Skip to main content

ORIGINAL RESEARCH article

Front. Endocrinol.
Sec. Diabetes: Molecular Mechanisms
Volume 15 - 2024 | doi: 10.3389/fendo.2024.1443737
This article is part of the Research Topic Exploring the Complex Interplay between Obesity, Mitochondria and Metabolic Health View all 5 articles

Association of Mitochondrial Haplogroup H with Reduced Risk of Type 2 Diabetes Among Gulf Region Arabs

Provisionally accepted
  • 1 Dasman Diabetes Institute, Kuwait City, Kuwait
  • 2 Department of Medical Laboratories, Ahmadi Hospital, Kuwait Oil Company, Ahmadi, Kuwait
  • 3 Saad Al-Abdullah Academy for Security Sciences , Ministry of Interior, Shuwaikh, Kuwait

The final, formatted version of the article will be published soon.

    Background: Numerous studies have linked mitochondrial dysfunction to the development of type 2 diabetes (T2D) by affecting glucose-stimulated insulin secretion in pancreatic beta cells and reducing oxidative phosphorylation in insulin-responsive tissues. Given the strong genetic underpinnings of T2D, research has explored the connection between mitochondrial DNA haplogroups, specific variants, and the risk and comorbidities of T2D. For example, haplogroups F, D, M9, and N9a have been linked to an elevated risk of T2D across various populations. Additionally, specific mitochondrial DNA variants, such as the rare mtDNA 3243 A>G and the more prevalent mtDNA 16189 T>C, have also been implicated in heightened T2D risk. Notably, these associations vary among different populations. Given the high incidence of T2D in the Gulf Cooperation Council countries, this study investigates the correlation between T2D and mitochondrial haplogroups and variants in Arab populations from the Gulf region. Methods: This analysis involved mitochondrial haplogroup and variant testing in a cohort of 1,112 native Kuwaiti and Qatari individuals, comprising 685 T2D patients and 427 controls. Complete mitochondrial genomes were derived from whole exome sequencing data to examine the associations between T2D and haplogroups and mitochondrial DNA variants. Results: The analysis revealed a significant protective effect of haplogroup H against T2D (odds ratio [OR] = 0.65; P = 0.022). This protective association persisted when adjusted for age, sex, body mass index (BMI) and population group, with an OR of 0.607 (P = 0.021). Furthermore, specific mitochondrial variants showed significant associations with T2D risk after adjustment for relevant covariates, and some variants were exclusively found in T2D patients. Conclusion: Our findings confirm that the maternal haplogroup H, previously identified as protective against obesity in Kuwaiti Arabs, also serves as a protective factor against T2D in Arabs from the Gulf region. The study also identifies mitochondrial DNA variants that either increase or decrease the risk of T2D, underscoring their role in cellular energy metabolism.

    Keywords: Mitochondria, type 2 diabetes, haplogroups, mtDNA variants, Arab

    Received: 04 Jun 2024; Accepted: 01 Nov 2024.

    Copyright: © 2024 Dashti, Ali, Alsaleh, John, Nizam, Thangavel and Al Mulla. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence:
    Mohammed Dashti, Dasman Diabetes Institute, Kuwait City, Kuwait
    Alphonse T. Thangavel, Dasman Diabetes Institute, Kuwait City, Kuwait
    Fahd Al Mulla, Dasman Diabetes Institute, Kuwait City, Kuwait

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.