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Background: Type 2 diabetes mellitus (T2DM) is a global health problem

characterized by insulin resistance and hyperglycemia. Early detection and

accurate prediction of T2DM is crucial for effective management and

prevention. This study explores the integration of machine learning (ML) and

explainable artificial intelligence (XAI) approaches based on metabolomics panel

data to identify biomarkers and develop predictive models for T2DM.

Methods: Metabolomics data from T2DM (n = 31) and healthy controls (n = 34)

were analyzed for biomarker discovery (mostly amino acids, fatty acids, and

purines) and T2DM prediction. Feature selection was performed using the least

absolute shrinkage and selection operator (LASSO) regression to enhance the

model’s accuracy and interpretability. Advanced three tree-based ML algorithms

(KTBoost: Kernel-Tree Boosting; XGBoost: eXtreme Gradient Boosting;

NGBoost: Natural Gradient Boosting) were employed to predict T2DM using

these biomarkers. The SHapley Additive exPlanations (SHAP) method was used to

explain the effects of metabolomics biomarkers on the prediction of the model.

Results: The study identified multiple metabolites associated with T2DM, where

LASSO feature selection highlighted important biomarkers. KTBoost [Accuracy:

0.938; CI: (0.880-0.997), Sensitivity: 0.971; CI: (0.847-0.999), Area under the

Curve (AUC): 0.965; CI: (0.937-0.994)] demonstrated its effectiveness in using

complex metabolomics data for T2DM prediction and achieved better

performance than other models. According to KTBoost’s SHAP, high levels of

phenylactate (pla) and taurine metabolites, as well as low concentrations of

cysteine, laspartate, and lcysteate, are strongly associated with the presence

of T2DM.

Conclusion: The integration of metabolomics profiling and XAI offers a

promising approach to predicting T2DM. The use of tree-based algorithms, in
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particular KTBoost, provides a robust framework for analyzing complex datasets

and improves the prediction accuracy of T2DM onset. Future research should

focus on validating these biomarkers and models in larger, more diverse

populations to solidify their clinical utility.
KEYWORDS

type 2 diabetes, metabolomics, machine learning, explainable artificial intelligence,
biomarkers, predictive modeling
1 Introduction

Type 2 diabetes (T2DM), a prevalent metabolic disorder, is

characterized by persistent hyperglycemia (1). This condition arises

from a deficiency or impairment in insulin secretion, rendering it

insufficient to maintain the body’s physiological functions (2).

Numerous conventional risk factors for diabetes have been

identified, including fasting blood glucose, lifestyle choices, and

obesity (3, 4). However, identifying abnormalities in these

customary indicators often signifies the presence of diabetes for

an extended duration. Consequently, elucidating the metabolic

pathways and biomarkers reflecting early changes is crucial for

understanding the etiology of T2DM. This knowledge establishes a

theoretical foundation for early diagnosis, risk prediction, and the

formulation of preventative strategies for T2DM.

In recent decades, numerous innovative technologies have been

continually proposed, significantly altering traditional screening

strategies. Metabolomics studies and machine learning (ML)

algorithms are two prominent technologies used for identifying

potential biomarkers and automating the detection or classification

of T2DM. Metabolomics offers a comprehensive and systematic

analysis of a spectrum of metabolites throughout the disease

development process. It holds considerable advantages in

revealing abnormal regions, understanding disease occurrence,

developmental mechanisms, and facilitating early recognition.

This approach not only deepens our comprehension of the

biochemical dynamics during disease progression but also

enhances the precision of early detection methods (5–9).

However, metabolomics data pose challenges due to their

complexity and high dimensionality, making traditional data

preprocessing methods and statistical analysis cumbersome. ML

algorithms are acknowledged for their effectiveness in handling

diverse, large datasets, enabling model training and decision-making

based on specific performance indicators. ML has become pivotal in

deciphering metabolomics data, showcasing its ability to identify

intricate patterns within high-dimensional and heterogeneous

datasets (10). The integration of ML techniques with metabolomics

has therefore emerged as a vital tool in the rigorous analysis and

interpretation of these vast and complex data sets.

By combining numerous weak learners, which individually do not

categorize data adequately but perform somewhat better than random
02
prediction, boosting is an ensemble learning strategy that seeks to

develop a stronger prediction model. The system achieves this by

combining several weak learners. Several boosting-based algorithms

are available for both broad and specific applications. A total of three

boosting-based prediction models were taken into consideration for this

investigation. The integration of metabolomics, boosting-basedML, and

explainable artificial intelligence (XAI) has significant promise and

advantages for the prediction of T2DM. The use of the Kernel-Tree

Boosting (KTBoost) model to identify significant biomarkers may

enhance early diagnosis and facilitate personalized treatment strategies

for T2DM. The algorithm demonstrates proficiency in managing

complex metabolomics datasets and has the potential to improve

T2DM prevention and management in practical clinical environments

by effectively integrating these advanced methodologies (11).

An exhaustive exploration of metabolomics technology in T2DM

has revealed that metabolic markers from diverse regulatory pathways,

including sugar, fat, and protein regulation, exhibit intimate

associations with the onset and progression of T2DM (12–14).

Numerous studies have conducted metabolomics analyses to identify

biomarkers linked to T2DM (15–18). However, due to the abundance

of metabolites, outcomes have exhibited variations across different

studies. Hence, there is a necessity to distinguish and integrate existing

metabolic biomarkers for T2DM. This requirement underscores the

importance of a more refined selection and validation process that can

leverage advanced computational tools to improve the robustness and

reproducibility of findings.

Based on the comprehensive biomarker discovery process, the

current research aims to identify distinctive biomarkers associated

with T2DM and create an optimal prognostic model that can

accurately predict the likelihood of T2DM occurrence in patients.
2 Materials and methods

2.1 Data collection

The NIH Common Fund National Metabolomics Data Repository

(NMDR) at Metabolomics Workbench (www.metabolomics

workbench.org) provided the data utilized in this investigation.

The data were accessible under project ID ST002681. The Inonu

University Health Sciences Non-Interventional Clinical Research
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Ethics Committee approved this study (approval number: 2024/

5862). Using MetSizeR and the PPCA model as a basis, the sample

size needed for this investigation was computed by setting the false

discovery rate to 0.05. This led to the estimation of a minimal

sample size of 14 patients overall, with 7 individuals in each

category. T2DM screening followed the American Diabetes

Association Standards of Medical Care standards by dividing

patients into control (n = 34) or T2DM (n = 31) groups. Smoking

status in all participants and pregnancy and contraceptive use in

female participants were the exclusion criteria for the study. This

study utilized metabolomics data consisting of a variety of

metabolites. The majority of metabolites belonged to the

following classes: amino acids and peptides (41), fatty esters (38),

fatty acids (20), and purines (17) (19).
2.2 Methods

This article’s focus is on the identification and categorization of

T2DM biomarkers using the metabolomics dataset mentioned in

the preceding section. Two primary phases comprise the machine

learning process for producing explainable classifiers: (i) building

and assessing various tree-based learning models and (ii) using the

SHapley Additive exPlanations (SHAP) algorithm to understand

global outputs. The flow-chart summarizing the methodology used

in the study is presented in Figure 1.
2.3 Data preprocessing

Metabolomics data with<5% missing values were filled with mean

values. For metabolites with missing values >5%, we used the miceforest

package to implement multiple imputations. To increase the stability of

the models, all continuous variables were normalized to obtain a

distribution with a mean of 0 and a standard deviation of 1 (20, 21).
2.4 Feature selection

Regression analysis employs the Least Absolute Shrinkage and

Selection Operator (LASSO) as a regularization technique,

incorporating an L1 norm penalty term into the objective function

of standard regression models. In the context of binary classification

problems, LASSO introduces an L1-norm penalty component to the

negative log-likelihood function within logistic regression. This aims

to estimate regression coefficients through minimization. After

LASSO regression analysis, the model conducts feature selection by

examining the coefficients assigned to each predictor variable. Due

the L1 norm penalty, which encourages sparsity in the coefficients,

shrunk some coefficients to zero, effectively eliminating the

corresponding predictors from the model. final model retains

features with non-zero coefficients, considering them important for

prediction, and excludes those with zero coefficients as less influential

(22–24). The regularization parameter value for LASSO was accepted

by default (1.0).
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2.5 Construction and assessment of
prediction models

Based on metabolomics data, three tree-based ML models were

built to predict T2DM. During the modeling phase, the KTBoost

method—which combines the tree and kernel approaches—was

employed in addition to the tree-based XGBoost and NGBoost

approaches, which have limited interpretability. These algorithms

were selected primarily because of their ability to cope with missing

data rapidly, prevent overfitting, and achieve high prediction power

(11, 22–24). The 65 patients were split 4:1 into training and testing

groups using a stratified random sample technique. Ultimately, an

assessment and comparison of each model’s performance on the test

set were conducted. We performed the persistence technique 100

times using various random seeds and determined the average

performance over these 100 times to achieve a more reliable

performance estimate, prevent reporting biased findings, and

reduce overfitting. Area under the Curve (AUC), F1 score,

specificity, accuracy, and sensitivity criteria were applied to assess

the models’ performance. After a thorough analysis of several

performance factors, the best-performing model out of the three

models used for the categorization was chosen for global explanation.
2.6 Machine learning algorithms

This study investigated three tree-based ensemble ML

algorithms for T2DM prediction: KTBoost, XGBoost, and

NGBoost. These algorithms are all variations of gradient boosting,

which iteratively builds decision trees on subsets of the data, aiming

to improve the model’s performance with each new tree. These

approaches were chosen because these algorithms effectively handle

high-dimensional data and the results are reliable, interpretable,

and applicable to examining complex relationships.

2.6.1 Kernel-Tree Boosting
Boosting algorithms are frequently utilized in both ML and data

science for enhancing predictive performance on intricate datasets

by iteratively amalgamating weak classifiers to diminish both bias

and variance. Unlike typical approaches where a single type of

function forms the basis of learners, the KTBoost algorithm

uniquely integrates either a regression tree or a penalized

Reproducing Kernel Hilbert Space (RKHS) into its ensemble of

base classifiers. During each iteration of the boosting process,

denoted by q, KTBoost employs a candidate tree [f Tq (x)] and an

RKHS function [f Kq (x)] as strategies for minimizing based on a

second-order Taylor approximation of the form W2(yq + f )

utilizing Newtonian or gradient-based optimization techniques.

The base learner that achieves the minimum empirical risk W is

selected for inclusion in the ensemble. This selection process,

whether it opts for the tree or the RKHS function, is determined

by which addition results in the lowest overall risk, adhering to the

relationship shown in equation (1):

(x) = yq−1(x) + v � fq(x)
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where v represents the shrinkage factors, crucial for updating

the model to enhance function understanding across varying

degrees of regularity, encapsulating both discontinuous and

smooth elements. Typically, discontinuities are addressed using

regression trees, while continuous or smooth aspects are managed

via RKHS functions (11, 25).

2.6.2 eXtreme Gradient Boosting
XGBoost is another powerful tree-boosting algorithm known

for its efficiency, regularization techniques to prevent overfitting,

and scalability for handling large datasets (26). These features make

XGBoost a strong contender for T2DM prediction tasks.
Frontiers in Endocrinology 04
2.6.3 Natural Gradient Boosting
NGBoost is a tree-boosting algorithm specifically designed for

analyzing ecological and environmental data. While not as widely

used for general machine learning tasks, NGBoost can be particularly

useful if your metabolomics data contains features related to dietary

or environmental factors potentially influencing T2DM risk (24).
2.7 Performance evaluation metrics

Several metrics were employed to evaluate the performance of

the ML models for T2DM prediction (27):
FIGURE 1

Flow chart of the methodology for interpretable prediction of T2DM.
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Fron
• Accuracy: Measures the overall proportion of correct

predictions made by the model. This is calculated as the

ratio of true positives and true negatives to the total number

of cases.

• F1-Score: Represents the harmonic mean of precision and

recall, incorporating both measures into a single score.

• Sensitivity (Recall): Measures the proportion of true

positives correctly identified by the model (true

positive rate).

• Specificity: Measures the proportion of true negatives

correctly identified by the model (true negative rate).

• Area under the Curve (AUC): Represents the area under the

receiver operating characteristic (ROC) curve. This metric

assesses the model’s ability to discriminate between cases

with and without T2DM.
2.8 Interpretable modeling and the
importance of metabolites

MLmodels are sometimes called “black boxes” because it can be

challenging to comprehend the reasoning behind an algorithm’s

ability to provide accurate predictions for a certain patient

population (28, 29). Therefore, global explanations of black box

ML models were obtained in this work using the SHAP approach.

Prioritizing the features in the final model based on their

importance helped identify important T2DM biomarkers in the

patient group using the SHAP technique.

2.8.1 SHapley Additive exPlanations
SHAP is a method in the field of ML that describes the output of

any model by calculating the contribution of each feature to the

prediction. It is based on Shapley values, a concept from cooperative

game theory that distributes total winnings among players

according to their marginal contribution to the overall success of

the group. SHAP can be applied to any ML model and provides a

consistent method for interpreting results across different

algorithms. It breaks down a prediction to show how much each

feature contributes positively or negatively to the target variable.

While SHAP values can explain individual predictions, aggregating

SHAP values into a dataset provides insights into the overall

behavior of the model and highlights which features are most

important globally (30–32).
2.9 Biostatistical analysis

The interquartile range (IQR) and median are used to

summarize quantitative data. The Shapiro-Wilk test was used to

examine the normal distribution. The Mann-Whitney U test was

used to determine if there was a statistically significant difference in

the input factors and the connection between the categories of the

output variable, the “control” and “T2DM” groups. A Heatmap

graph based on the Spearman rho coefficient was drawn to examine
tiers in Endocrinology 05
the relationships between metabolite levels. A p ≤ 0.05 was deemed

statistically significant. IBM SPSS Statistics for Windows version

28.0 (New York, USA) was used for all statistical analyses.
3 Results

At first, there were 178 metabolite features, and the LASSO was

used to find important metabolite biomarkers in T2DM. These

biomarkers were found to be high-dimensional for making clinical

prediction models easier to understand and more reliable. After

LASSO feature selection, Laspartate, lcysteine, llysine, lcystine,

adenine, xanthine, dglucosamine, creatine, l1pyrroline3hy

droxy5carboxylate, taurine, 3sulfinolalanine, lcysteate, serotonin,

tiglylcarnitine, dimethylnonoylcarnitine, octadecenylcarnitine,

phenyllactate(pla), and riboflavin metabolites were identified as

important biomarkers in T2DM. Table 1 contains the statistics

results regarding the changes in these biomarkers between T2DM

and controls. Table 1 compares metabolite levels between control

subjects and T2DM subjects using medians and IQRs for each group.

It also includes p values for statistical tests comparing two groups.

Lcysteine metabolite levels were significantly lower (p = 0.002) in

T2DM (Median: 0.005, IQR: 0.009) compared to controls (Median:

0.011, IQR: 0.012). Phenylactatepla was significantly higher (p=0.007)

in T2DM (Median: 0.006, IQR: 0.008) compared to control (Median:

0, IQR: 0.006). In addition, the median concentration of laspartate is

lower in the T2DM group compared to the control group (p=0.048).

In Figure 2, the heat map displays correlation coefficients ranging

from -1 (strong negative correlation, represented in blue) to +1

(strong positive correlation, represented in red). Dendrograms

(tree-like structures at the top and left of the heat map) group

metabolites based on the similarity of their correlation profiles; this

may be useful in identifying potential biomarkers or metabolic
TABLE 1 Comprehensive results of univariate statistical analysis.

Metabolite

Control T2DM

pMedian
(IQR)

Median
(IQR)

laspartate 0.029 (0.04) 0.013 (0.019) 0.048

lcysteine 0.011 (0.012) 0.005 (0.009) 0.002

llysine 0.225 (0.174) 0.231 (0.145) 0.984

lcystine 0.006 (0.005) 0.003 (0.008) 0.258

adenine 0.004 (0.005) 0.002 (0.003) 0.073

xanthine 0.007 (0.008) 0.007 (0.005) 0.953

dglucosamine 0.002 (0.004) 0.002 (0.007) 0.783

creatine 0.966 (0.049) 0.961 (0.04) 0.964

l1pyrroline3hydroxy5carboxylate 0.081 (0.078) 0.089 (0.071) 0.281

taurine 0.009 (0.016) 0.012 (0.018) 0.510

3sulfinolalanine 0 (0.001) 0 (0) 0.886

(Continued)
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signatures specific to T2DM or controls. A positive correlation (solid

red squares) was observed between metabolites such as riboflavin,

octadecenylcarnitine, and 1lproline3hydroxy. Based on this, it means

that these metabolites may increase and decrease together in the

metabolic profiles of patients. These results may suggest regulatory

mechanisms to clinicians in patients. Negative correlations indicate

that certain compounds may affect each other in opposite directions,

reflecting mutual regulatory effects that may play a role in metabolic

homeostasis. A negative correlation was observed between creatine

and l1pyroline3hydroxy5carboxylate. The results indicate that an

increase in creatine levels may be associated with a decrease in

l1pyroline3hydroxy5carboxylate levels.

Table 2 compares the performance metrics of three predictive

models (KTBoost, XGBoost, and NGBoost) in T2DM classification

using the 100 repeated hold-out method andmean values for Accuracy,

F1 Score, Sensitivity, Specificity, and AUC measurements along with
TABLE 1 Continued

Metabolite

Control T2DM

pMedian
(IQR)

Median
(IQR)

lcysteate 0.004 (0.004) 0.004 (0.004) 0.167

serotonin 0.001 (0.001) 0.001 (0.001) 0.293

tiglylcarnitine 0.003 (0.002) 0.003 (0.002) 0.188

dimethylnonoylcarnitine 0.001 (0.001) 0 (0) 0.080

octadecenylcarnitine 0.003 (0.006) 0.003 (0.009) 0.860

phenyllactatepla 0 (0.006) 0.006 (0.008) 0.007

riboflavin 0.001 (0.002) 0.002 (0.004) 0.678
T2DM, type 2 diabetes mellitus; IQR, interquartile range.
P values less than the statistical significance level (0.05) are indicated in bold.
FIGURE 2

Heat map for metabolite biomarkers identified after LASSO in T2DM.
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95% CIs are given for each model. KTBoost achieved the highest

Accuracy (0.938) and F1 Score (0.943) among the three models in

detecting T2DM; as a result, it can be said that there is a strong balance

between sensitivity and specificity of the model. The model also has the

highest Sensitivity value (0.971), resulting in the KTBoost model having

the best performance in detecting positive cases (T2DM) compared to

related models. When the specificity (0.903) and AUC (0.965) values

were examined, it was determined that the model had a very strong

general discrimination ability. Accuracy (0.908), AUC (0.945), and F1

Score (0.914) of the XGBoost model are slightly lower than KTBoost,

and it can be stated that the model performance is good but slightly

lower than KTBoost. NGBoost has the lowest Accuracy (0.892) and F1

Score (0.899) among the three models. The sensitivity (0.939) value is

comparable to XGBoost, showing a perfect true positive rate. NGBoost

has the lowest Specificity (0.844), indicating that it is less powerful than

other models in accurately detecting negative cases (control).

In addition to achieving optimal prediction accuracy, it is

crucial to evaluate the relative importance of various contributing

factors and quantify their impact on prediction results. Therefore,

in this section, in addition to the optimal KTBoost model, SHAP

analysis was used to interpret the results of the XGBoost and

NGBoost models. SHAP graphs for the KTBoost, XGBoost and

NGBoost models are presented in Figures 3–5, respectively. The

SHAP summary chart was created to determine the importance of

different contributing factors and explain their impact. In this plot,

all input factors are listed on the Y-axis, arranged in decreasing

order of importance. The importance of a factor refers to the degree

to which it affects the output of various factors of a model. The

importance of the factor is visually represented by a color gradient

from blue to red. In the SHAP plot, the X-axis represents the SHAP

value, and the Y-axis represents the names of the features. Shapley

values indicate how much each feature affects the prediction of the

target variable. Each point on the graph represents the SHAP value

of a single sample (patient) relative to a specific metabolite.
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When the SHAP explanations for the optimal prediction model,

KTBoost, are examined, metabolites such as cysteine, phenyllactate

(pla) and laspartate at the top of the plot have more scattered points

along the SHAP value spectrum, indicating that they have a

significant impact on the prediction model. The metabolites

lcysteine, laspartate and lcysteate show a high distribution of

positive SHAP values, explaining that lower concentrations of

lcysteine, laspartate and lcysteate are strongly associated with the

presence of T2DM. In contrast, it is a result of SHAP statements

that high levels of phenyllactate (pla) and taurine metabolites

increase the risk of T2DM.
4 Discussion

This study investigated the potential of a hybrid ML and

explainable artificial intelligence (XAI) approach for discovering

metabolomic biomarkers and developing a prognostic model for

T2DM. The findings demonstrate the effectiveness of this combined

strategy for advancing our understanding and prediction of T2DM.

Currently, A1C Test, Fasting Plasma Glucose (FPG) Test, Oral

Glucose Tolerance Test (OGTT) and Random Plasma Glucose Test

are used for the diagnosis of Type 2 DM. Although these methods

have various advantages, they suffer from time, cost, inaccurate

results in various clinical cases, false positivity, misleading single

measurement, etc. (33–35). At this point, the use of ML models in

the diagnosis of T2DM can provide good validation of the above-

mentioned routine tests and prevent unnecessary retests. ML

algorithms can be effective in early diagnosis of type 2 diabetes

mellitus and can provide higher accuracy rates and personalized

diagnostic models by working with large data sets. A comprehensive

review study (36) asserted that ML models accurately classify Type

2 Diabetes Mellitus with high performance, specifically highlighting

the superior prediction performance of decision tree-based models

over other models. In addition, an observational study (37) has

shown that the Gradient Boosting Machine model, one of the

decision tree-based boosting models used to predict T2DM, offers

better prediction performance than other classical ML models.

The application of LASSO-based feature selection successfully

identified a subset of critical metabolites from the metabolomics

data, highlighting the power of this technique in managing high-

dimensional datasets (38). Notably, the identified biomarkers,

including lcysteine, laspartate, and phenyllactate (pla), are known

to be involved in metabolic pathways associated with T2DM (39).

This alignment with established metabolic knowledge strengthens

the validity of our results and suggests potential mechanisms

underlying T2DM development.

The comparative analysis of ML algorithms revealed KTBoost

as the optimal model for T2DM prediction. This finding

underscores the strengths of gradient boosting frameworks in

handling complex, non-linear data often encountered in

metabolomics studies (40). Further investigation into the specific

hyperparameters tuning strategies employed for the KTBoost model

could provide valuable insights into optimizing ML algorithms for

metabolomics-based T2DM prediction. Additionally, exploring the

performance of the KTBoost model in comparison with other
TABLE 2 T2DM prediction performance metrics of the
constructed models.

Metric/
Model

KTBoost XGBoost NGBoost

Accuracy
0.938 (0.880-

0.997)
SD: 0.029

0.908 (0.837-
0.978)

SD: 0.036

0.892 (0.817-
0.968)

SD: 0.038

F1-Score
0.943 (0.886-

0.999)
SD: 0.028

0.914 (0.846-
0.982)

SD: 0.034

0.899 (0.825-
0.972)

SD: 0.037

Sensitivity
0.971 (0.847-

0.999)
SD: 0.038

0.941 (0.803-
0.993)

SD: 0.048

0.939 (0.798-
0.993)

SD: 0.049

Specificity
0.903 (0.742-

0.980)
SD: 0.060

0.871 (0.702-
0.964)

SD: 0.066

0.844 (0.672-
0.947)

SD: 0.070

AUC
0.965 (0.937-

0.994)
SD: 0.014

0.945 (0.906-
0.984)

SD: 0.019

0.936 (0.891-
0.980)

SD: 0.022
AUC, Area under the Curve; KTBoost, Kernel-Tree Boosting; XGBoost, eXtreme Gradient
Boosting; NGBoost, Natural Gradient Boosting; SD, standard deviation.
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advanced ML algorithms, such as deep learning architectures, could

offer valuable insights into the trade-offs between model

complexity, interpretability, and generalizability in this context.

The KTBoost model’s calculated SHAP values for metabolite

variables show relatively closer intervals, indicating a more balanced

effect distribution among the variables. The XGBoost model reveals

that certain variables, such as l-cysteine, phenylacetate (pla), and

laspartate, exhibit more significant effects than others. In the

NGBoost model, a dominant negative effect of the l-cysteine

metabolite in particular stands out. Examining the SHAP graphs

in Figures 3–5 reveal a negative correlation between the risk of
Frontiers in Endocrinology 08
T2DM and the increase in the concentration amounts of the

metabolite variables l-cysteine and laspartate in all models.

Furthermore, despite differences in their orders and effect sizes

across all three models, we can assert that similar metabolite

variables such as l-cysteine, phenylacetate (pla), and laspartate

significantly influence the predictive performance of the models

compared to other variables. The utilization of SHAP values for

interpreting the KTBoost model provided valuable clinical insights.

The observed association between lower levels of lcysteine and

laspartate with T2DM suggests potential metabolic deficiencies in

pre-diabetic stages, possibly due to oxidative stress or inflammatory
FIGURE 3

SHAP explanations for the optimal model KTBoost; X-axis: Represents SHAP values that measure the impact of each metabolite on the model’s
output. Positive SHAP values increase the probability that the model predicts T2DM, while negative values decrease this probability; Y-axis: Lists
metabolites in order of importance by impact on model output; Red indicates high values of the corresponding metabolite and blue indicates low
values. The color intensity and position on the X-axis express how effective the level of the metabolite is in predicting diabetes.
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processes (41). Conversely, elevated levels of phenyllactate (pla) and

taurine emerged as potential early T2DM risk factors, highlighting

their potential utility in preventive strategies. Future research could

explore the biological mechanisms underlying these metabolite level

changes in the context of T2DM development, potentially through

in vitro or in vivo studies. Investigating the influence of modifiable

lifestyle factors, such as diet and exercise, on these metabolite levels

could inform the development of personalized interventions for

T2DM prevention.
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The findings of this study hold significant promise for improving

clinical practice in T2DM management. Early detection of T2DM is

crucial for preventing or delaying the onset of complications such as

neuropathy, nephropathy, and retinopathy (42). The current

diagnostic gold standard, HbA1c testing, often identifies individuals

only after they have developed hyperglycemia. By identifying

potential biomarkers associated with pre-diabetic stages, this

approach has the potential to facilitate earlier intervention and

potentially prevent the progression to overt T2DM.
FIGURE 4

SHAP explanations for the optimal model XGBoost.
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The American Diabetes Association (2020) (42) emphasizes the

importance of lifestyle modifications, including dietary changes and

increased physical activity, as the cornerstone of T2DMmanagement.

Integrating metabolomics profiling with these established strategies

could enable the development of more personalized interventions.

For example, individuals with lower levels of lcysteine or laspartate

might benefit from dietary modifications rich in these amino acids,

while those with elevated phenyllactate (pla) levels could be targeted

with interventions aimed at addressing potential underlying

metabolic imbalances.
Frontiers in Endocrinology 10
Metabolomics research has found many metabolites, including

branched-chain amino acids, glycine, glucose, fructose, and lipids, that

correlate with the risk of T2DM. Particular metabolites such as leucine,

alanine, and oleic acid have a positive correlation with T2DM, while

lysophosphatidylcholine and creatinine show a negative correlation.

Metabolomics may discover new biomarkers that enhance the

prediction of T2DM beyond conventional clinical risk factors. ML

methods that include metabolomics data may substantially enhance

the prediction of T2DM. Models using metabolomics data

demonstrated superior prediction ability (AUC = 0.77) in contrast to
FIGURE 5

SHAP explanations for the optimal model NGBoost.
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models relying only on clinical risk variables (AUC = 0.68).

Metabolomics-based models may detect early metabolic alterations

that predate the clinical manifestation of T2DM, facilitating more

effective preventative measures. These results indicate that the

incorporation of metabolomics with tree-based boosting methods

may significantly improve the prediction of T2DM by discovering

new metabolic biomarkers and enhancing predictive accuracy beyond

conventional clinical risk variables (36, 43, 44).

While this study offers promising avenues for T2DM diagnosis

and management, future research is warranted to further strengthen

its foundation. Longitudinal validation of these biomarkers across

diverse populations, including different ethnicities and age groups,

is crucial to assess their generalizability and reliability. Additionally,

integrating these predictive models into clinical workflows needs

investigation to evaluate their effectiveness in real-world settings

and their potential to improve patient outcomes. This could involve

developing user-friendly interfaces for clinicians and exploring

cost-effectiveness considerations for incorporating metabolomics

profiling into routine clinical practice.

Furthermore, exploring the interplay between these biomarkers

and other relevant data points, such as gut microbiota composition

and genetic predispositions, could lead to a more comprehensive

understanding of T2DM etiology. Integrating metabolomics data

with these other domains could potentially lead to the identification

of multi-factorial signatures with enhanced diagnostic accuracy and

the development of more targeted treatment strategies. Machine

learning algorithms capable of handling multi-omics data

integration could be particularly valuable in this endeavor. By

furthering our understanding of the complex interplay between

these factors, we can move towards a more holistic approach to

T2DM prevention and treatment.

This study successfully combined metabolomics, ML, and XAI

to develop a novel approach for T2DM prediction. The identified

biomarkers and the KTBoost model hold promise for early

diagnosis and personalized treatment strategies. Future research

directions outlined in this discussion pave the way for further

refinement and real-world implementation of this innovative

approach, ultimately contributing to more effective T2DM

prevention and management.
5 Limitation

Despite the significant and robust results obtained in the study,

there were several limitations. First, the sample size was relatively

small, with only 31 T2DM patients and 34 healthy controls. This

limited sample size may affect the generalizability of our findings to

larger, more diverse populations. Future studies should aim to

include a larger and more representative cohort to validate the

results and ensure their applicability across different demographics.

In addition, the study primarily used metabolomics data, while

providing valuable insights into metabolic changes associated with

T2DM, may not capture the full complexity of the disease.

Integrating additional omics data, such as genomics, proteomics,

and transcriptomics, may provide a more comprehensive

understanding of T2DM and increase the robustness of predictive
Frontiers in Endocrinology 11
models. Subsequent research should consider conducting additional

experimental validation, such as targeted metabolomics studies or

in vitro experiments, to confirm the roles of these biomarkers in

T2DM development.
6 Conclusion

This study constructed a new interpretable prediction model

based on XAI to predict patients with T2DM early. Combining the

kernel and tree approach, KTBoost has increased both accuracy and

robustness. Furthermore, physicians can comprehend the

underlying metabolomics biomarkers that contribute to

anticipated outcomes thanks to our interpretable model. Early

identification of T2DM patients by KTBoost facilitates clinical

decision-making and the best use of available resources.
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