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Cardiac hypertrophy is an adaptive response to pressure or volume overload

such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy

eventually leads to heart failure. The pathophysiological alterations of

hypertrophy are complex, involving both cellular and molecular systems.

Understanding the molecular events that inhibit or repress cardiac hypertrophy

may help identify novel therapeutic strategies. Increasing evidence has indicated

that extracellular vesicle (EV)-derived microRNAs (miRNAs) play a significant role

in the development and progression of cardiac hypertrophy. In this review, we

briefly review recent advancements in EV research, especially on biogenesis,

cargoes and its role in cardiac hypertrophy. We then describe the latest findings

regarding EV-derived miRNAs, highlighting their functions and regulatory

mechanisms in cardiac hypertrophy. Finally, the potential role of EV-derived

miRNAs as targets in the diagnosis and treatment of cardiac hypertrophy will

be discussed.
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1 Introduction

Cardiac hypertrophy serves as a compensatorymechanism to address the reduced cardiac

output and represents a restricted form of adjustment in response to increased cardiac stress.

Pathological cardiac hypertrophy as a well-recognized risk factor for cardiovascular diseases

(CVDs) (1, 2), generally accompanies cardiomyocyte enlargement and ventricular

remodeling (3, 4). Subsequently, long-term pathological factors contributed to extensive

cardiac remodeling, including the development of cardiac fibrosis, hypertrophy, and

ultimately heart failure (5). The heart is composed of a diverse combination of cell types,

such as cardiomyocytes, fibroblasts, endocardial and epicardial cells, inflammatory cells, and

immune cells. These cellular components within the cardiac system communicate extensively

to ensure proper cardiac function through direct cellular interaction or paracrine signaling

(6). Previous studies have documented the existence of intercellular communication between

cardiomyocytes and noncardiomyocytes during the development of cardiac hypertrophy
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(7–10). This intercellular communication mainly occurs through

direct cell-to-cell interaction, specific molecules, or extracellular

vesicles (EVs) (11–13).

EVs, which are membranous particles composed of lipid

bilayers, are released by various cell types in organisms ranging

from bacteria to humans and plants (14–16). Based on their

dimensions, EVs have been categorized into three groups

comprising exosomes (sizes of 30–150 nm), microvesicles (sizes of

100–1000 nm), and apoptotic bodies (sizes of 50 nm–10 mm)

(17, 18). Being the primary classifications, exosomes and

microvesicles share the same membrane orientation that is

identical to the cell surface, but they vary in terms of size and

cargo compositions (RNAs, proteins, lipids, or metabolites) (19).

The composition of these functional components may vary based

on the cellular source and specific pathophysiological conditions

during EV packaging and release (20). EVs have been employed as

potential signaling mediators, biomarkers, and potential therapeutic

agents for cardiovascular physiology and pathology (21). The

abundance of evidence suggests that EVs play a pivotal role in

various cardiovascular processes, encompassing both physiological

and pathological aspects. These include the regulation of

angiogenesis and blood pressure, cardiomyocyte hypertrophy,

apoptosis/survival, and cardiac fibrosis (22–26). In the past ten

years, EVs have gained increasing recognition for their potential

roles as important autocrine and paracrine intercellular

communicators. They deliver molecular cargoes from source cells

to neighboring cells or even to distant organs and influence the

programming of the cardiac microenvironment (27, 28).

MicroRNAs (miRNAs) are small noncoding RNAs, which are 22

to 25 nucleotides in length. They can bind to the 3′ untranslated
regions of their target messenger RNAs (mRNAs), leading to

mRNA degradation or translational repression (29). Direct

regulation by miRNAs occurs in over 60% of the protein-coding

genes (30). Furthermore, the miRNAs present in cardiovascular

exosomes have been shown to regulate target genes within recipient

cardiac cells, thereby influencing both physiological and

pathophysiological processes (31). In this review, we summarize

the current understanding of the roles of EVs in cardiac diseases,

with a particular emphasis on pathological cardiac hypertrophy.

Specifically, we will attempt to provide an overview of the potential

values of EVs-derived miRNAs in the field of pathological cardiac

hypertrophy as therapeutic agents and biomarkers.
2 Biogenesis of EVs

The generation of exosomes is linked to the endosomal network.

Exosomes are generated through the inward budding of the

endosome’s limiting membrane into its lumen, as intraluminal

vesicles (ILV) (32, 33). Further continued inward budding of the

endosomal membrane leads to the formation of the multivesicular

body (MVB). Finally, the MVBs merge with the cellular membrane

and release the ILVs as exosomes into the extracellular environment.

Alternatively, the MVBs can combine with lysosomes inside the cell

and release the ILVs for either degradation or recycling within the

cellular context. Both ESCRT-dependent and ESCRT-independent
Frontiers in Endocrinology 02
mechanisms contribute to the packaging of cargoes into endosomes

and the formation of exosomes in multivesicular bodies (MVBs) (34–

36). The ESCRT-dependent pathway, consisting of subcomplexes

ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III, is responsible for the

sorting of various nucleic acids and proteins. ESCRT-dependent

pathway also has been shown to regulate the inward budding of

intraluminal vesicles (ILVs) into the lumen of endosomes and the

final forming of MVBs (37, 38). An alternative ESCRT-independent

pathway requires the involvement of the cellular Golgi apparatus and

the tetraspanin family proteins (CD63, CD81, CD82 and CD9),

facilitating the formation of membrane microdomains and sorting

cargo to MVBs (39). Although exosome biogenesis is commonly

classified as ESCRT-dependent or ESCRT-independent, these

pathways may not be entirely distinct. Whereas, the generation of

microvesicles occurs within the extracellular space through direct

outward budding of the cell’s plasma membrane, which exhibits key

characteristics of stepwise vesiculation observed in exosome

formation and employs the same machinery (40). Exosomes and

microvesicles are considered dynamic carriers of cellular

communication owing to their release and uptake by living cells.

The formation of apoptotic bodies, on the contrary, is generated from

the cell membrane, as a result of cellular disassembly during the

apoptosis (41).
3 EV cargoes and
intercellular communication

EVs transport both membrane-bound and soluble cargoes,

which are characterized by distinct compositions of lipids,

proteins, and nucleic acids. The lipid composition of their

membranes exhibits similarities to raft microdomains, displaying

higher levels of cholesterol, sphingomyelin, phosphatidylserine, and

ceramide compared to the plasma membrane (42). It is widely

recognized that EVs possess a rich assortment of proteins,

encompassing those derived from the plasma membrane, cytosol,

cytoskeleton, and proteins engaged in vesicle trafficking (43).

Exosomal protein markers encompass the ESCRT machinery

proteins (Alix, TSG101, and VSP40), Syntenin-1 (44), heat-shock

proteins (Hsp20, Hsp60, Hsp70, and Hsp90), transmembrane

tetraspanins (CD62, CD63, CD9, and CD81) (45), and blood

circulating EVs-derived cytokines (IL-1b, IL-6, TGF-b, and TNF)

(46, 47). EV-carried cell-type specific proteins, especially membrane

surface proteins, have been very useful for identifying and isolating

cell-type specific EVs (48). The cargo nucleic acids possess

significant potential as efficient facilitators of inter-tissue

communication, despite indications that the levels of RNAs in

EVs are generally modest (49). The transfer of miRNAs and

mRNAs to target cells through EV-mediated mechanisms has

been extensively acknowledged for its functional importance (50,

51). Other types of RNA in EVs are tRNAs, tRNA fragments,

fragmented mRNAs, long non-coding RNAs (lncRNAs), and

ribosomal RNAs, mitochondrial RNAs. EVs traverse the

extracellular fluid, attach to the matrix surrounding cells and

intercellular junctions, migrate towards adjacent tissue regions, or

gain access to major body fluids to reach distant organs (52, 53). In
frontiersin.org

https://doi.org/10.3389/fendo.2024.1444940
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hu et al. 10.3389/fendo.2024.1444940
recent years, EVs have been widely acknowledged for their crucial

involvement in intercellular signaling, facilitating the transfer of

various biomolecules such as lipids, DNA, mRNA, miRNA, siRNA,

and lncRNA to recipient cells. Generally, the transfer of biological

signals from EVs to target cells occurs through various mechanisms

that rely on the composition of proteins and lipids present on both

the surfaces of EVs and target cells. The interaction between EVs

and target cells occurs via membrane-bound ligand-receptor pairs,

which subsequently initiate intracellular signaling pathways. Target

cells can internalize EVs via diverse endocytic pathways, including

macropinocytosis, phagocytosis, clathrin-mediated endocytosis,

caveolin-dependent endocytosis, and caveolin-independent

endocytosis (54).
4 EVs in cardiac hypertrophy

Pathological cardiac hypertrophy is distinguished by the

cardiomyocytes’ enlargement, the existence of interstitial fibrosis,

and insufficient blood supply to the heart. These factors collectively

contribute to the development of cardiac dilation, impaired systolic

and diastolic function, and ultimately heart failure (3, 4). Cardiac

hypertrophy is accompanied by disrupted electrophysiology and

metabolism during adverse remodeling. While cardiac fibroblasts

transform into activated myofibroblasts, exhibiting proliferation

and excessive production of extracellular matrix (3, 55).

EVs play important roles in intercellular communication

among nearby and distant cells, including cardiac cells. They have

been implicated in the regulation of various processes such as

cardiomyocyte hypertrophy, apoptosis, cardiac fibrosis, and

angiogenesis (56–58). EVs can be separated from various cell

types present in the heart, including cardiac fibroblasts,

cardiomyocytes, endothelial cells, vascular smooth muscle cells,

and Mesenchymal stem cells (MSCs) (59–71).

As the predominant cell type in the heart, Cardiomyocytes play

crucial roles in various pathological processes, including cardiac

hypertrophy, angiogenesis, cardiac fibrosis, autophagy, and

apoptosis (72). The release of specific exosomes by cardiomyocytes

has been investigated in the context of pathological cardiac

hypertrophy (73, 74). Furthermore, the production and release of

EVs originating from cardiomyocytes are impacted by various factors.

For example, Hsp20 facilitated the initiation of exosome formation

and their release from cardiomyocytes through its interaction with

Tsg101, a key regulator of exosome biogenesis (75). Besides,

cardiomyocytes can selectively modify the contents of their

exosomes and enhance the exosomes’ release in response to various

stressors such as glucose deficiency, oxygen deprivation, inflammatory

conditions, physical trauma, or elevated angiotensin II levels (76–78).

Specific proteins, including two members of the heat shock protein

family (Hsp20 and Hsp90), can be secreted by cardiomyocytes to

facilitate the restoration of cardiac function in the context of

pathological cardiac hypertrophy (79–82). One research study

demonstrated that diabetic cardiomyocytes can release exosomes

with lower levels of Hsp20. Conversely, the upregulation of Hsp20

has been found to mitigate cardiac dysfunction, hypertrophy,

apoptosis in cardiomyocytes, fibrosis in the heart tissue, and
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decreased density of microvessels induced by STZ (75).

Additionally, previous research has indicated that Hsp90 plays a

pivotal role in modulating ventricular hypertrophy by activating the

MAPK pathway, NF-kB pathway, STAT-3 pathway, and stabilizing

HIF-1 alpha. Exosomal Hsp90 derived from cardiomyocytes, along

with secreted IL-6, participates in the activation of STAT-3 signaling

within cardiac fibroblasts, leading to enhanced synthesis and

accumulation of collagen during cardiac hypertrophy (81).

On the other hand, exosomes derived from fibroblasts have a

crucial function in facilitating communication between

cardiomyocytes and fibroblasts throughout the hypertrophic

procedure (83–87). The administration of angiotensin II to

fibroblasts was found to enhance the release of exosomes, thereby

inducing cardiomyocyte hypertrophy in vitro through the activation

of Akt and mitogen-activated protein kinases (MAPKs), as well as

increased expression of the renin-angiotensin system (RAS) in

cardiomyocytes (63). The study mentioned above shows that the

fibroblast-derived exosome proteins osteopontin (Spp1) and

epidermal growth factor receptor (EGFR) can trigger the PI3K/

Akt and MAPK pathways, resulting in the upregulation of RAS

in cardiomyocytes.
5 Biogenesis of miRNAs

MiRNAs, as small endogenous oligonucleotides ranging from

21 to 25 nucleotides in length, play a crucial role in the post-

transcriptional regulation of genes by binding to or inhibiting target

mRNAs (88, 89). MiRNAs genes are initially transcribed by RNA

polymerase II as primary miRNAs (pri-miRNA), the long

transcripts containing either non-coding or coding hairpins (90).

Then, pri-miRNAs are enzymatically processed to form precursor

miRNA (pre-miRNA) by the functional Microprocessor complex,

comprising RNase III Drosha and DiGeorge syndrome critical

region gene 8 (DGCR8) (91). The pre-miRNA is subsequently

exported to the cytoplasm by exportin 5 (Exp-5) and is finally

processed into a mature miRNA by the RNase III Dicer (91). Non-

canonical miRNA biogenesis, including the Drosha-independent

and the Dicer-independent pathways, are also observed (92).

It is well known that miRNA-mediated transcriptional and

post-transcriptional gene regulation within the cells. Additionally,

miRNAs can be released from cells into the circulation in EVs.

Recently, Garcia-Martin et al. reported that that miRNAs possess

sorting sequences determined their EV secretion or cellular

retention (93). However, the mechanisms by which miRNAs are

secreted into EVs or retained in cells not well understood and

require further investigation.
6 EV-derived miRNAs in
cardiac hypertrophy

Altered expression of miRNAs has been linked to

cardiovascular disease conditions, such as heart failure and

cardiac hypertrophy (94–98). For example, Bernardo et al.

reported that inhibition of miR-34a could attenuate cardiac
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dysfunction in a mouse model with pre-existing pathological

hypertrophy (99). In addition, miRNA expression analysis in the

human heart found a correlation between downregulated miRNAs

in cardiospheres/cardiosphere-derived cells and patient age (100).

Apart from these proteins mentioned above aforementioned

proteins, specialized miRNAs-containing EVs can be released by

cardiomyocytes to facilitate the restoration of cardiac function in

cases of pathological hypertrophy (101–103). Furthermore,

compelling evidence suggests that in pathological conditions,

miRNAs are secreted from various cell types, including

fibroblasts, endothelial cells, stem cells, and immune cells (104).

These miRNAs are then transferred to cardiomyocytes through EV-

mediated trafficking (Figure 1), directly promoting the

hypertrophic growth of cardiomyocytes (86, 105). EV-derived

miRNAs that have been found to regulate cardiac hypertrophy

are shown in Table 1.
6.1 miR-21

It has been found that EVs can be transferred from tubular

epithelial cells to cardiomyocytes and facilitate the development of

cardiomyocyte hypertrophy when renal tubular cells are treated

with TGF-b1 (106). However, this effect could be eliminated by a

miR-21 inhibitor, suggesting that miR-21 derived from EVs can be

transmitted to recipient cardiomyocytes and contribute to

cardiomyocyte hypertrophy. Through further investigation, Jia
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and colleagues have substantiated that the presence of miR-21 in

EVs can induce cardiomyocyte hypertrophy by targeting SORBS2

and ENH. Moreover, the investigation conducted by Chuppa et al.

revealed that inhibition of miR-21 safeguards rats with 5/6

nephrectomy against the progression of left ventricular

hypertrophy and deterioration in left ventricular function (107).

It has also been found that the pericardial fluid of mice with

induced hypertrophy through transverse aortic constriction

exhibited an elevated level of subtypes of miR-21 (miR-21-3p,

miR-21*) compared to sham-operated mice. Additionally, the

inhibition of using miR-21-3p antagomir effectively prevented

Ang II-induced cardiac hypertrophy (59). In their study, Bang

et al. revealed the selective enrichment of miR-21-3p in fibroblast-

derived exosomes and emphasized that factors such as

temperature and actin dynamics are crucial for cardiomyocyte

uptake of exosomes. Upon internalization into cardiomyocytes,

the presence of miR-21-3p derived from exosomes resulted in a

significant augmentation of cardiomyocyte cell size (108).

Specifically, previous studies identified that exosomal miR-21-3p

is transported into cardiomyocytes, where it targets SORBS2 and

PDLIM5 (PDZ and LIM domain 5), contributing to cardiac

hypertrophy (59, 109). However, many important questions

remain elusive. For example, multiple types of pro-fibrotic cells

are involved in the development of fibroblast during

cardiomyopathy, it is therefore essential to explore the effects of

exosomes on such a process of cardiac fibrosis (110). In addition,

Yan et al. investigated the functional role of miR-21-3p in cardiac
FIGURE 1

Role of EV-derived miRNAs in cardiac hypertrophy. Different EV-derived miRNAs cause cardiac hypertrophy through different mechanisms and even
multiple mechanisms.
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hypertrophy and demonstrated that its overexpression

significantly mitigates TAC (transverse aortic constriction)-

induced cardiac hypertrophy and Ang II-induced cardiac

hypertrophy by suppressing HDAC8 expression to activate the

Akt/Gsk3b pathway (111).
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6.2 miR-27a

Previous studies by Tian et al. demonstrated that there was an

increase in the expression levels of miRNA-27a in both infarcted

heart tissue and circulating samples in rat models of chronic heart
TABLE 1 EV-derived miRNAs that have been found to regulate cardiac hypertrophy.

EV-
derived
miRNA

Cells
responsible
for secretion

Recipient cells Targets Functions References

miR-21 Tubular
epithelial cells

Cardiomyocytes SORBS2, ENH Promotes cardiomyocytes hypertrophy (106)

miR-21-3p Cardiac fibroblasts Cardiomyocytes SORBS2,PDLIM5 Promotes cardiomyocytes hypertrophy (59)

miR-27a Cardiac fibroblasts Cardiomyocytes Nrf2 Increases oxidative stress and expression of
genes associated with hypertrophy

(112)

miR-27a* Cardiac fibroblasts Cardiomyocytes Nrf2/ARE,PDLIM5 Promotes cardiomyocytes hypertrophy (113)

Cells from pericardial
adipose tissue

Cardiomyocytes AMPK/PINK1/
Parkin signaling

Promotes cardiomyocytes hypertrophy (115)

miR-29a MSCs Cardiomyocytes,
Cardiac fibroblasts

Unknown Protects cardiomyocytes against
pathological hypertrophy

(116)

Cardiomyocytes CMEC VEGFA Inhibits the angiogenic ability of CMECs (117)

miR-126 Endothelial cells Cardiomyocytes VCAM-1, MCP-1 Inhibits cardiomyocytes hypertrophy (119)

Diabetic
cardiomyocytes

Endothelial cell Unknown Impaired angiogenesis and cardiac functions (120)

miR-146 Cardiac fibroblasts Cardiomyocytes SUMO1 Induces cardiac dysfunction (86)

Endothelial cells,
cardiac fibroblasts

Cardiomyocytes Erbb4, Nras,
Notch1, Irak1

Impaired metabolism and function
of cardiomyocytes

(124)

CDCs Unknown Unknown Improves cardiac function and reduced
myocardial fibrosis

(125)

miR-155 Macrophages Cardiomyocytes FoxO3a Promotes cardiomyocytes pyroptosis (127)

Cardiomyocytes Macrophages MAPK Promotes inflammation in macrophages (128)

Cardiomyocytes Unknown Jarid2 Promotes cardiomyocytes hypertrophy (129)

miR-181a Cardiomyocytes Unknown Unknown Promotes cardiomyocytes hypertrophy,
increases myocardial fibrosis

(103)

miR-200a Adipocytes Cardiomyocytes TSC1, mTOR Promotes cardiomyocytes hypertrophy (133)

miR-133a CPCs NRCMs Bim, Bmf Reduces fibrosis and hypertrophy (135)

miR-217 Cardiomyocytes Cardiac fibroblasts PTEN Enhance fibroblast proliferation, increases
myocardial fibrosis

(101)

miR-22 CF-iPSCs Embryoid
bodies

Unknown Regulates cardiac hypertrophy and remodeling (134)

miR-27b Cardiomyocytes Unknown TGF-b1-
PPARg pathway

Promotes cardiomyocytes hypertrophy (137)

miR-212/-132 Cardiac fibroblasts Cardiomyocytes ANG II-AT1R axis Promotes cardiomyocytes hypertrophy (138)

miR-1, miR-222,
and miR-208a

Skeletal muscle cells Cardiomyocytes Unknown Promotes cardiomyocytes hypertrophy (138)

miR-199a Unknown Unknown mTOR Promotes cardiomyocytes hypertrophy (132)

miRNA-148a CDCs Cardiomyocytes STAT3/ERK1/2/AKT
signaling pathway

Improves cardiac function and remodeling (141)
CDCs, cardiosphere-derived cells; CF-iPSCs, induced pluripotent stem cells derived from cardiac fibroblasts; CMEC, cardiac microvascular endothelial cell; CPCs, cardiac progenitor cells; MSC,
mesenchymal stem cell; NRCMs, neonatal rat cardiomyocytes; PBMCs, peripheral blood mono-nuclear cells.
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failure (112). They observed a significant upregulation of miR-27a

in cultured cardiac fibroblasts following proinflammatory

stimulation. miR-27a, as the predominant miRNA contained in

cardiac fibroblast-derived EVs, was selectively incorporated into

EVs and released into the surrounding environment. These EVs

were then taken up by cardiomyocytes, leading to increased

oxidative stress and expression of genes associated with

hypertrophy in these cells by targeting Nrf2 signaling. In their

subsequent investigations, Tian et al. made the discovery that miR-

27a* (the passenger strand of miR-27a) functions as an additional

star miRNA, which can exacerbate cardiac hypertrophy in a chronic

heart failure model induced by myocardial infarction. In the

presence of Ang II stimulation, cardiac fibroblasts exhibited an

increase in miR-27a* expression (113). Subsequently, miR-27a* was

selectively encapsulated within EVs and then released into the

extracellular space. miR-27a*-enriched EVs were then internalized

by cardiac myocytes, leading to the development of a hypertrophic

phenotype through differentially targeting Nrf2/ARE signaling

pathway and PDLIM5. It has also been discovered that the

upregulation of miR-27a-3p can serve as a diagnostic indicator

for cardiac hypertrophy in an in vitromodel of cardiac hypertrophy

by treating H9c2 cardiomyocytes with Ang II, as well as in an in vivo

model achieved through chronic infusion of Ang II into mice. In

addition, the upregulation of miR-27a-3p promotes cardiac

hypertrophy by targeting NOVA1 (neurooncological ventral

antigen 1) (114). Moreover, pericardial adipose tissue derived

exosomal miR-27a-3p regulated myocardial hypertrophy and

fibrosis via AMPK/PINK1/Parkin signaling (115).
6.3 miR-29

MiR-29a-containing exosomes derived from MSCs exhibited a

significant cardioprotective effect by preventing pathological

remodeling of the myocardium and maintaining heart function

under conditions of pressure overload induced by TAC (116). In

addition, cardiomyocyte-derived exosomal miR-29a inhibited the

angiogenic ability of cardiac microvascular endothelial cell (CMEC)

by targeting vascular endothelial growth factor (VEGFA) (117).

Moreover, exosomal-miR-29 was identified as crucial targets from

exercised hearts, which can facilitate cardiomyocyte growth and

physiologic hypertrophy (118).
6.4 miR-126

MiR-126 plays a key role in modulating cardiac function. Chen

et al. reported that low expression level of heart miR-126 was

associated with cardiomyocyte hypertrophy, fibrosis, and

inflammation. They further found that miR-126 was highly

enriched in exosomes derived from endothelial cells. Meanwhile,

exosome-enriched miR-126 inhibited cardiomyocyte hypertrophy

by targeting vascular cell adhesion protein-1 (VCAM-1) and

monocyte chemotactic protein-1 (MCP-1) (119). Moreover,

previous study revealed that the expression of miR-126 was

significantly decreased in exosomes derived from diabetic Goto-
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Kakizaki (GK) cardiomyocytes. Of interest, exosomal miR-126

derived from healthy cardiomyocytes can promoted normal

angiogenesis (120). Previous study also observed that exosomal

miR-126 derived from CD34+ peripheral blood mono-nuclear cells

(PBMCs) exhibits pro-angiogenic effects. Moreover, pro-angiogenic

effects of CD34+ PBMCs were blocked by anti-miRNA-126

treatment (120).
6.5 miR-146a

Previously recognized as a suppressor of innate immune

responses, miR-146a exerts its regulatory effects through direct

interactions with interleukin-1 receptor-associated kinase 1

(IRAK1) and TNF receptor-associated factor 6 (TRAF6) (121). Its

roles in cardiac pathophysiology have been demonstrated to exhibit

variability across different models of heart disease (122, 123). In a

recent investigation, it was observed that miR-146a contributes to

the development of cardiac dysfunction in maladaptive

hypertrophy by reducing SUMO1 expression and regulating Ca2+

cycling. MiR-146a is released from transdifferentiated fibroblasts

and subsequently transferred into cardiomyocytes through EV-

mediated trafficking in the failing heart (86). In addition, miR-

146a-enriched exosomes released from endothelial cells or

fibroblasts contribute to improve contractile function in

cardiomyocytes by targeting Erbb4, Notch1, and Irak1 (124). At

the same time, cardiosphere-derived exosomal miR-146a-5p was

associated with myocardial repair in pediatric dilated

cardiomyopathy (125). Moreover, exosomal miR-146a could also

serve as a potential biomarker for future heart failure

diagnosis (126).
6.6 miR-155

In the case of the uremic heart, macrophage-derived miR-155–

containing exosomes could enhance both pyroptosis and

hypertrophy in the uremic cardiomyopathy model (105). Wang

et al. found that miR-155 was synthesized and loaded into exosomes

in increased infiltration of macrophages in a uremic heart. The

fusion of exosomes with the plasma membrane results in the

liberation of miR-155 into the cytosol, leading to the inhibition of

translation for FoxO3a in cardiomyocytes. Ultimately, exosomes

carrying miR-155 from macrophages were found to induce

pyroptosis in cardiomyocytes and contribute to the development

of uremic cardiomyopathy symptoms such as cardiac hypertrophy

and fibrosis. This effect was achieved through direct inhibition of

FoxO3a in uremic mice. Furthermore, inhibition of miR-155 using

a specific inhibitor or the use of mice lacking miR-155

demonstrated that FoxO3a levels were partially recovered and

reduced cardiomyocyte pyroptosis, hypertrophy, and fibrosis in

uremic mice. Moreover, previous studies have suggested that

exosomes derived from macrophages containing miR-155 act as a

paracrine modulator of fibroblast proliferation and inflammation.

This modulation results in the inhibition of fibroblast proliferation

and an increase in fibroblast inflammation, ultimately leading to
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compromised cardiac repair following myocardial infarction (127).

As it is widely acknowledged, the pathways leading to cardiac

hypertrophy are closely linked to the pathogenesis of myocardial

infarction. Intriguingly, the activation of the MAPK pathway may

be triggered by miR-155-enriched exosomes derived from Ang II-

induced hypertrophic cardiomyocytes, thereby inducing

inflammation in macrophages (128). Taken together, microRNA-

155, derived from EVs, plays a crucial role in facilitating

communication between macrophages and fibroblasts or

cardiomyocytes during the development of pathological cardiac

hypertrophy. Relevant prior studies had shown that the activation

of the Jaird2 signaling pathway in cardiomyocytes was facilitated by

miR-155, leading to cardiac hypertrophy (129). Inhibition of

endogenous Jarid2 partially ameliorated the impact of miR-155

deficiency in isolated cardiomyocytes.
6.7 miR-181a

A previous study conducted by Evgeniya et al. discovered that

the administration of sacubitril/valsartan in human iCM (human-

induced pluripotent stem cell-derived cardiomyocytes) led to a

reduction in the expression of exosomal miR-181a. This decrease

was found to contribute to the mitigation of myocardial fibrosis and

hypertrophy (103). The downregulation of exosomal miR-181a was

also observed by Evgeniya et al. in a rodent model of chronic

myocardial infarction following sacubitril/valsartan treatment.

Furthermore, the downregulation of exosomal miR-181a

attenuates myocardial fibrosis and pathological hypertrophy,

thereby restoring the chronic heart failure model in Sprague-

Dawley rats. In Evgeniya et al. studies, the subsequent

investigations utilized the chronic rodent myocardial injury

model to explore the functionality of exosomal miR-181a. The

validation was performed by employing miR-181a antagomir,

which demonstrated favorable effects of exosomal miR-181a on

cardiac function, volumes, and morphology. Other former relevant

studies have demonstrated that miR-181a derived from

cardiomyocytes possesses the potential to alleviate pathological

hypertrophy in the heart by modulating multiple targets. For

example, miR-181a as the newly discovered controller of cardiac

remodeling, played a role in the regulation of autophagy, the p53-

p21 pathway, PTEN/PI3K/AKT signaling, and the aldosterone-

mineralocorticoid receptor (AldoMR) pathway in myocardial

hypertrophy (130, 131).
6.8 miR-217

As a response to pathological hypertrophy, miR-217 was

released from cardiomyocytes. The exosomes derived from

cardiomyocytes, which contain miR-217, have been observed to

enhance fibroblast proliferation and potentially contribute to

cardiac fibrosis through the modulation of PTEN (132).

Moreover, Nie et al. observed a significant upregulation of miR-

217 in the cardiac tissues of patients with chronic heart failure. In

vivo, overexpression of miR-217 exacerbated pressure overload-
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induced cardiac hypertrophy and dysfunction by repressing PTEN

expression (101).
6.9 Other miRNA types

Fang et al. demonstrated that activation of PPARg signaling in

adipocytes enhanced the expression and secretion of miR-200a by

employing cocultures comprising adipocytes and cardiomyocytes.

Exosomal delivery of miR-200a from adipocytes to cardiomyocytes

played a role in the development of cardiomyocyte hypertrophy by

reducing TSC1 levels and subsequently activating mTOR (133). In

addition, the expression of various miRNAs, particularly miR-22, a

crucial controller of cardiac hypertrophy and remodeling, could be

influenced by exosomes released from induced pluripotent stem

cells derived from cardiac fibroblasts (CF-iPSCs) (134). Exosomal

miR-133a released from ischemic cardiomyocytes or cardiac

progenitor cells (CPCs) exerts inhibitory effects on hypertrophy

(132, 135). Wu et al. showed that serum exosomal miR-92b-5p is a

potential biomarker for the diagnosis of acute heart failure caused

by dilated cardiomyopathy (136). In addition, another study has

revealed that miR-27b participated in cardiac hypertrophy via the

TGF-b1-PPARg pathway (137). There is evidence to suggest that

exosomal miR-212/-132 family may also induce cardiac

hypertrophy (138, 139). Moreover, exosomal miR-1, miR-222,

and miR-208a released from skeletal muscle were also involved in

the regulation of cardiac hypertrophy (138). Exercise altered

circulating exosomal miRNAs expression, including miR-486-5p,

miR-215-5p, miR-941, and miR-151b. These exosomal miRNAs

modulated cardiac hypertrophy through IGF-1 signaling (140).

MiR-199a induces cardiac hypertrophy through mammalian

target of rapamycin (mTOR) signaling pathway (132). Exosomal

miRNA-148a from CDCs improves TAC-induced myocardial

hypertrophy via down-regulation of GP130, leading to the

inhibition of STAT3/ERK1/2/AKT signaling pathway (141). MiR-

4731 overexpression promoted cardiac hypertrophy by targeting

sirtuin 2 (SIRT2) (142). Exosomal miR 331-5p is a critical regulator

of hypertrophy and fibrosis (143).
7 The summary and future outlook

Considerable advancements have been made in the past decade

regarding our understanding of the biology associated with

miRNAs derived from EVs and their pivotal role, particularly as

proficient mediators of inter-tissue communication, in the

physiology and pathological progression of cardiac hypertrophy

(144–146). In this review, we focus on elucidating the biological

functions and pivotal roles of extracellular EVs, encompassing their

biogenesis, molecular cargoes, and facilitation of intercellular

communication within the cardiovascular system. Furthermore,

miRNAs derived from EVs exhibit promising potential in

regulating pathological cardiac hypertrophy. These miRNAs-

enriching EVs are involved in various functional behaviors of

cardiac cells and intercellular communication, playing a critical

role in the pathophysiological progression of cardiac hypertrophy.
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The investigation into the biology of miRNAs derived from EVs

holds significant potential for future therapeutic interventions

aimed at cardioprotection, despite the limited research on EVs

harboring miRNAs in cardiac hypertrophy. Further and in-depth

research on the mechanism and role of miRNAs derived from EVs

can contribute to the identification of novel interacting molecules

and signal transduction pathways involved in cardiac hypertrophy,

thereby offering innovative ideas and methodologies for its

diagnosis and treatment. In the future, EV-derived miRNAs could

potentially function as clinical indicators for cardiac hypertrophy

owing to their distinctive inclusiveness. To establish EV-derived

miRNAs as diagnostic or prognostic biomarkers in pathological

cardiac hypertrophy, several technical challenges persist in this

research field and more efforts are needed to conduct large

randomized clinical trials.
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