Skip to main content

ORIGINAL RESEARCH article

Front. Endocrinol.
Sec. Bone Research
Volume 15 - 2024 | doi: 10.3389/fendo.2024.1445049

Legumain is a paracrine regulator of osteoblast differentiation and mediates the inhibitory effect of TGF-β1 on osteoblast maturation

Provisionally accepted
  • 1 University of Oslo, Oslo, Norway
  • 2 University of Copenhagen, Copenhagen, Capital Region of Denmark, Denmark

The final, formatted version of the article will be published soon.

    Abstract Transforming growth factor-beta 1 (TGF-β1) is a critical regulator of skeletal homeostasis and has diverse effects on osteoblastogenesis. To date, the mechanisms behind the intriguing inhibitory effect of TGF-β1 on osteoblast maturation are not fully understood. Here, we demonstrate a novel mechanism by which TGF-β1 modulates osteoblast maturation through the lysosomal protease legumain. We observed that addition of TGF-β1 to osteogenic cultures of human bone marrow derived mesenchymal stromal (stem) cells enhanced legumain activity and secretion, in-spite of decreased legumain mRNA expression, suggesting post-transcriptional regulation. We further showed that osteogenic cells internalize and activate prolegumain, associated with inhibited osteoblast maturation, revealing legumain as a paracrine regulator of osteoblast maturation. Interestingly, TGF-β1 treatment exacerbated legumain internalization and activity, and showed an additive effect on legumain-induced inhibition of osteoblast maturation. Importantly, pharmacological inhibition of legumain abolished the inhibitory effect of TGF-β1 on osteoblast maturation. Our findings reveal that TGF-β1 inhibits osteoblast maturation by stimulating secretion and activity of endogenous legumain, as well as enhancing internalization and activation of extracellular prolegumain. Therefore, our study provides a deeper understanding of the complex regulation of osteoblastogenesis and unveils a novel TGF-β1-legumain axis in regulation of osteoblast maturation, offering novel insights for possible therapeutic interventions related to bone diseases associated with aberrant TGF-β1 signaling.

    Keywords: Legumain, Asparaginyl endopeptidase, Transforming growth factor beta 1, Matrix mineralization, RR-11a analog

    Received: 06 Jun 2024; Accepted: 02 Sep 2024.

    Copyright: © 2024 Forbord, Lunde, Bosnjak-Olsen, Johansen, Solberg and Jafari. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Karl Martin Forbord, University of Oslo, Oslo, Norway

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.