present inversely associated with MetS, while the vitamin A

and E both increased this risk. IVW-MR confirmed the associations of dietary

vitamin A (OR=0.920, 95%CI: 0.861-0.984), vitamin C (OR=0.905, 95%CI: 0.836-

0.979) and carotene (OR=0.918, 95%CI: 0.865-0.974) with MetS. However, there

was only circulating b-carotene (OR=0.909, 95%CI: 0.857-0.965) was found to

be causally associated with MetS.

Conclusions: Observational and MR studies have shown that adequate dietary

intake of vitamin A, C and carotenoids may help to reduce the risk of MetS.
KEYWORDS

antioxidant vitamins, metabolic syndrome, obesity, hypertension, NHANES,
Mendelian randomization
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1 Introduction

Metabolic syndrome (MetS) is a group of metabolic

abnormalities characterized by high blood glucose, abnormal

blood lipids, high blood pressure, and abdominal obesity (1). The

global prevalence of MetS ranges from 12.5% to 31.4%, with higher

prevalence in the Eastern Mediterranean region and the Americas,

and it increases with increasing national income levels (2). From

1999 to 2018, cardiovascular and metabolic indicators (blood

glucose, lipids, blood pressure, and adiposity) continued to

deteriorate in the United States, and the prevalence of MetS

increased from 28.23% to 45.9% (3–5). Due to the complex state

of metabolic dysregulation, MetS is an important risk factor for

cardiovascular disease, diabetes, stroke, and death (6–9). MetS

impose a heavy health economic burden on global public health

systems, requiring urgent intervention.

Antioxidant vitamins are a class of vitamins with antioxidant

properties, mainly including vitamin A, vitamin C, vitamin E and

carotenoids, which can reduce the damage caused to cells by

oxidative stress by scavenging oxygen free radicals. A study have

shown that a prudent dietary pattern in adolescence, comprising

fruits and vegetables, cereals, and legumes, has been associated

with a significantly reduced risk of MetS in middle age, in

comparison to a Western dietary pattern focused on meat,

refined grains, processed, and fried foods (10). Fruits and

vegetables in a prudent dietary pattern are rich in antioxidant

vitamins, which may play an important role in reducing the

incidence of MetS (11). However, the association between

antioxidant vitamins and MetS is currently controversial. Some

studies have suggested that taking antioxidant vitamins may

reduce the risk of MetS (12, 13), while others have found

no association (14). Some studies have found that people with

MetS have significantly lower blood levels of antioxidant vitamins

than healthy people (15, 16), while others have found the

opposite (17, 18). In addition, due to the body’s metabolism of

nutrients, serum antioxidant vitamins do not directly represent

dietary intake. Whether they are consistent with metabolic

syndrome remains unknown. Therefore, it is necessity to study

the dietary and serum antioxidant vitamins separately in relation

to metabolic syndrome.

Observational studies may be subject to confounding and

reverse causality due to non-randomization, which limits the

extrapolation and application of research findings. Mendelian

randomization (MR) is a method of causal inference based on

Mendelian segregation and the principle that alleles are randomly

assigned in the process of gamete formation, using genetic variation

as an instrumental variable (19). Because genetic variation is

associated with outcomes in a causal temporal order and is

unaffected by common confounders such as postnatal

environment and social factors, MR can accurately infer the

causal relationship between exposure and outcome (20). Li et al.

(21) analyzed the relationship between antioxidant vitamins and

MetS using MR, but less association was found. Therefore, this

study aims to analyse the relationship between dietary and
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circulating antioxidant vitamins and MetS using an observational

study and MR analysis.
2 Materials and methods

2.1 Overall study design and data sources

The present study was conducted in two stages, as illustrated in

Figure 1. In stage 1, using data deposited in the National Health and

Nutrition Examination Survey (NHANES) database, we performed

multivariable regression analysis to determine the observational

association of dietary and serum antioxidant vitamins with MetS. In

stage 2, we employed a two-sample MR analysis of summary

statistics data from the genome-wide association study (GWAS)

to assess the causal effect of genetically determined dietary and

serum antioxidant vitamins on MetS.

The NHANES is a complex, multistage, nationally representative

survey of the civilian noninstitutionalized population in the USA,

conducted by the National Center for Health Statistics (NCHS). The

survey includes household interviews, physical examinations, and

laboratory tests. NHANES research protocols and data collection

procedures were approved by the NCHS Research Ethics Review

Board, and written informed consent was obtained from the

participants1. The additional ethical review was no longer required

for the present study due to the usage of publicly available data

without identifiable personal information. Participants in NHANES

were selected from 2001 to 2006 who were 20 years of age or older (n =

16,299). A total of 5,991 participants were excluded (Supplementary

Figure S1): (1) Without 24-h dietary recall or missing dietary

antioxidant vitamins (n=917); (2) Had no information of serum

antioxidant vitamins (n=1,285); (3) Unable to be diagnosed as MetS

or not (n=815); (3) Had no information of covariables (n = 2904).

The design of MR analysis needs to satisfy the following

assumptions (Supplementary Figure S2) (22): (1) The SNPs

employed as IVs are related to antioxidant vitamins; (2) IVs are not

associated with the confounders; (3) IVs affect the risk of MetS only by

antioxidant vitamins. The available summary GWAS data for MR

analysis were obtained from the IEU open GWAS project [https://

gwas.mrcieu.ac.uk/(accessed on 1 March 2024)], GWAS Catalog

[https://www.ebi.ac.uk/gwas/(accessed on 1 March 2024)], or

references. Further details on the GWAS datasets are provided in

Supplementary Table S1. The summary data on dietary antioxidant

vitamins were derived from the UK Biobank with 9,851,867

single-nucleotide polymorphisms (SNPs). The SNPs that were

significantly associated with the absolute circulating antioxidants

and circulating metabolite’s concentrations were obtained from

published literature (23–28). The most comprehensive GWAS

analysis was employed to obtain summary-level data for MetS,

which included 291,107 individuals (59,677 cases and 231,430

controls) (29). Genetic information on components of MetS was

also obtained, including fasting blood glucose (FBG), waistline,

hypertension, triglycerides, high-density lipoprotein cholesterol

(HDL-C) (30, 31).
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2.2 Measurement of antioxidant vitamins

The intake of antioxidant vitamins was quantified through

dietary interviews, including vitamin A, vitamin C, vitamin E,

carotene, a-carotene, and b-carotene. In NHANES, dietary data

were collected by 2-24 h dietary recalls (DRs), including the first day

(Day 1) and second day (Day 2) which were collected in via the

MEC and telephone, respectively. The in-person interview was

conducted in the MEC dietary interview room, with participants

reporting the amounts of foods consumed by means of a set of

measuring guides (various glasses, bowls, mugs, household spoons,

measuring cups and spoons, a ruler, thickness sticks, bean bags and

circles). Telephone dietary interviews were self-reported by

telephone, occurring 3 to 10 days after the MEC dietary

interview. In UK Biobank, dietary data were from on-line dietary

questionnaire, based on a 24-hour dietary recall of the previous day.

The serum levels of antioxidant vitamins were accessed using

isocratic high-performance liquid chromatography (HPLC) with

electrochemical detection. This consisted of vitamins A (retinol),

vitamin C (ascorbate), vitamin E (a-tocopherol) and carotenoids.

Sample collection, transformation, storage and analysis were

conducted in accordance with the laboratory procedure manual.
2.3 Definition of metabolic syndrome

MetS was defined based on the National Cholesterol Education

Program’s Adult Treatment Panel III (ATP III) as having 3 or more

of the following (32): 1) FBG ≥5.6 mmol/L (or 100 mg/dL) or drug

treatment for elevated blood glucose; 2) HDL-C <40mg/dL (or 1.0

mmol/L) in men or <50 mg/dL (or 1.3 mmol/L) in women or drug

treatment for low HDL; 3) triglyceride level >150 mg/dL (or 1.7

mmol/L) or drug treatment for elevated triglyceride; 4) waist

circumference >102 cm in men or >88 cm in women; 5) systolic

blood pressure ≥ 130 mmHg, diastolic blood pressure ≥85 mmHg

or taking hypertension medications.
2.4 Assessment of covariates

Information on demographic characteristics, lifestyle factors, and

health conditions was obtained in NHANES. Sociodemographic

characteristics consisted of age (20-40 years and 40-60 years),

gender (women and men), race (non-Hispanic white, non-Hispanic

black, Mexican American, other Hispanic and others), education (less

than high school, high school graduate, some college and college

graduate or above), marital status (married and others), poverty-

income ratio (PIR: <1, 1-1.8, ≥1.8), health insurance (uninsured and

any insurance). Lifestyle information was obtained from a series of

questionnaires, including smoking status (never, former, now),

drinking condition (yes and no), and physical activity (no,

moderate activity and vigorous activity). The health conditions

included in arteriosclerotic cardiovascular disease (ASCVD,

consisted of coronary heart disease, angina, heart attack and

stroke), chronic kidney disease (CKD), liver condition, thyroid

disease, and cancer. All of these disease conditions were self-
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reported by the subjects, except for CKD, which was diagnosed

according to KDIGO 2021 (33) (urine albumin to creatinine ratio

of 30 mg/g or higher, or estimated glomerular filtration rate less than

60mL/min/1.73m).
2.5 Statistical analysis

NHANES data were extracted and pre-processed by the

“nhanesR package” for the observational association of each

antioxidant vitamins wit MetS. Sample weights were calculated

according to NHANES tutorials for combining NHANES data from

three cycles. A survey-weighted algorithm was employed for

statistical analysis, considering complex sampling. The

distribution of social demographics, lifestyle, and health

conditions was expressed by numbers (unweighted) and

percentage (weighted). The dietary intake and serum level of

antioxidant vitamins were presented as the median and

interquartile range [M, (P25, P75)] due to a skewed distribution.

The difference between the groups was compared by Kruskal-

Wallis ’ test for continuous variables with non-normal

distribution, and c2 test for categorical variables. The correlation

between dietary antioxidants and serum levels was analyzed by

Spearman. Dietary and serum antioxidant vitamins were divided

into four groups according to quartile. A survey-weighted Logistics

regression model was employed to evaluate the odds ratio (OR) and

95% confidence interval (CI) for the relationship between each

antioxidant vitamins and MetS. Four statistical models were fitted,

with Model 1 not adjusting for any factors, Model 2 adjusting for

social demographic factors, Model 3 further adjusting for lifestyle

factors, and Model 4 additionally adjusting for the health

conditions. We performed tests for linear trend by entering the

median value of each quartile of antioxidant vitamins as a

continuous variable in the models. To investigate dose-response

association between each antioxidant vitamins and MetS, a

restricted cubic spline (RCS) regression model was fitted by

Logistics regression Logistics regression model with three knots

(10th, 50th, and 90th percentile). Tests for nonlinearity were

performed using the likelihood ratio test. The relationship

between antioxidant vitamins and components of MetS was

also analyzed.

Two-sample MR analyses were performed using the

“TwoSampleMR package” to investigate the causal analyses. In

order to satisfy the core assumption of tool variables, three steps

were carried out to filter IVs. Firstly, P < 5×10-6 was used as the

primary screening criterion to ensure sufficient SNPs associated

with exposure. Secondly, in order to ensure the independence of

IVs, SNPs with linkage disequilibrium (LD) (r2 < 0.001) were

eliminated based on European ancestry reference data from the

1000 Genomes Project. Thirdly, IVs that showed genome-wide

association with outcomes at a significance level of 5×10-8 were

excluded. Additionally, palindromic SNPs were excluded after

conducting harmonizing processes. F statistics were employed to

assess the strength of weak instrumental variables (F>10 indicating

the stronger instrument strength). Subsequently, the inverse

variance weighted (IVW) method was utilized as the primary
frontiersin.org
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statistical method in MR to ascertain the causal relationship

between antioxidant vitamins and MetS. Additionally, the MR

Egger, weighted median, simple mode, and weighted mode were

applied as sensitivity analyses. The MR-Egger method was

employed to assess heterogeneity and pleiotropy. If the P-values

of heterogeneity were greater than 0.05 without evidence of

heterogeneity, the fixed-effect IVW approach was considered;

conversely, the random effects IVW approach was utilized if there

was substantial heterogeneity (P < 0.05). The causal relationship

between antioxidant vitamins and components of MetS was also

analyzed. Additionally, in the casual association of dietary

antioxidant vitamins with MetS, multivariate MR analysis was

performed by adjustment for supplement antioxidant vitamins.

All statistical analyses were performed using R version 4.3.3

software. Statistical significance was determined by a two-sided P

value < 0.05. Because of multiple comparisons, the significance level

was corrected using the Bonferroni method. P value<0.008(0.05/6)

was considered a strong association, a P value between 0.008 and

0.05 was considered a potential association, and the P-values were

two-sided.
3 Results

3.1 NHANES general population study

A total of 10,308 adults from the US with data on exposure

(dietary and serum vitamins) and outcome (MetS) were eligible for

analysis during the study period. The main characteristics of these

participants are shown in Table 1. Of these participants, 2,613

(25.36%) met the diagnostic criteria for MetS. In comparison to the

healthy controls, individuals with MetS were more likely to be older,

have a lower education level and income, smoke, engage in no

physical activity, and to have a history of ASCVD, CKD, liver

condition, thyroid disease, and cancer. The dietary intake of

antioxidant vitamins (vitamin A, vitamin C, vitamin E, carotene,

a-carotene, and b-carotene) was significantly lower in the MetS

group than that of the control group (Supplementary Table S2).
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With regard to serum levels of antioxidant vitamins, the

distribution between the two groups was consistent with dietary

intake, with the exception of vitamins A and E, which exhibited

opposite results. (Supplementary Table S2).

Correlation analysis revealed that dietary vitamin C (r=0.347,

P<0.001), carotene (r=0.345, P<0.001), a-carotene (r=0.363,

P<0.001), and b-carotene (r=0.329, P<0.001) were moderately

correlated with serum levels, while vitamin A (r=0.161, P<0.001)

and vitamin E (r=0.078, P<0.001) exhibited relatively low

correlation with serum levels (Figure 2).
3.2 Associations between antioxidant
vitamins and metabolic syndrome
in NHANES

The results of the weighted logistic regression indicated that

dietary intake of vitamin A (OR=0.852, 95%CI: 0.727-0.999),

vitamin C(OR=0.802, 95%CI: 0.675-0.952), carotene(OR=0.832,

95%CI: 0.706-0.982), and b-carotene(OR=0.838, 95%CI: 0.706-
0.995) in quartile 4 had lower incidence of MetS compared to

quartile 1, after adjustment for demographic characteristics, lifestyle

factors, and health conditions (Figure 3A; Supplementary Table S3).

The intake of four antioxidant vitamins was found to be

significantly and inversely associated with lower risk of MetS (P

for trend=0.023, 0.006, 0.015, 0.024, respectively). Moreover, the

results of the restricted cubic spline (RCS) model indicated a dose-

response relationship between dietary vitamin A (P-

nonlinear=0.096), carotene (P-nonlinear=0.284), and b-carotene
(P-nonlinear=0.355) and MetS (Figure 4). Furthermore, the

relationship between dietary vitamin C and MetS was nonlinear

(P-nonlinear=0.007), exhibiting a rapid decrease and then a

gradual, stable in the risk of MetS as dietary vitamin A increase.

Nevertheless, there were no significant associations between

vitamin E and a-carotene intake with the risk of MetS across all

the quartile categories.

For each component of MetS, the association of dietary

antioxidant vitamins with HDL and obesity was mainly found
FIGURE 1

Overall study design based on observational analysis and Mendelian randomization.
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TABLE 1 Baseline characteristics of the participants in NHANES.

Characteristic Total (n=10308) Control (n=7695)
Metabolic syndrome
(n=2613)

P

Age (years) < 0.001

18-39 3330(32.31) 2901(42.47) 429(20.73)

40-59 3390(32.89) 2443(38.93) 947(47.14)

60-85 3588(34.81) 2351(18.60) 1237(32.12)

Sex 0.172

Female 4996(48.47) 3617(50.00) 1379(52.10)

Male 5312(51.53) 4078(50.00) 1234(47.90)

Race 0.051

Non-Hispanic white 5569(54.03) 4100(73.31) 1469(76.91)

Non-Hispanic black 1986(19.27) 1565(10.53) 421(8.07)

Mexican American 2057(19.96) 1488(7.32) 569(6.84)

Other Hispanic 340(3.30) 261(4.09) 79(4.18)

Other race 356(3.45) 281(4.75) 75(4.01)

Education < 0.001

Less than high school 2815(27.31) 1993(15.67) 822(20.09)

High school graduate 2521(24.46) 1802(24.45) 719(30.05)

Some college 2868(27.82) 2168(31.11) 700(31.49)

College graduate or above 2104(20.41) 1732(28.77) 372(18.37)

Marital status 0.174

No 4483(43.49) 3382(40.95) 1101(38.72)

Yes 5825(56.51) 4313(59.05) 1512(61.28)

PIR 0.004

Low income 1660(16.1) 1194(11.06) 466(12.38)

Middle income 2182(21.17) 1587(15.27) 595(17.75)

High income 6466(62.73) 4914(73.66) 1552(69.87)

Health insurance 0.003

No 2016(19.56) 1601(18.28) 415(14.66)

Yes 8292(80.44) 6094(81.72) 2198(85.34)

Smoking < 0.001

Never 5148(49.94) 3928(50.69) 1220(46.71)

Former 2794(27.11) 1946(23.99) 848(30.04)

Now 2366(22.95) 1821(25.32) 545(23.25)

Alcohol < 0.001

No 3059(29.68) 2093(23.59) 966(34.51)

Yes 7249(70.32) 5602(76.41) 1647(65.49)

Physical activity < 0.001

No 4032(39.12) 2794(29.42) 1238(42.06)

Moderate 3133(30.39) 2273(30.75) 860(34.67)

(Continued)
F
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TABLE 1 Continued

Characteristic Total (n=10308) Control (n=7695)
Metabolic syndrome
(n=2613)

P

Vigorous 3143(30.49) 2628(39.83) 515(23.27)

ASCVD < 0.001

No 9211(89.36) 7065(94.32) 2146(85.81)

Yes 1097(10.64) 630(5.68) 467(14.19)

CKD < 0.001

No 8371(81.21) 6546(89.73) 1825(76.75)

Yes 1937(18.79) 1149(10.27) 788(23.25)

Liver condition 0.020

No 9969(96.71) 7464(96.91) 2505(95.76)

Yes 339(3.29) 231(3.09) 108(4.24)

Thyroid disease < 0.001

No 9324(90.45) 7059(91.10) 2265(86.63)

Yes 984(9.55) 636(8.90) 348(13.37)

Cancer < 0.001

No 9358(90.78) 7042(92.13) 2316(89.26)

Yes 950(9.22) 653(7.87) 297(10.74)
F
rontiers in Endocrinology
 06
PIR, poverty-income ratio; ASCVD, arteriosclerotic cardiovascular disease; CKD, chronic kidney disease.
FIGURE 2

Correlation analysis of dietary and serum antioxidant vitamins. ***P<0.001.
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(Supplementary Figures S3-S7; Supplementary Tables S4-S8). The

intake of vitamin A (OR=0.808, 95%CI: 0.699-0.934), vitamin E

(OR=0.787, 95%CI: 0.668-0.926), carotene (OR=0.806, 95%CI:

0.677-0.959), and b-carotene (OR=0.793, 95%CI: 0.659-0.954) in

quartile 4, and vitamin C (OR=0.850, 95%CI: 0.724-0.998) in

quartile 3 were inversely associated with the risk of HDL

decreasing compared to quartile 1 (Supplementary Figure S4;

Supplementary Table S5). Meanwhile, the higher the dietary

intake of vitamin A (OR=0.847, 95%CI: 0.735-0.976), vitamin C

(OR=0.777, 95%CI: 0.653-0.925), carotene (OR=0.719, 95%CI:

0.606-0.853), a-carotene (OR=0.858, 95%CI: 0.743-0.991), and b-
carotene (OR=0.741, 95%CI: 0.622-0.882), the lower the risk of

obesity (Supplementary Figure S7; Supplementary Table S9). In

addition, dietary vitamin C in quartile 4 decreased the risk of blood

glucose elevating (OR=0.837, 95%CI: 0.703-0.996), and dietary

vitamin A in quartile 4 decreased the risk of blood pressure

elevating (OR=0.820, 95%CI: 0.686-0.981).

The serum vitamin C, carotene, a-carotene and b-carotene in

quartile 2 to 4 also present inversely associated with the risk of MetS

when compared to quartile 1 with all P for trend <0.001 (Figure 3B;

Supplementary Table S3). Furthermore, the relationship between

vitamin C and MetS was linear (P-nonlinear=0.363), while the

relationship between carotenes and MetS was non-linear (all P-

nonlinear<0.001) with a rapid decrease and then slow decrease in

the risk of MetS as serum carotenes increase (Figure 4). However,

the higher level of serum vitamin A and vitamin E both increased

the risk of MetS. For each component analysis, serum vitamin C

and carotenes were also demonstrated to significantly reduce the

risk of components of MetS (Supplementary Figures S3-S7;

Supplementary Tables S4-S9).
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3.3 Causality between antioxidant vitamins
and metabolic syndrome in MR

The results showed that the MR effect estimates of dietary

vitamin A (OR=0.920, 95%CI: 0.861-0.984), vitamin C (OR=0.905,

95%CI: 0.836-0.979) and carotene (OR=0.918, 95%CI: 0.865-0.974)

were significantly associated with the risk of MetS (Figure 5;

Supplementary Table S9). While, MR analyses of the dietary

vitamin E (OR=0.978, 95%CI: 0.906-1.056) instrument did not

show evidence for associations with MetS. Each antioxidant

vitamins have different degree of causal association with each

components of MetS, vitamin C, vitamin A, carotene and vitamin

E reduced the 5, 4, 2, and 2 components risks, respectively (Figure 6;

Supplementary Figures S8-S12; Supplementary Tables S10-S14). The

MR-Egger intercept tests showed that for all P-pleiotropy >0.05,

suggesting that there was no horizontal pleiotropy.

To avoid the effect of antioxidant vitamin supplements on

MetS, we performed a multivariate MR. After adjusting for

antioxidant vitamin supplements, dietary vitamin A (OR=0.912,

95%CI: 0.845-0.984) and vitamin C (OR=0.906, 95%CI: 0.829-

0.989) were still found to reduce the risk of MetS (Supplementary

Table S15).

For the serum antioxidant vitamins, there was only significance

of the MR effect estimates between absolute circulating antioxidants

b-carotene (OR=0.909, 95%CI: 0.857-0.965) and MetS (Figure 5;

Supplementary Table S9). What’s more, b-carotene mainly

decreased the level of triglyceride (OR=0.977, 95%CI: 0.961-

0.922) (Supplementary Figure S10; Supplementary Table S12). We

did not find causal relationships between other serum antioxidant

vitamins and MetS. Nonetheless, genetically predicted circulating
FIGURE 3

Observational associations of dietary (A) and serum (B) antioxidant vitamins on metabolic syndrome in NHANES population. The models were
adjusted for demographic characteristics (age, gender, race, education, marital status, poverty-income ratio, and health insurance), lifestyle factors
(smoking status, drinking condition, and physical activity), and health conditions (arteriosclerotic cardiovascular disease, chronic kidney disease, liver
condition, thyroid disease, and cancer).
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vitamin A decreased level of HDL (OR=0.911, 95%CI: 0.984-0.998)

and increased the levels of glucose (OR=1.004, 95%CI: 1.001-1.006)

and triglyceride (OR=1.012, 95%CI: 1.006-1.019) (Figure 6;

Supplementary Figures S9, S10; Supplementary Tables S11, S12).

Besides, absolute circulating vitamin E was associated with the

increased risk of hypertension (OR=1.059, 95%CI: 1.028-1.090) and

decreased risk of obesity. (OR=0.936, 95%CI: 0.894-0.979)

(Figure 6; Supplementary Figures S11, S12; Supplementary Tables

S13, S14).
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4 Discussion

Our results showed that dietary vitamin A, vitamin C and

carotenoids were causally associated with a reduced risk of MetS,

whereas no association was found between dietary vitamin E intake

and MetS. In the circulation, only an elevated b-carotenoid
concentration was associated with a reduced risk of MetS. In

addition, although circulating vitamin A and vitamin E levels did

not show a causal relationship with MetS, their elevation may
FIGURE 4

Dose-response association of dietary (A–F) and serum (G–L) antioxidant vitamins on metabolic syndrome in NHANES population. The models were
adjusted for demographic characteristics (age, gender, race, education, marital status, poverty-income ratio, and health insurance), lifestyle factors
(smoking status, drinking condition, and physical activity), and health conditions (arteriosclerotic cardiovascular disease, chronic kidney disease, liver
condition, thyroid disease, and cancer).
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increase the risk of its components. This is evidenced by the fact

that circulating vitamin A decreases HDL levels and increases

glucose and triglyceride levels, while circulating vitamin E

increases the risk of hypertension. Our study is an extension of Li

et al. (21), and is also consistent with them. In their study, 18

circulating antioxidants nutrients, including vitamin A, C E, b-
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carotenoids and so on, were analyzed in relation to the MetS, and

the protective effect of b-carotenoids was also found. But in this

study, only serum antioxidant vitamins were studied, no dietary

antioxidant vitamins. It is our understanding that our study is the

inaugural investigation to provide a comprehensive analysis of the

correlation between dietary and serum antioxidant vitamins and
FIGURE 5

Causality association of dietary and serum antioxidant vitamins on metabolic syndrome in MR analysis.
FIGURE 6

Summary results of Causality association of dietary and serum antioxidant vitamins on metabolic syndrome and its components in MR analysis.
MetS, metabolic syndrome; HDL, high density lipoprotein.
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MetS. This analysis is based on a combination of large-scale

observational study data and MR analysis of large-scale

genetic data.

This study shows that dietary vitamin C is beneficial in reducing

the risk of all components of the MetS, which is consistent with

previous studies (34). Vitamin C, a widely used free radical scavenger,

is a water-soluble vitamin that is completely dependent on dietary

intake (35). Previous epidemiological studies have shown that

vitamin C deficiency increases the risk of MetS in adults and leads

to an increased incidence of diabetes (36). Vitamin C deficiency not

only reduces cholesterol excretion and impairs hepatic lipid

homeostasis, but also reduces the expression and activity of various

antioxidant enzymes and increases markers of oxidative stress,

thereby impairing the protective effects of hepatic protein and lipid

oxidation (37). As a result of impaired gut barrier function due to

overnutrition, MetS can repeatedly develop metabolic endotoxaemia,

a vicious cycle that reduces vitamin C absorption while increasing

inflammation and oxidative damage (38). A recent RCT showed that

a micronutrient supplement high in vitamin C did not significantly

reduce inflammation in patients with MetS, but did improve

metabolic health indices (39). Currently, there is evidence that

dietary vitamin C can improve obesity and diabetes by improving

insulin sensitivity and myxophage abundance, regulating glucose and

lipid metabolism (40–42); It may also help maintain vascular

elasticity and promote healthy blood pressure levels by increasing

the ability to synthesize NO and improving endothelial function (43).

The results of our study indicate that dietary vitamin A and

carotenoids reduce the risk of MetS, and a beneficial effect of b-
carotenoids on MetS was also found in serum. Beydoun et al. (44)

also highlighted a negative association between b-carotenoids and

MetS. Vitamin A is a fat-soluble vitamin that encompasses all

compounds with the biological activity of retinol, including formed

vitamin A (retinol) and pro-vitamin A (carotenoids) (45). b-carotene
is a vital precursor of vitamin A, which can produce retinol after

metabolism in the body and has significant biological activity of

vitamin A. The antioxidant activity of vitamins A and b-carotene is
conferred by the hydrophobic chain of the polyene unit, which can

quench singlet oxygen, neutralize sulphur radicals and bind to and

stabilize peroxy radicals (46). Vitamin A and its metabolite retinoic

acid are thought to be important in maintaining normal white

adipose tissue (WAT) and brown adipose tissue (BAT) physiology,

and studies have shown that retinoic acid may contribute to the

transition from WAT to BAT, thereby having a beneficial effect in

preventing the accumulation of excess triglycerides (47). Carotenoids

may also play an important role in adipose tissue biology, regulating

adipocyte physiology by inhibiting peroxisome proliferation-

activated receptors (PPAR), influencing the distribution of central

obesity and the development of insulin resistance (48, 49). In

addition, both vitamin A and b-carotenoids have been shown to

play a protective role in blood pressure by modulating inflammatory

responses and regulating NO pathways (50–52).

However, circulating vitamin A increased the risk of hyperglycemia

and dyslipidemia inMR analysis, which was the opposite of the effect of

dietary vitamin A. Our study also found a weak correlation between

dietary vitamin A and serum levels, suggesting that circulating vitamin

A does not represent dietary intake. The reason for the inconsistent
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effects of dietary and circulation vitamin A on metabolic indexes may

be related to its absorption and transportation. Vitamin A is a fat-

soluble vitamin that must be absorbed into the human body with lipids,

so its biological function is closely related to lipid synthesis and

metabolism, in addition to its antioxidant effect (47). Dietary vitamin

A is decomposed into free retinol by the pancreatic fluid in the intestine

or retinoesterase in the brush margin of villi, which is absorbed,

combined with chylomicrons and transported to the liver by the

lymphatic system, and stored in the form of fat droplets in the fat

cells (53). Study shows increased vitamin A absorption in people with

MetS compared to healthy adults (54). This increase may be due to

increased activity of phospholipase B, pancreatic lipase-related protein

2, and phospholipase A2 group IB (54). Therefore, it is more likely that

people with abnormal lipid metabolism in MetS will absorb more

vitamin A than healthy people, resulting in increased blood

concentrations, than that circulation vitamin A increased metabolic

markers. Regarding the transportation of vitamin A, it enters the

circulation when retinol binds to retinol-binding protein 4, which plays

an important role in insulin resistance, dyslipidaemia, obesity and

diabetes (55–57). Consequently, dietary intake of the antioxidant

vitamin A is a means of reducing the risk of MetS, rather than

circulating vitamin A.

Dietary vitamin E did not show an association or causality with

reduced risk of MetS, possibly because the above three antioxidant

vitamins reduced the risk of more than three components, whereas

vitamin E reduced the risk of only two components, blood pressure

and obesity. A meta-analysis of observational studies showed an

inverse association between dietary vitamin E levels and MetS (58).

Vitamin E is a potent peroxy radical scavenger that can block the

propagation of free radicals in cell membranes and plasma

lipoproteins, thereby reducing oxidative stress and lowering the

risk of hypertension (59). It also increases the production of the

vasodilators prostaglandins I2 and E2 in a dose-dependent manner

by increasing the expression of intracellular phospholipase A2 and

the release of the substrate AA, as well as inhibiting cyclooxygenase

activity, thereby maintaining endothelial function (60). In addition,

vitamin E and its metabolites regulate blood pressure by inhibiting

diuretic potassium and calcium channels (61). At the same time,

vitamin E may reduce adipose tissue fibrosis and collagen

deposition through anti-inflammation and oxidative stress, and

improve obesity and metabolic status (including hepatic steatosis,

hypertriglyceridemia and insulin sensitivity) (62).

The findings of our research have significant implications for

public health and practical applications. Firstly, we elucidated the

relationship between antioxidant vitamins and MetS. The risk of

MetS can be reduced by dietary intake of antioxidant vitamins,

especially vitamins A, C and carotenoids, which are beneficial for

many components (Figure 7). Furthermore, we conducted a

separate analysis of the associations between dietary and serum

antioxidant vitamins with MetS, which revealed partial inconsistent

associations, mainly for vitamin A. This is because the absorption

and transport of fat-soluble vitamin are affected by lipid

metabolism, so the serum concentrations of vitamin A do not

absolutely reflect dietary intake. Individuals with abnormally

elevated serum vitamins A should be mindful of the potential for

metabolic abnormalities. Therefore, we recommend reducing MetS
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risk by increasing dietary intake rather than circulating

concentration. Additional, Individuals with abnormal lipid

metabolism should exercise caution when consuming vitamin A.

It is recommended to monitor vitamin A levels through blood tests

to prevent it accumulation that may lead to adverse effects. Before

starting vitamin A supplementation, they should first manage their

dyslipidemia with medication or other appropriate methods to

ensure metabolic balance.

The major strength of our study was the use of MR analyses

combined with the observational study design in NHANES. In a

nationally representative sample of NHANES, the strategy of

weighting algorithms and full adjustment for confounders was

used to analyze the association between antioxidant vitamins and

MetS. The consistency of findings between the MR analyses and the

observational study made the results more robust. There are also

several limitations to this study. First, antioxidant vitamin intake

was measured by 24-hour DR, which may be subject to recall bias

due to self-report. Second, due to the lack of data on vitamin

supplementation in NHANES, this study did not analyze the effect

of antioxidant vitamin supplementation on MetS. Third, in the MR

study, we cannot completely rule out horizontal pleiotropy, an

association between the outcome of interest and the MR instrument

through pathways other than the proposed exposure, although the

MR Egger intercepts in the statistical analysis showed no evidence

of pleiotropy. Fourth, in order to obtain sufficient SNPs as

instrumental variables, we relaxed the P-value setting of the

association between exposure and SNPs. Although F-statistics
Frontiers in Endocrinology 11
were used to assess the instrumental variables, the problem of

weak instrumental variable bias may still arise. Fifth, our

observational data suggest a possible non-linear association

between some antioxidant vitamins and MetS; however, only

linear causality was examined in the MR study, so non-linear

causality cannot be ruled out. Sixth, our observational and genetic

data were not from the same sample, as we used a multiracial US

population in the cross-sectional study and individuals of European

descent in the MR study. Last, although we adjusted confounders

sufficiently to reduce the effect of confounders and used MR analysis

to simulate the environment of randomized controlled trial, control

group was not truly set up to explore the effect of antioxidant

vitamins on MetS. In the future, we will accurately quantify dietary

antioxidant vitamin intake to carry out interventional studies,

evaluate the relationship between dietary vitamin intake at

different levels and MetS and the improvement of metabolic

indicators, and further explore the mechanism of the difference in

biological effects of dietary and circulating antioxidant vitamins.
5 Conclusions

Based on observational and MR studies, we find that adequate

dietary intake of vitamins A, C and carotenoids may reduce the risk

of MetS, whereas vitamin E only reduces two metabolic

components. In the circulation, only increased b-carotenoid
concentration is associated with a reduced risk of MetS. In
FIGURE 7

Visual model of the dietary recommendations and the risk of metabolic syndrome MetS, metabolic syndrome; HDL, high density lipoprotein.
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addition, circulating vitamin A was associated with the increased

risk of hyperglycaemia and dyslipidaemia. This suggests that eating

more fruits and vegetables rich in antioxidant vitamins may help

reduce the risk of MetS, but be wary of abnormally high

concentrations of fat-soluble vitamins, such as vitamin A. If a

high concentration of vitamin A is detected, it is not necessarily

the result of increased intake, but most likely an increase in

concentration due to abnormal absorption and transport caused

by metabolic abnormalities.
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