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Neuron stress-related genes
serve as new biomarkers in
hypothalamic tissue following
high fat diet
Caixia Liang1,2,3,4†, Hongjian Lu5†, Xueqin Wang6, Jianbin Su6,
Feng Qi7, Yanxing Shang1,2,3,4, Yu Li8, Dongmei Zhang1,2,3,4,8*

and Chengwei Duan1,2,3,4*

1Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, China, 2Jiangsu
Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong
First People’s Hospital, Nantong, China, 3Nantong Municipal Medical Key Laboratory of Molecular
Immunology, Medical Research Center, Nantong First People’s Hospital, Nantong, China, 4Nantong
Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical
Research Center, Nantong First People’s Hospital, Nantong, China, 5Department of Rehabilitation
Medicine, Affiliated Hospital 2 of Nantong University, Nantong, China, 6Department of Endocrinology,
Affiliated Hospital 2 of Nantong University, Nantong, China, 7Emergency Intensive Care Unit, Affiliated
Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China,
8Department of Pathogen Biology, Medical College, Nantong University, Nantong, China
Objective: Energy homeostasis is modulated by the hypothalamic is essential for

obesity progression, however, the gene expression profiling remains to be

fully understood.

Methods: GEO datasets were downloaded from the GEOwebsite and analyzed by

the R packages to obtain the DEGs. And, the WGCNA analysis and PPI networks of

co-expressed DEGs were designed using STRING to get key genes. In addition, the

single-cell sequencing datasets and GTEx database were utilized to receive the

neuron-stress genes from the key genes. Further, high-fat diet (HFD)-induced

hypothalamic tissue of mice was used as an animal model to validate the mRNA

up-regulation of neuron-stress genes. In addition, the Bmi1 gene was identified as

a hub gene through the LASSO model and nomogram analysis. Western blot

confirmed the high expression of Bmi1 in hypothalamic tissue of HFD mice and

PA-stimulated microglia. Immunofluorescence staining showed that HFD induced

the activation of microglia and the expression of Bmi1 in hypothalamic tissue.

Results:We found that six genes (Sacm1l, Junb, Bmi1, Erbb4, Dkc1, and Suv39h1)

are neuron stress-related genes and increased in the HFD-induced mice obesity

model, Bmi1gene was identified as a key genes that can reflect the

pathophysiology of obesity.
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Conclusions: Our research depicted a comprehensive activation map of cell

abnormality in the obese hypothalamus and Bim1 may be a diagnostic marker in

the clinic, which provides a new perspective and basis for investigating the

pathogenesis of obesity.
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Introduction

A survey from the World Health Organization in 2016

indicated that 39% of adults worldwide were overweight and 13%

were obese. Between 1975 and 2016, the prevalence of obesity nearly

tripled worldwide (1). The two main causes of obesity are a high

calorie intake and an active-sedentary lifestyle. The battle against

obesity has not been effective despite extensive research on the

mechanism of obesity by medical professionals and researchers

from all around the world. Understanding how our body maintains

a healthy weight and what pathological processes interfere with

weight control mechanisms can help us treat obesity more

successfully. Additionally, it is critical to investigate diagnostic

markers that might be used to avoid obesity and its sequelae.

The hypothalamus, which controls the neuroendocrine system as

a whole and is known to control energy homeostasis through

coordinated actions of neural pathways and neuroendocrine

hormones that control energy balance and nutrient homeostasis,

regulates food intake and energy expenditure (2–8). Additionally, two

neurons that produce neuropeptide Y, agouti-related peptide, and

pro-opiomelanocortin (POMC) can combine satiety and hunger

signals from peripheral tissue (9). They are the first-line neurons

and are responsible for perceiving and responding to metabolic

signals affecting the nutritional status in the body (10). Agouti-

related peptide (AgRP)-expressing and POMC-expressing neurons

reciprocally regulate food intake and can immediately respond to

changed glycolipid metabolism. The restricted availability of NPY/

AgRP and POMC neurons and narrow technical resources and

detecting procedures impedes our comprehension of how these

neurons function in processes of obesity.

Elucidating the molecular pathways and cellular functions

underlying the development and progression of obesity would

contribute to its diagnosis, prevention, and therapy. High-

throughput sequencing technology is an effective and strong tool

for understanding the pathophysiology of obesity and its

comorbidities. In recent years, microarray or sequencing datasets

of obesity have been amassed and are available online. The rapid

growth of bioinformatics technology, several analysis tools and

internet portals have been developed and deployed to uncover
02
disease biomarkers (11–16). Weighted gene co-expression

network analysis (WGCNA) can be used to mine linked patterns

between genes to discover relevant modules and hub genes for

cancer (17). This approach has been frequently utilized to detect

biomarkers at the transcriptional level (18, 19). More unexpected is

that single-cell transcriptome sequencing has grown rapidly and has

been employed in different scientific disciplines in recent years,

making it possible to properly describe cell types and associated

gene expression profiles in diverse tissues (20–22). Therefore, this

new technology innovation has supplied the chance to examine the

biomarkers of obesity and its problems.

Based on rich public resources and bioinformatics

methodologies, this work discovered six neuron stress-related

genes associated with obesity using differential WGCNA and

scRNA-seq of GSE100012. We subsequently observed that the

mRNA levels of these six neuron stress-related genes were up-

regulated utilizing Q-PCR technology in a high-fat diet-induced

obesity animal. In addition, LASSO model and nomogram analyses

were done to select six neuron stress-related genes and create a

diagnostic model for obesity. The Bmi1 gene has a reasonably

strong diagnostic performance and provides a new clinical

diagnosis biomarker for obesity and associated consequences,

which is confirmed by western blot and immunofluorescence

staining assays. The workflow of this study is shown in Figure 1A.
Materials and methods

Gene expression data and processing

GSE100012, the gene expression data for diet-induced changes

in mice hypothalamus tissue from lean and obese groups with

access to standard chow and high-fat diet (HFD) (23). The dataset

was obtained using the Agilent-028005 SurePrint G3 Mouse GE

8x60K Microarray platform and downloaded from the Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/).

We utilized the R package “limma” to standardize the RNA

sequencing data (24). Small variations in gene expression data

generally indicate noise, consequently, we used values of
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coefficient of variation to pick the most variant genes, which were

then used to form the network.
Principal component analysis

Intragroup data repeatability in each group was checked by

Pearson’s correlation test. The intragroup data repeatability of the

dataset was evaluated using sample clustering analysis. Statistical

analysis was performed using the R language, and the findings were

presented by the R program “ggplot2”.
WGCNA network construction and
module identification

The WGCNA R software was used to generate the co-

expression network (17). First, samples were grouped to check the

presence of any evident outliers. Second, the automatic network

construction function was employed to generate the co-expression

network. The R function choose “Soft Threshold” was used to

determine the soft thresholding power b, to which co-expression

similarity was elevated to calculate adjacency. Third, hierarchical

clustering and the dynamic tree cut function were employed to

detect modules. Fourth, gene significance (GS) and module
Frontiers in Endocrinology 03
membership (MM) were estimated to tie modules to clinical

features. The matching module gene information was retrieved

for further study. Finally, we displayed the network of eigengenes.
Protein–protein interaction network
establishment and key gene recognition

PPI network was constructed with Search Tool for the Retrieval

of Interacting Genes (STRING; https://string-db.org/), which is one

of the largest online databases of known protein‒protein

interactions containing the largest number of species (25). The

parameter of interactions was set with a confidence score>0.4. The

confidence score relates to the strength of data support in terms of

the thickness of the line. Thereafter, Cytoscape software (version

3.9.1) was used to generate and evaluate the PPI network (26).

Moreover, the Cytoscape plug-in MCODE was utilized to screen

important clustering modules in the entire network (27). The

Cytoscape plug-in CytoHubba was used to calculate the protein

node degree (28, 29). The best three approaches [(Maximal Clique

Centrality (MCC), betweenness, and degree] were selected for the

analysis. Each method was utilized to demonstrate the respective

top 10 genes. A Venn diagram was produced to visualize shared hub

genes based on these three methodologies.
FIGURE 1

Comparison of DEGs present in obese and lean samples. (A) A flowchart showing the steps in this study. Box plots of the gene expression data after
normalization. (B) The horizontal axis represents the sample symbol, which is divided into a lean and obese group, with four samples in each group,
and the vertical axis represents the gene expression values. The black line in the box plot represents the median value of gene expression. (C, D)
Principal component analysis (PCA) plots showing the expression variability of DEGs across all the samples. The red colour represent lean sample,
the green colour represent obese sample. (E) The volcano plot for DEGs in the GSE100012 dataset. The X-axes index the -log (P value), and the y-
axes index the log fold change. The red dots represent upregulated genes, and the blue dots represent downregulated genes. The gray dots
represent genes with no significant difference. FC is the fold change. (F) The expression data are represented as a data matrix wherein each row
represents a gene and each column represents a sample. The green coded bar above the heatmap represents the lean sample set, and the red
coded bar represents the obese sample. The expression level is described in terms of the color ratio of the upper left corner. Hierarchical clustering
is shown by the top tree view, indicating the degree of relatedness in gene expression. DEG, differentially expressed genes; FC, fold change.
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scRNA-seq data analysis

Two public scRNA-seq datasets were retrieved from the

database (GSE125065, GSE205667) (30, 31). Before further

investigation, we filtered out three interference elements, as

follows. First, cells with fewer than 200 identified genes were

filtered out, as were cells with a high detection rate (15%) of

mitochondrial gene expression. Second, to further exclude

probable doublets in our data, cells with more than 6,000

identified genes were additionally filtered away. Third, genes that

were discovered in fewer than 10 cells were filtered out. After quality

control, the data were normalized and scaled. We reduced the batch

impact across distinct individuals by finding anchors between

identities and supplied these anchors to the ‘IntegrateData’

method. For data visualization, the dimensionality was further

reduced using uniform manifold approximation and projection

(UMAP). To cluster single cells by their expression profiles, we

employed an unsupervised graph-based clustering technique,

Louvain. Cell types were annotated using canonical marker genes.

All these analyses were performed by the Seurat(4.0) R package

(22). Gene expression in the single-cell datasets was represented by

dotplot with percentage of expression and average expression and

scattered plot in two µmap dimensions.
GTEx data analysis

First, the gene expression data matrix in normal hypothalamic

samples was retrieved from the GTEX database (Version 8) (https://

gtexportal.org/home/), and 157 samples’ expression data were

ultimately collected. The TPM value was utilized to demonstrate

gene expression and determine the Pearson correlation coefficient

between genes. In addition, heatmap was generated to show the

expression levels of these genes.
Animals and treatments

6-8 weeks old male C57BL/6 mice were acquired from the

Experimental Animal Center of Nantong University. The animals

were kept in a temperature controlled environment with 12 hours

light/dark cycle, and free to access water and food. After acclimation

for one week, mice were randomly divided into 6 groups (n = 5 per

group) and fed either a diet containing 60% kcal fat (HFD, D12492,

Research Diets) or a normal chow diet (NCD, D12450J, Research

Diets). The experiment was performed for 28 days before all mice

were sacrificed and brain tissues were immediately collected for

further analyze (14). All animal studies were approved by the

Institutional Animal Ethics Committee Nantong University.
RNA extraction and quantitative Q-PCR

A high-fat diet model was constructed with C57BL/6J mice, and

the hypothalamic tissue was stored at -80°C until use (32). RNA

samples were extracted from hypothalamic tissues with the Fast
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Pure Cell/Tissue Total RNA Isolation kit (Vazyme Biotech) using

TRIzol reagent (Invitrogen), and they were reverse-transcribed by

using 5×PrimeScript RT Master Mix (RR036A,TaKaRa, Japan)

according to the manufacturer’s instructions. To determine the

relative transcript level, PCR was quantified in realtime using

2×QuantiNova SYBR Green (D7262, Beyotime, China) to analyze

gene expression on the Bio-Rad CFX Maestro 1.0 system. The

mRNA level was analyzed by using the 2−DDCT method. Gapdh was

used as a reference gene. The primer pair sequences are following:

Sacm1l-F: 5′-GCAGCCTACGAGCATCTGAAG-3′,
Sacm1l-R: 5′-GGACACTCGGTCAATGATGAGTA-3′;

Junb-F: 5′-TCACGACGACTCTTACGCAG-3′,
Junb-R:5′-CCTTGAGACCCCGATAGGGA-3′;

Bmi1-F: 5′-ATCCCCACTTAATGTGTGTCCT-3′,
Bmi1-R:5′-CTTGCTGGTCTCCAAGTAACG-3′;

Erbb4-F: 5′-GTGCTATGGACCCTACGTTAGT-3′,
Erbb4-R:5′-TCATTGAAGTTCATGCAGGCAA-3′;

Suv39h1-F: 5′-GCAGTGTGTGCTGTAAATCTTCT-3′ ,
Suv39h1-R:5′-ATACCCACGCCACTTAACCAG-3′;

Dkc1-F: 5′-AAAGACCGGAAGCCATTACAAG-3′,
Dkc1-R:5′-GCCACTGAGAAGTGTCTAATTGA-3′;

Gapdh-F: 5′-CAAGGTCATCCATGACAACTTTG-3′,
Gapdh-R:5′-GTCCACCACCCTGTTGCTGTAG-3′.
Clinical correlation analysis

Professor. Mara Dierssen had completed various works

concerning overweight with high transcriptome sequencing to

find the differential expression genes and also shared the original

data (23). Thanks to Professor. Mara Dierssen. We employed the

original data from the Nestlet shredding test and grooming

behavior to explore the significance of hub genes for clinical

prediction. The tidy verse, rms, and glmnet programs were used

to do lasso regression analysis (33). A nomogram was constructed

to predict the prevalence of obesity. Finally, the calibration curve

was used to evaluate the accuracy and resolution of the

nomogram analysis.
Cell culture and stimulation

The BV2 microglial cells was cultured in DMEM (11885084,

Gibico, USA) supplemented with 10% fetal bovine serum

(10091148, Gibico, USA) at 37°C and 5%CO2. Before stimulation,

cells were seeded in cell culture dishes overnight, then added with

200mM palmitic acid (PA) (KC004, Kunchuang Biotechnology,

China) for the required time, proteins were collected for

further analysis.
Western blot

Hypothalamic tissues and harvested cells were prepared and

lysed according to standard protocols as previously described (32).

The following antibodies were used: Bmi1 (66161-1-Ig, Proteintech,
frontiersin.org
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China), iNOS (18985-1-AP, Proteintech, China), IL-6 (12912,

Cell Signaling Technology, USA), a-Tubulin (66031-1-Ig,

Proteintech, Chnia). The resulting bands were visualized using

the Immobilon Western Chemiluminescent HRP Substrate

(PK1001, proteintech, China).
Immunofluorescence staining

Standard Immunofluorescence procedures were followed. The

frozen mouse brain tissue sections were rewarmed and blocked in

blocking buffer (10% normal fetal bovine serum, 0.3% Triton X-

100) for 2h. Then, the sections were incubated with the primary

antibody against Bmi1 and Iba1 (019-19741, FUJIFILM Wako,

Japan) followed by 24h at 4°C. Then, the sections were washed

with PBS and incubated with the proper Alexa secondary antibodies

(A21206, A10037, Thermo Fisher Scientific, USA) 2h at 37°C.

Nuclei were stained by Hoechst (33342, Thermo Fisher Scientific,

USA) and imaging was performed by fluorescence microscopy

(ECLIPSE Ni-E, Nikon, Japan). For each group, three different

mouse hypothalamic regions were chosen, and the fluorescence

intensity was analyzed using Image J software. The charts were

drawn using GraphPad Prism, v8.0 software.
Statistical analysis

Statistical analyses were performed using GraphPad Prism, v8.0

software. The difference between two groups was analyzed using an

unpaired t test, and differences between multiple groups were

calculated via analysis of variance (ANOVA) test. Data were

expressed as mean ± SEM, and the significance was defined as

P < 0.05 (*P < 0.05; **P < 0.01; ***P < 0.001).
Results

Research design summary, data
normalization and screening of DEGs

Every microarray was adjusted (centered) using quantile data

normalization using the bead array package in R Bioconductor. As

shown in Figure 1B, raw RNA expression data were normalized

after preprocessing; median-centered values revealed that the data

were normalized, and thus, it was possible to cross-compare

between obese and lean samples. The normalized gene expression

signals of all expressed genes were utilized to calculate the principal

component analysis (PCA) for the identification of the global

expression patterns of eight samples. Consequently, the

presentation of the top two components demonstrated clear

distinction between the lean and obese specimen (Figures 1C, D).

Significant connection of the biological replicates revealed the

quality and trustworthiness of the RNA-seq data and that diet-

induced obesity (DIO) might modify the transcriptome profiles.

Batch correction, normalization, and differential analysis of

microarray data from GSE100012 were done to test for DEGs in
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hypothalamus samples. A total of 1814 DEGs, comprising 803

downregulated and 1011 upregulated genes, were discovered from

GSE100012 with the screening parameters “adjusted P value<0.05

and FC>0.2”. The results were shown using a volcano plot

(Figure 1E), which reveals key genes. Furthermore, heatmap

calculation confirmed the DEG expression trends revealed in

RNA-seq analysis in hypothalamus samples (Figure 1F).
WGCNA and analysis of the most obese-
associated module

According to the phenotypic characteristics of the high-fat diet,

the lean group and the obese group were evaluated by cluster

analysis of their gene expression profiles when generating the

sample dendrogram. There were no outlier specimens, hence no

specimens were deleted (Figure 2A). To confirm that the network is

scale-free, we used the pick soft threshold function and found that

the best soft threshold was automatically established at 9, which

makes the evaluation coefficient R2 of the scale-free network run up

to 0.8 for the first time (Figure 2B).

Next, we created the gene network and identified modules using

the one-step network creation function of the WGCNA R package.

For cluster splitting, the soft thresholding power was set at 9, the

minimum module size was set at 60, and the cutting height was set

at 0.25 (which implies a medium sensitivity). Finally, 20 gene co-

expression modules were generated (Figure 2C). We plotted the

links between the indicated modules (Figure 2D). The heatmap

illustrates the topological overlap matrix (TOM) among all genes

included in the investigation. The light color signifies a modest

overlap, while the progressively darker red color represents an

increasing overlap. The findings of this research suggested that

the gene expression was relatively independent amongst modules.

We studied the connection of eigengenes. Eigengenes can provide

information on the link between paired gene co-expression

modules. We clustered the eigengenes and examined their

connection. The results showed that 20 modules may be classified

into two clusters (Figure 2E). The module eigengene (ME) in the red

module (r=0.94; p=2e−4) revealed the highest positive correlation,

whereas the ME in the tan module (r=-0.92; p=0.001) showed the

second highest negative correlation (Figure 2F). We connected

modules with phenotypic attributes and checked for the most

significant associations modules. Both the red (cor=0.82, p=1.2e

−92) and tan (cor=0.74, p<1.6e-21) modules revealed strong

positive correlations between module member (MM) and gene

significance (GS) of the target genes (Figure 2G). Therefore, the

red module and tan module were designated as essential modules.

The modules having a high connection with fat were red and tan.
GO and KEGG pathways enrichment
analyses for the key module

Furthermore, 322 overlapping genes were discovered between

the red and tan modules and DEGs using a Venn diagram

(Figure 3A). To investigate the probable biological activities of
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these genes, GO enrichment studies were done. We did a GO

analysis and KEGG analysis of 322 overlapping genes (Figures 3B,

C). The findings of these analyses showed that, for the biological

process, the genes were enriched in response to stimulation,

metabolic process, and reproductive process, which are associated

to the hypothalamus. Herman et al. has shown that within the

hypothalamus, the parvocellular neurons of the paraventricular

nucleus (PVN) are a group of densely packed neurons that are

highly responsive to external physiological stimuli (34). Lainez et al.

discussed the hypothalamic neurons involved in feeding and their
Frontiers in Endocrinology 06
interactions with reproductive circuitry. Metabolism influences

hypothalamic function and the regulation of GnRH neurons,

which are derived from the hypothalamus as the final brain signal

that regulates reproduction (35). For the cellular component,

overlapping genes were mostly enriched in cell, organelle, and

membrane. Regarding molecular function, these genes were

strongly associated with binding, catalytic activity, and nucleic

acid binding transcription factor activity. The functional

analysis (KEGG analysis) of these genes found some regulatory

pathways were activated. For example: metabolism pathway
FIGURE 2

Construction and module analysis of weighted gene coexpression network analysis (WGCNA). (A) Sample clustering dendrogram based on Euclidean
distance. (B) Network topology analysis under various soft-threshold powers. Left: The x-axis represents the soft-threshold power. The y-axis
represents the fit index of the scale-free topology model. Right: The x-axis represents the soft-threshold power. The y-axis reflects the average
connectivity (degree). (C) Clustering dendrogram of genes with different similarities based on topological overlap and the assigned module color. (D)
The heatmap depicts the topological overlap matrix (TOM) among all modules included in the analysis. The light color represents a low overlap, and
the progressively darker red color represents an increasing overlap. (E) Eigengene dendrogram and eigengene adjacency plot. (F) Module–trait
association. Each row corresponds to a module, and each column corresponds to a feature. Each cell contains the corresponding correlation and P
value. This table is color-coded according to the relevance of the color legend. (G) Scatter plot showing correlations of gene significance for obese
vs. module membership in the red and tan modules.
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(lipid metabolism,carbohydrate metabolism, and amino acid

metabolism), genetic information processing (folding, sorting and

degradation, translation, replication and repair, transcription),

environmental information processing (signal transduction,

signaling molecules and interaction, membrane transport),

cellular processes (transport and catabolism, cellular community-

eukaryotes, cell growth and death, cell motility), organismal systems

(immune system, sensory system, and endocrine system), human

diseases (infectious disease: viral, cancer: overview, and infectious

disease: bacterial).
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PPI network construction and key
gene identification

We uploaded 322 genes to the STRING online database to

obtain the PPI network. The generated PPI network comprised a

total of 266 nodes and 178 edges. Figure 4A provides the depiction of

the network built using Cytoscape software (version: 3.9.1).

Subsequently, neuron stress-associated genes were found by using

the Cytohubba component of Cytoscape program. Next, we picked

three algorithms to screen the neuron stress-associated genes in the
FIGURE 3

Results of GO enrichment and KEGG analysis. (A) The overlapping genes were screening with red and tan modules and DEGs by Venn map. (B) The
abscissa represents the enriched GO terms, and the ordinate represents the number and ratio of the differentially expressed genes. Different colors
represent different GO classes: Molecular function, Biological process, and Cellular component. Abbreviation: GO, gene ontology. (C) KEGG bar
graph. The related terms were rearranged and classified according to the six classifications of KEGG pathways, and the length of the bar represents
the number of gene counts.
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PPI network and identified 30 key genes. As shown in Figures 4B–D,

the top 10 genes were identified by degree (Pou5f1, Gata4, Fos, Cxcl1,

Kif20b, Msx1, Junb, Pole2, Mms22l, Bmi1), MCC (Pou5f1, Gata4,

Msx1, Fgfr2, Fos, Snai2, Sacm1l, Kif20b, Vwc2, Cacng3), and

betweenness (Pou5f1, Gata4, Ttn, Cxcl1, Erbb4, Dkc1, Cyp17a1,

Lif, Suv39h1, Fos).
ScRNA-Seq data revealed high cell
heterogeneity in hypothalamic tissue and
neuronal stress-related gene identification

Because of the variability of hypothalamic tissue, we determined

whether the 30 neuron stress-associated genes play a significant role

in neuron cells in the DIO model. We utilized scRNA-sequencing

data from hypothalamic tissues that were treated with NCD and

HFD to study which cells these 30 neuron stress-related genes are

mostly found in to operate. We initially conducted quality control

of the gene expression matrix using the GSE125065 dataset

(Figure 5A). Then, normalization of scRNA-seq data was

conducted, and 20 main components (p<0.05) were screened for

subsequent analysis (Figure 5B). Reduced dimension process

analysis was done by employing a discriminative dimensionality
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reduction tree (Figure 5C). Unsupervised analysis was subsequently

undertaken for cell clustering using the t-distributed stochastic

neighbor embedding (t-SNE) approach (Figure 5D). The results

demonstrated substantial cell heterogeneity, in which hypothalamic

cells were segregated into six major different clusters, including

astrocytes, microglia, neurons, oligodendrocytes, vascular

leptomeningeal cells (VLMCs), and endothelial cells, which were

detected by single R and cell markers. Next, we investigated the

expression pattern of these 30 genes in these cell clusters. As

expected, six critical genes of these 30 key genes were

substantially expressed in neurons, including Sacm1l, Junb, Bmi1,

Erbb4, Dkc1 and Suv39h1 (Figure 5E). In addition, we utilized

another GSE205667 dataset to verify the enrichment of these 30

genes in different cell lines in the arcuate nucleus of the

hypothalamus (ARC) (31). Similar to the analysis method and R

package, the data are displayed in Figures 5F–J. The results showed

that these six genes were enriched in small amounts in neuron cells

in ARC at different time points in adaptation to a high-calorie diet.

Erbb4 was enriched in astrocytes and Junb was mainly enriched in

microglia. Taken together, the scRNA-Seq data showed that these

six genes (Sacm1l, Junb, Bmi1, Erbb4, Dkc1, and Suv39h1) were

basically expressed in the hypothalamic region of mice, but were not

mainly enriched in neuronal cells.
FIGURE 4

PPI network and three significant modules of the overlapping genes. (A) PPI network of overlapping genes created by STRING. The most significant
module identified by MCODE. Circles represent genes, and lines represent PPIs. (B–D) The top 10 genes were calculated from the PPI network of
the DEGs by the degree, MCC, and betweenness. DEG, Deferentially expressed gene; PPI, protein–protein interaction.
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Neuron stress-associated gene expression
in human hypothalamus tissue

To evaluate whether these six neuron stress-associated genes

listed above are relevant in humans, we employed RNA-seq data

from 121 human hypothalamus tissues from the Genotype-Tissue

Expression (GTEx) project to assess the expression levels of six
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neuron stress-associated genes (36). The correlation heatmap and

expression heatmap utilizing unbiased hierarchical clustering

revealed that six neuron stress-associated genes were notably

highly expressed (Figures 6A, B). Furthermore, we further

evaluated the expression of the six neuron stress-associated genes

in different tissues of the GTEx database and found that they were

all expressed in human hypothalamus tissue (Figure 6C).
FIGURE 5

Preprocessing of the single-cell sequencing data and cell cluster identification with GSE125065 and GSE205667. First, with GSE125065: (A, B, F, G)
Gene filtering and PCA clustering of the gene expression matrix. (C, H) Dot plot showing the expression of overlapping genes in each main cell type.
The darker color indicates higher expression, and the larger size represents a higher percentage of expression. (D, E, I, J) Expression pattern of six
neuron stress-related genes at the single-cell level, shown in violin and UMAP plots.
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Corroboration of hub genes using Q-PCR
in hypothalamic tissues in the DIO model

Q-PCR was done using the total RNA isolated from the

hypothalamus tissue in the DIO model to confirm the expression

levels of neuron stress-associated genes. According to the PPI

network analysis and scRNA-Seq data validation, the six key

genes tested were Sacm1l, Junb, Bmi1, Erbb4, Dkc1 and Suv39h1.

The expression levels of the six neuron stress-associated genes were

raised as part of the pathophysiological process of obesity. The
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findings of the Q-PCR experiment demonstrated a considerable

increase in the expression of the six neuron stress-associated

genes (Figure 7).
Diagnostic value of Bmi1

To investigate the accuracy of the genes for discriminating the

obese samples from lean samples, we first created a LASSO model

utilizing the six candidate genes (Figures 8A, B). The nomogram
FIGURE 6

Neuron stress-related gene expression in the human hypothalamus. (A) A correlation heatmap of neuron stress-related gene expression in 121
human hypothalamic tissue samples. (B) Heatmap of coexpression correlations between neuron stress-related genes. A darker red color in the
upper right part indicates a stronger correlation. A heatmap of neuron stress-related gene expression levels is shown in the right panel. (C)
Expression of Neuron stress-related genes in different tissues, as the violin plots show.
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was employed for predicting the occurrence of obesity (Figure 8C).

These results revealed that Bmi1, rather than the Dkc1 gene,

possessed outstanding accuracy in identifying obese from

lean samples.
HFD induces microglial activation and
Bmi1 expression

Furthermore, we detected the expression of Bmi1 in

hypothalamic tissue of the DIO model by western blot, confirming

that the expression of Bmi1 was significantly increased following

HFD administration (Figure 9A). From the results of Figures 5D, I,

we found that in addition to neuron cells, Bmi1 is also highly

enriched in hypothalamic microglia. Immunofluorescence staining

showed that the positive number of microglia (Iba1, microglia

activation marker) in the hypothalamus was significantly increased

at 3 days in the HFD group, and there was colocalization with Bmi1

(Figure 9B). In addition, we stimulated BV2 microglial cells with

palmitic acid (PA, 200mM) in vitro, and western blot further

confirmed the elevated expression of iNOS, IL-6, and Bmi1

proteins after PA administration (Figure 9C). The above results

indicated that HFD induces microglial activation and Bmi1

expression in hypothalamic tissue.
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Discussion/conclusion

In the current study, we combined WGCNA, integrated

bioinformatics, PPI network, scRNA-seq and the GTEx database

to identify Sacm1l, Junb, Bmi1, Erbb4, Dkc1 and Suv39h1 as neuron

stress-related genes from eight samples of the GSE100012 dataset.

Further LASSO model and nomogram analysis showed the Bmil

gene to be the hub gene by screening six neuron stress-related genes.

In addition, Q-PCR and western blot revealed that the mRNA and

protein level of Bmil were raised in the DIO model. These

discoveries will throw new light on possible diagnostic tools to

manage obesity.

In previous report, research by professor Mara Dierssen’s team

has shown that obesogenic diets can affect the transcriptome

changes in hypothalamus, frontal cortex, and striatum, which are

involved in feeding and energy balance (23). We utilized the team’s

dataset for our research, and we are grateful for their great

contribution. However, compared with the work of this team,

there are some differences. First, professor Mara Dierssen’s team

utilized the female mice (five weeks) and chocolate mixture which

provides 20595 kJ/kg with 52% of its energy from carbohydrate,

17% from protein, and 24% from fat. But, our team utilized the male

mice (6-8 weeks) and HFD (60% kcal fat). As we all known, long

term intake of foods with different fat contents will definitely affect
FIGURE 7

Differential expression of neuronal stress-related genes in the HFD-induced hypothalamic tissue model of obesity. Relative mRNA expression of
neuron stress-related genes measured by Q-PCR in the HFD-induced hypothalamic tissue model of obesity. Results are presented as mean ± SEM
(n=3). The differences between multiple groups were evaluated using one-way analysis of variance (ANOVA). Compared with NCD group: *P<0.05,
**P<0.01, ***P<0.001. NCD, normal chow diet group; HFD, high-fat diet group.
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the metabolism of the body. Also, in some studies, female mice

gained significantly less weight than male mice when given the same

HFD, indicating a resistance to diet-induced obesity. Research has

also shown sex differences in gut microbiome composition between

males and females, indicated to be in part a result of sex hormones

(37). Compared the work from professor Mara Dierssen’s team, our

research from different angels to explore the transcriptome changes

of hypothalamus and identified the hub genes with diet induced

obesity model. In addition, the work of professor Mara Dierssen’s

team construct two groups of genes: some transcript were strongly

deregulated in term of fold changes, while others were only subtly

deregulated but were especially correlating with measurements

associated with body weight and compulsivity. These results told

us that even if some genes show no or minimal changes in

expression, they can still affect feeding behavior in the

hypothalamic area following overeating. Our research not only

identified key genes Bmil1, but also verified the function of Bmil1

through animal and cell models which can regulate the

inflammatory activation of hypothalamic microglia. Compared

the work of professor Mara Dierssen’s team, our data exhibit

an improvement.
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Obesity develops as a result of equilibrium disruption between

food intake and energy consumption, and this balance is principally

governed by two well-defined neuronal populations within the ARC

that have significant effects on energy homeostasis, namely, POMC

and AgRP/NPY. Rodents on a high-fat diet exhibit hypothalamic

inflammation, gliosis, and neuronal stress. These changes happened

in the arcuate nucleus, mediobasal hypothalamus, and lateral

hypothalamus, thereby demonstrating that these hypothalamic

structures are targets of brain damage (38, 39). Metabolic

derangement in peripheral organs and obesity-related inflammatory

alterations cause hypothalamic neuron stress that perturbs energy

balance and affects hormone release, which eventually promotes the

establishment of an obese phenotype. Therefore, it is very relevant to

examine neuronal stress indicators following DIO. Based on

bioinformatics technology, we observed that the Bmil gene is

closely associated with neuronal stress and has an increase in

expression at the mRNA level. Bmi1 (also named as B-lymphoma

Moloney murine leukemia virus insertion region-1), as a member of

the polycomb-group (PcG) family of proteins, is increased in various

human cancer tissues and can regulate cell malignant transformation,

cell proliferation and apoptosis and cell cycle (40). Bmi1−/− mice not
FIGURE 8

Investigation of the accuracy of the hub genes for distinguishing Obese samples from lean samples. Construction of the LASSO model based on 6
candidate biomarkers (A). The image shows the log (lambda) value of the 2 hub genes, and (B) the image shows the distribution of the log (lambda)
value in the LASSO model. (C) The nomogram was used to predict the occurrence of obesity.
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only have axial skeleton deformities, lower lifespan, cortical neuron

apoptosis, and oxidative damage buildup, but Bmi1−/−neurons are

also hypersensitive to mitochondrial toxins and demonstrate higher

ROS concentrations (41–43). Notably, Bmi1 could modulate the

neuron oxidative metabolism via the p53 signaling pathway (44).

Increasing Bmi1 expression in cortical neurons demonstrated

neuroprotective activity through resisting inhibition of the

mitochondrial respiratory chain and finally led in activation of

antioxidant defenses and down-regulation of ROS levels (45). To

yet, no study has directly established the involvement of Bmil in

obesity and another large range of comorbidities. Further work is

necessary to clarify the underlying biological mechanisms.

Obesity has been recognized to cause systemic chronic low-grade

inflammation condition in the central and peripheral system

that contributes to the development of multiple comorbidities,

such as diabetes, dyslipidemia, cardiovascular diseases, and

neurodegenerative disorders (46–48). This low-grade inflammation

can produce neuronal stress and alter the hypothalamic circuit of

energy balance, which leads to a vicious cycle of obesity in the

hypothalamic tissue. Hypothalamus inflammation was initially

discovered in 2005 because inflammatory signaling pathways were

activated and the mRNA levels of proinflammatory factors also

elevated in the hypothalamus of rats fed a high-fat diet (HFD) for

16 weeks (49).

More recently, hypothalamic inflammation has been found to

occur very early in response to HFD and is the main trigger to

promote the development and progression of obesity and its sequelae

and has emerged not only as an important driver of impaired energy
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balance but also as a contributor to obesity-associated insulin

resistance via altering neurocircuit functions. Hypothalamic

inflammation plays an important role in the onset and

maintenance of the obese phenotype (50). It has been reported that

hypothalamic inflammation presents a “double peak”, which is

manifested in three stages: “inflammation initiation, inflammation

resolution, and chronic inflammation”. Hypothalamic inflammation

increases rapidly in the early days (1-3 days) of high-glucose and

high-fat feeding, briefly resolves at 7-14 days, and then rises again and

persists after 28 days. The transient spontaneous resolution of

hypothalamic inflammation suggests a physiological mechanism for

maintaining hypothalamic homeostasis, and the disruption of this

mechanism may be the key to the persistence of inflammation and

the progression of obesity (38, 51). Therefore, the expression of

neuron stress-related genes (Sacm1l, Junb, Bmi1, Erbb4, Dkc1, and

Suv39h1) fluctuates at different time points. Compared with the NCD

group, the expressions of Sacm1l, Bmi1, Erbb4, Dkc1 and Suv39h1

showed a fluctuating upward trend, with the most significant change

on day 28. While the expression of Junb increased most significantly

on day 3, and then showed a downward trend (Figure 7). These

results suggest that these genes may be involved in the regulation of

hypothalamic inflammation and homeostasis. The interrelations

between inflammation, hypothalamus, and obesity have been

extensively reviewed (52, 53). We also performed immune

infiltration analysis to explore the relationship between the immune

landscape and obese samples from GSE100012 (data not shown). The

CIBERSORT method was used with a deconvolution algorithm,

which was applied to estimate the relative proportion of 25 types of
FIGURE 9

A high-fat diet induces hypothalamic microglia activation and Bmi1 expression. (A) The protein expression of Bmi1 was analyzed by western blot in
the HFD-induced hypothalamic tissue model of obesity. (B) Immunofluorescence staining was used to observe the expression of Iba1 and Bmi1 in
the hypothalamus of mice. The fluorescence intensity was normalized to that of each group fed with NCD group set as 1. The data were obtained
from three independent experiments. Values represent the mean ± SEM. **p <.01; ns, no significance by two-way analysis of variance (ANOVA).
Scale bar: 50 mm. NCD, normal chow diet group; HFD, high-fat diet group; 3V, the third ventricle. (C) Western blot was used to analyzed the
expression of iNOS, IL-6, and Bmi1 proteins after PA administration in BV2 microglial cells.
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immune cells among the two groups (54). These data cannot properly

reflect the expression status and fraction of immune cells, and further

analysis needs to be performed with other datasets. In addition, the

GO and KEGG pathway analyses revealed that the biological

functions of the red and tan modules were strongly enriched for

response to stimulate, locomotion, rhythmic process, reproductive

process, lipid metabolism, endocrine system, and sensory system,

which are modulated by the hypothalamus. Enrichment function

analysis indicated a contributory role of the immune response in the

development of obesity. Taken together, how hypothalamic

inflammation impacts neuronal stress and increases the occurrence

of obesity remains unclear and is also an exploring direction in

our lab.

This study had significant drawbacks. Through examining the

GEO database, there are merely handful datasets about

hypothalamus tissue with a HFD. A bigger sample size will be

needed in future investigations, and we also want to utilize mouse

hypothalamus tissue after a high-fat diet to do transcriptome

sequencing. Moreover, functional studies of the six neuron stress-

related genes discovered here are essential.

In summary, we created a WCGNA, PPI network, and gene

regulatory network to detect and validate target genes as biomarkers

for obesity. GO and pathway enrichment studies suggested that the

biological functions of the overlapping genes between the red and

tan modules and DEGs were geared toward hypothalamic

homeostasis. Moreover, our data indicated considerably elevated

expression of Sacm1l, Junb, Bmi1, Erbb4, Dkc1, and Suv39h1.

Furthermore, the scRNA-seq and GTEx databases indicated that

the six genes were largely localized in neuron-type cells. Finally,

LASSO model and nomogram analysis suggested that Bmi1 was a

significant hub gene, and Q-PCR and western blot confirmed that

Bmil was increased in the DIO model. If there is a need to

understand their activity in obesity, as well as their molecular

mechanisms of action in obesity and related metabolic diseases,

further experiments are needed.
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