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Beijing, China, 2School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
The hypometabolism induced by fasting has great potential in maintaining health

and improving survival in extreme environments, among which thyroid hormone

(TH) plays an important role in the adaptation and the formation of new energy

metabolism homeostasis during long-term fasting. In the present review, we

emphasize the potential of long-term fasting to improve physical health and

emergency rescue in extreme environments, introduce the concept and pattern

of fasting and its impact on the body’s energy metabolism consumption.

Prolonged fasting has more application potential in emergency rescue in

special environments. The changes of THs caused by fasting, including serum

biochemical characteristics, responsiveness of the peripheral and central

hypothalamus-pituitary-thyroid (HPT) axis, and differential changes of TH

metabolism, are emphasized in particular. It was proposed that the variability

between brain and liver tissues in THs uptake, deiodination activation and

inactivation is the key regulatory mechanism for the cause of peripheral THs

decline and central homeostasis. While hypothalamic tanycytes play a pivotal role

in the fine regulation of the HPT negative feedback regulation during long-term

fasting. The study progress of tanycytes on thyrotropin-releasing hormone (TRH)

release and deiodination is described in detail. In conclusion, the combination of

the decrease of TH metabolism in peripheral tissues and stability in the central

HPT axis maintains the basal physiological requirement and new energy

metabolism homeostasis to adapt to long-term food scarcity. The molecular

mechanisms of this localized and differential regulation will be a key research

direction for developing measures for hypometabolic applications in

extreme environment.
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1 Introduction

Fasting, with a history spanning nearly thousands of years, has

become an ideal lifestyle choice for purportedly maintaining physical

and mental well-being, improving metabolic syndrome (1) and

combating cancer (2), protecting from chemotherapy toxicity (3) and

promoting longevity. Medical fasting for 2 days or more has been

applied for preventive and therapeutic purposes in specialized centers

(4). Additionally, long-term fasting (LTF) has long been known to

induce hypometabolism and hypothermia in humans and animals

(5, 6), and has significant potential in the physiological maintenance

during emergency rescue, particularly in extreme environments such as

mine disasters, cave explorations, andmanned deep space explorations.

Food deprivation will be last for a long time in such conditions.

Reducing energy expenditure is the best approach to enhance survival

and rescue efforts. However, the practical application of fasting

interventions has become increasingly challenging due to the distinct

and individual consequences of short-term complete fasting for up to

two days in currently prevalent forms (7, 8) and the limited evidence-

based clinical data of LTF (9). More information is necessary for its

broader implementations as a therapeutic prescription for diseases or

valuable survival strategies for extreme environments of prolonged

fasting (10).

Fasting confers healthy benefits to a greater extent than just being

attributed to a reduction of caloric intake and may involve a

metabolic switch, enhanced autophagy, and antioxidant capacity, as

well as cellular stress resistance (11, 12). Metabolic switching from

liver-derived glucose to adipose-derived ketones as a fuel source has

been observed and contributes to improvements in energy metabolic

regulation. Recent studies show that individuals can well tolerate a

10-day complete fasting (CF), experience an energy metabolic

substrate shift, and achieve new metabolic homeostasis between

days 3 to 6 of CF, with a declining resting metabolic rate (13).

Additionally, fasting significantly impacts the regulation of thyroid

hormone (TH) levels, which play a crucial role in the regulation of

energy metabolism. However, the influence of fasting on energy

metabolism and TH metabolism varies depending on the duration

and frequency of fasting (14). The physiological mechanisms involved

in these effects are complex and required further exploration. The

principles of fasting, modifications in TH metabolism, and possible

regulatory mechanisms are outlined in the present review. Here we

discuss the mechanisms of potential metabolic regulatory and

biological effects, and ultimately provide effective practical methods

for food conservation, as well as physiological and behavioral

adaptations to endure long-term food limitations.
2 Fasting definition and patterns

In humans, fasting typically refers to the dietary pattern of

intentionally abstaining from food and caloric beverages for periods

ranging from 12 hours to 3 weeks (15), Generally, the body enters a

fasting state 8-12 hours after the last meal. Many religious groups

incorporate fasting into their rituals for spiritual development and

health promotion, including Daoist Bigu, Buddhist fasting, and
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Muslim Ramadan fasting (RF) (16). Fasting therapy is an ancient

folk health method that has been established as a defined

therapeutic approach in modern medicine, particularly in

specialized hospitals or clinical departments of integrative

medicine. Following expert consensus in Germany (17) and

China (18), fasting therapy has become an evidence-based

preventive treatment for modern diseases. Essentially, fasting is a

physiologically adaptive process that restricts energy intake. Under

different fasting modes, the body constantly makes physiological

metabolic adjustments, reduces energy requirements, and

systematically utilizes its own energy reserves and repairs aging

components through processes such as fat breakdown, and

autophagy. This leads to an improvement in physiological state

and a delay in senescence, helps to prevent and treat conditions like

obesity, diabetes, and cardiovascular diseases (19). Different fasting

patterns produce different physiological impacts, and the health-

improving effects vary accordingly.

In general, fasting can be classified into four main modalities

based on fasting duration and interval. 1) Caloric Restriction (CR):

This involves typically decreasing daily caloric intake by 15% to

40%. 2) Intermittent Fasting (IF): Refers to a cycle of eating patterns

that can range from 12 hours to several days, with recurring periods

of little to no caloric intake. Time restricted feeding (TRF) and

alternate day fasting (ADF) are forms of IF. TRF limits daily food

intake to a 4-8 hours window, while ADF alternates normal food

intake with days of restricted food intake. The religious fasting

practices of RF fall into this category. 3) Long-term Fasting or

prolonged fasting (LTF): This involves completely abstaining from

food for more than 2 consecutive days, typically ranging from 3 to

21 days (20, 21). Certain forms of Daoist Bigu belong to this

category. 4) Periodic Fasting (PF): Lasts 2 to 7 days periodically

on a weekly, monthly, or yearly scale (22). The “5:2” diet, a popular

fasting regimen, involves 5 days of ad libitum feeding and two

fasting days per week, during which food intake is markedly

decreased to approximately 500-600 kcal. These PF/IF protocols

reduce energy intake for a period of time, repeatedly mobilizing and

storing energy substrates. This results in more frequent but less

pronounced alterations compared to continuous fasting (15).

During LTF, physiological mechanisms ensure the survival of

glucose-dependent tissues and employ alternative energy source

to fuel other tissues. LTF is capable of deeply remodeling energy

metabolism and causes stronger effects than CR and IF (13, 23).

These characteristics highlight the therapeutic potential of LTF.

Moreover, extended fasting can effectively reduce resting energy

expenditure (EE) and has application potential in emergency rescue

under special environment with food shortage, although the

inducing efficiency to hypometabolism and the health

maintenance mechanism need to be further explored.
3 Influences of fasting on energy
metabolic expenditure

LTF fasting reduces BMR and EE, but the effects of short-term

fasting and IF have not been concluded. Fasting is a popular
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controlled nutritional intervention for its potential benefits in

weight loss and over health improvement. Understanding its

effects on EE can help tailor fasting regimens and guide to

practical applications. The effects of fasting on EE vary depending

on the type of fasting utilized, its duration, frequency and refeeding

method (24, 25). Under normal conditions, there is an equilibrium

between energy intake and expenditure. EE occurs primarily

through the resting metabolic rate (RMR, accounting for

approximately 60-70% of total EE), followed by physical activity

(contributing about 20-30%) and the thermic effect of food

(responsible for roughly 10%of total EE) (26). First of all, the

effects of short-term fasting or IF on EE are still being

determined. It has been observed that resting EE briefly increased

during the first few days of fasting, likely due to increased

sympathetic nervous system activity and catecholamine release.

Other contributions to increased EE may include the energy costs

of fatty acid recycling and gluconeogenesis (31, 32). The resting EE

was not different after 12 hours and 60 hours of fasting, but the

proportional contribution of carbohydrate, fat and protein

oxidation was significantly shifted (33). Total EE showed a

decrease of -1.9 MJ/day, but resting EE remained unchanged in

obese individuals after 6 days of fasting for weight loss (34).

Heilbronn et al. observed no significant changes in RMR and RQ

from baseline to day 21 of ADF, but there was an increase in fat

oxidation (35). Although RF is associated with decreased activity

and sleeping time, no significant alteration was observed in RMR or

total EE (36). The daily total EE and resting EE decreased about

12.4% and 6.5% respectively, after a month of RF, but there was no

statistical difference in the EE of physical activity (37). Some reports

indicated that the change in RMR varies at different times of RF

duration. RMR was higher in the first week of RF and showed a

significant downward trend in subsequent weeks, potentially due to

metabolic adaptation mediated both centrally and locally (36, 38).

Therefore, while IF regimens and short fasting may initially boost

EE, extended fasting and continuous CR prompt a proportional

metabolic slowdown. However, LTF and severe CR have been

demonstrated to lower RMR and result in metabolic adaptation

(13, 27). As early as 1915, Benedict reported a 20-30% decrease in

energy metabolism induced by prolonged starvation (28). LTF

significantly decreases 24-hour EE and the respiratory exchange

ratio, as detected by a respiration chamber (29, 30). The respiratory

quotient (RQ) approaches 0.7 with the extension of fasting time in a

10-day CF experiment, indicating fat as the predominant fuel

source (13). An important phenomenon is that fasting leads to a

significant decrease in serum thyroid hormone T3, which may

contribute to the decline in RMR (39). From an evolutionary

perspective, animals instinctively consume more energy to find

food in the initial stage of food deprivation (13). By the way, the

increased EE in the early stage of food deficiency suggest that we

should strengthen psychological guidance to reduce this

consumption. This metabolic adaptation likely contributes to

conserve energy and enhance survival during prolonged food

scarcity such as under some extreme environments.
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4 Impacts of fasting on thyroid
hormone metabolism
4.1 Effects of fasting on TH levels

As a crucial endocrine regulatory system for basal metabolic

rate and EE, hypothalamus- pituitary-thyroid (HPT) axis is

profoundly affected by various fasting protocols. To save energy

and conserve protein during food shortages, one of the major

adaptations is the down-regulation of TH-dependent metabolism.

Firstly, the decrease in TH levels during fasting is usually temporary

and reversible. Once the individual resumes normal diet habits, the

TH levels return to normal. In some cases, LTF or severe CR can

lead to a more significant decrease in TH and may even result in low

T3 syndrome. Secondary, it is well known that fasting induces

alterations of circulating THs, characterized by a marked decrease

in serum triiodothyronine (T3), free T3 (FT3), an increase of

reverse T3 (rT3) (40, 41), and inconsistent changes in thyroxine

(T4), free T4 (FT4) and thyroid stimulating hormone (TSH), which

may show a slight decrease or remain unchanged during fasting as

depicted in Figure 1 by a meta-analysis during LTF. A 24-hour

short-time fasting decreases FT3 by 6%, but increases rT3 by 16% in

healthy humans (42). Animal experiments with 12- to 48-hour

fasting also confirmed the decreases of serum T3 and T4 as

summarized in a recent review (43). Fasting did not alter plasma

thyrotropin-releasing hormone (TRH) levels after a 6-day fasting

(44). The concentration of TRH in both the median eminence (ME)

and the hypothalamic portal blood decreases during fasting (45). As

a typical negative feedback regulation, the HPT axis involves the

synthesis and release of TRH in the hypothalamus, which stimulates

the synthesis and secretion of TSH in the anterior pituitary. Then

TSH promotes the thyroid to release T4, which is later converted to

active T3 by deiodinase type I (Dio1) and type II (Dio2). In turn,

excessive T3 and T4 inhibit the synthesis and secretion of both TRH

and TSH. The decreased serum TH concentration was not

accompanied by a rise of TSH or TRH during food deprivation,

reflecting a deviation from the classic negative feedback regulation

of the HPT axis.

Local TH metabolism is probably a determinant of net effects

and presents a flexible and dynamic regulation, which plays an

optimal role in the organism’s adaptation to a range of

environmental challenges (46).The expression changes of TH

metabolism-related genes differ in the liver, thyroid, pituitary and

hypothalamus of mice after 48 hours of fasting (47). Differential

regulations of TRH metabolism by fasting depend on the age, and

species of the animals (48, 49). Thus, the combination of the

decrease of TH metabolism in peripheral tissues and stability in

the central HPT axis maintains the basal physiological requirement

and new energy metabolism homeostasis to adapt to long-term food

scarcity. The tissue variability in regulatory pattern is manifested in

the differential responsiveness of the central and peripheral HPT

axis to fasting, especially the intracellular T3 availability (50).
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4.2 Fasting affects peripheral
TH metabolism

During fasting, THs are shifted toward inactivated metabolism

including the increase of rT3 conversation and decrease of T4 to T3

conversation. The decreased peripheral conversion of T4 to T3 is

likely the primary mechanism responsible for circulating TH

change, due to the lack of an appropriate TSH and TRH response
Frontiers in Endocrinology 04
in serum. As previously described, a prominent feature of the

fasting state is a significant decrease in circulating T3 levels and

an increase in rT3. Total caloric deprivation appears to shift the

peripheral metabolism of T4 from the activation pathway to the

deactivation pathway (51), possibly due to the deceased generation

of T3 and the metabolic clearance rate of rT3 (52). The constancy of

T4 levels throughout the fasting period by administration of L-

thyroxine could not restore the decrease in serum T3, indicating
FIGURE 1

Forest plot of the effects of long-term fasting on T3, rT3, T4 and TSH. 16 human research papers were selected by manually review from PubMed
and Web Of Science using the following term: “long-term fasting” or “prolonged fasting” and “thyroid hormone”. The data were analyzed by RevMan
5.3 for MacOS (Cochrane Collaboration, Oxford, UK) as the standard protocol and parameters. The weighted mean differences (WMD) were applied
for the comparison of continuous variables. The heterogeneity in studies was assessed through the chi-squared (c2) test and inconsistency index (I2).
c2 p value < 0.05 or I2 > 50% were considered as significant heterogeneity. A random-effect model was used to estimate the combined WMD.
Otherwise, the fixed-effect model was applied. SD, standard deviation; IV, inverse variance; CI, confidence interval; df, degree of freedom.
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that fasting decreases T3 production (41, 53). The enzyme activity

for the conversion of T4 to T3 in fasted rat liver homogenate was

reduced by 54%, primarily due to a reduction in enzyme

concentration rather than co-factor availability (54). After a 48-

hour fasting, only the transport of T3 into the perfused rat

intracellular liver compartment decreased, but not the transport

to the extracellular liver compartment (55). The clearance of rT3 is

also affected by fasting. Both 7 and 13 days of fasting decreased rT3

clearance without changing rT3 production, compared to controls

(56). However, Galton et al. found unchanged or even increased

liver T3 and T4 concentrations within 16- or 36-hour fasting, with

an increase in T3 clearance due to sulfation and UDP-

glucuronidation (57) . Some reports indicate that T3

glucuronidation was diminished, but T3 sulfation and subsequent

deiodination were unaffected in the perfused rat liver after a 48-

hour fasting (55). Similarly, Vries et al. also found that a 36-hour

fasting did not alter intrahepatic T3 concentrations in rats (58), but

a 48-hour fasting decreased both serum and liver T3 and T4 levels

in mice (59). A gradual decrease of T3 and T4 concentrations in

serum and liver during 12- to 48-hour fasting is confirmed in a

recent review (43).
4.3 The potential alteration of central HPT
response to fasting

Although fasting induces lower TH level, TSH and TRH secretion

remains low, pointing to an altered hypothalamic setpoint of the HPT

axis. Fasting, whether intermittent or prolonged, has complex effects

on the response of the central HPT axis. The absence of an increase in

serum TSH and TRH implies decreased negative feedback from the

central part of the HPT axis. Although some reports suggest no

change in serum TRH during fasting, LTF influences the secretion

and function of TRH through mechanisms such as suppressing the

activity of TRH neurons, reducing TRH gene expression, and

inhibiting TRH secretion (45, 49). Previous animal studies

have shown direct and indirect effects of decreased serum leptin

contributing to the decrease of hypophysiotropic TRH neurons

(40, 49). Leptin directly acts on hypophysiotropic TRH neurons

that project to ME to regulate TSH production in the pituitary and

regulates TRH neurons through pro-opiomelanocortin (POMC) and

agouti-related peptide/neuropeptide Y (AgRP/NPY). However,

recombinant methionyl human leptin only prevents the fasting-

induced TSH decrease and pulsatility, but does not significantly

affect the changes of the TH level (60).

Moreover, most studies report significant decreases in TSH

response to TRH after fasting (60–62), but not all (63). Burman

reported in 1980 that 10-day fasting impaired TSH secretion after

TRH infusion (64). In the early phase (48 hours) of a 6-day fasting

experiment, serum TSH still decreased in the control and TRH

infused subjects (44). A 60-hour fasting decreases the mean 24-hour

TSH concentration, associated with a decline in mean TSH

amplitude, but not its frequency (65). Longer fasting results in a

significantly lower TSH response than shorter fasting (66). Recently,

Sinkó reported that fasting for 24 hours or 48 hours did not change

TH action in the hypothalamic arcuate nucleus-ME region using
Frontiers in Endocrinology 05
TH action indicator mice, coupled with decreased expression of

TSHb and FT3 levels (67). Fasting promotes a 94% reduction in

TSHbmRNA expression in the pituitary (47), suggesting a decrease

in the response of the pituitary to the low serum levels of T4. Fasting

induces an increase of Dio2 expression in the hypothalamus,

followed by an upregulation of local T3 content, which is critical

to augment the suppression of the central HPT axis and avoid a

negative feedback TH elevation (68). These data suggest that there

are more complex and fine-tuned regulatory mechanisms of the

HPT axis to maintain its stability in the brain during fasting.
5 The fine regulation of tanycytes on
HPT axis during fasting

Tanycytes play a crucial role in maintaining the homeostasis of

the central HPT axis during fasting by controlling the supply and

metabolism of THs. Tanycytes are specialized ependymoglial cells

in the third ventricle and are recognized as multifunctional players

in energy metabolism through the organization of hormonal and

nervous signals (69). Moreover, early studies indicated that Dio2 is

absent in the PVN neurons (70). Additionally, it has been observed

that a higher dose of T3 than the physiological level is necessary to

reduce TRH expression in the PVN (71). This implies that the

negative feedback loop involving T3 and TRH in the PVN may be

less sensitive, allowing for a more nuanced regulation of the

HPT axis.
5.1 Tanycytes regulate the bioavailability of
THs to neurons

Acting as gatekeepers of the blood-hypothalamic barrier,

tanycytes express the monocarboxylate transporter 8 (MCT8),

OATP1c1 (organic anion-transporting polypeptide 1C1), and

Dio2 enzyme. T4 is taken up from the cerebrospinal fluid into b2
tanycytes and deiodinated into the active form T3 by the highly

expressed Dio2. Then, T3 diffuses to neighboring neurons,

supplying almost 80% of the adult brain ’s T3 (72–74).

Interestingly, the modulator of cellular TH bioavailability µ-

crystallin (CRYM), which has high affinity to T3 and T4, is

relatively less expressed in b2 tanycytes than in other subtype

tanycytes (75). This differential expression adjusts the time-course

of T3 interaction with its receptor or the efflux of T3, and the

transcription of target genes (72). TSH induces transcriptional

regulation of TH-gatekeeper genes through the Tshr/Gaq/PKC
pathway in tanycytes (76).

Axons from TRH-containing neurons of the paraventricular

nucleus (PVN) project into the ME, where the neuron terminals

make contact with the b2 tanycytic end feet (77). Increased

circulating TH upregulates the expression of pyroglutamyl

peptidase II (PPII), a highly specific TRH inactivating enzyme, in

tanycytes and enhances the degradation of extracellular TRH in the

ME through glial-axonal association (77). Stimulation of the TRH

receptor I increases the intracellular calcium in tanycytes via the

Gaq/11 pathway, which in turn increases the size of tanycyte end
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feet and the expression of PPII, moderating the release of TRH (78).

Moreover, the expression of PPII in b2 tanycytes is also upregulated
in response to elevated T3 levels, thereby forming a more refined

negative feedback regulation. Thirdly, tanycytes are characterized

by molecular signatures that sense and integrate nutrient/hormone

signaling to modulate and maintain energy homeostasis (79).

Indeed, b tanycytes form a “barrier” by expressing tight junction

proteins and controlling the access of peripheral metabolites and

hormones (80, 81). Many studies have described the metabolic

sensor role of tanycytes for glucose, amino acids, leptin etc. Fasting

can upregulate the facilitated glucose transporter and enhance

blood-hypothalamus barrier plasticity through VEGF-dependent

signaling (82, 83). Tanycytes also express receptors involved in the

HPT axis and control TRH release (72, 78). Leptin has been

identified as a key regulator of the central HPT axis by regulating

pro-TRH expression in the PVN and could restore type III

iodothyronine deiodinase (Dio3) expression in the liver (84, 85).

Tanycytes regulate leptin’s entry into the hypothalamus and play an

important role in the supply of THs via the expression of TH

transporters and deiodinases (81).
5.2 Tanycytes mediate a central TSH-TSHR
feedback loop

Tanycytes have the high number of Tshr transcripts (86). TSH

released from pars tuberalis (PT) acts locally on tanycytic TSHRs,

resulting in increased Dio2 expression and TH synthesis (87). Both

hypothalamic tanycytes and pituitary PT-specific cells can respond

to different photoperiods and regulate circulating TH levels (88).

Photoperiod-dependent seasonal variations are integrated by

tanycytes via the detection of the TSH released from the PT in

the anterior pituitary gland (89). The PT-derived TSH is distinctly

glycosylated compared with pars distalis-derived TSH.

Furthermore, PT-TSH, detectable in the circulation, does not

stimulate the thyroid gland (90).

Although our understanding of the functional roles of tanycytes

in the regulation of the central HPT during fasting is lacking,

current evidences suggest that these local regulatory mechanisms

form a more refined negative feedback regulation of TH

metabolism, potentially contributing to the homeostasis of the

central HPT axis during fasting.
5.3 The effects of fasting on the TH
metabolism in tanycytes

Local hyperthyroidism in the hypothalamus suppresses TRH

release, which helps avoid excessive TRH response that could affect

the body’s adaptability to fasting. Tracer kinetic studies have shown

that serum T3 levels can accurately predict tissue T3 content and T3

signaling in most tissues, except the brain and pituitary gland (91).

The uptake and conversion of THs are important for local T3

bioavailability and its action in the brain. Although MCT8 plays a

pivotal role in the transfer of THs across the blood-brain barrier,

fasting for 48 hours induces no significant alteration of MCT8 and
Frontiers in Endocrinology 06
monocarboxylate transporter 10 (MCT10) in the hypothalamus and

pituitary (47, 92). MCT10 expression was found to increase upon

fasting, whereas MCT8 expression remained unchanged (58).

Conversely, fasting significantly induced MCT8 expression in the

ependymal layer and PVN in mice (93). The impact of fasting on

MCT8 expression levels and regional distribution requires further

thorough investigation.

Fasting indeed impacts the expression and activity of Dio2 in

tanycytes. Researchers observed a 2-fold increase in the expression

of Dio2 mRNA in the mouse hypothalamus, but noted no change in

the expression of Dio3 and Thrb (47). In the initial phase of fasting,

Dio2 mRNA expression and activity are robustly upregulated in

tanycytes, leading to an increase in locally formed T3 and the

suppression of TRH (68, 94). Coppola et al. observed that an

appropriate induction of Dio2 activity during negative energy

balance is dependent upon both leptin and glucocorticoid

signaling (95).

Fasting influences the TRH release via tanycytes. Fasting

temporarily increases the levels of PPII and Dio2 mRNA in

tanycytes after 48 hours, followed by an increase of PPII activity

in the ME and a partial reversion of the reduction in PVN pro-TRH

mRNA levels and the number of TRH neurons. This delayed

increase of ME PPII in fasted rats may facilitate the maintenance

of the deep down-regulation of the HPT axis function (45).
6 Differential regulatory mechanisms

6.1 Different expression and activity of
deiodinases in tissues

Despite the abundant clinical evidence, there is still a very

limited understanding of how tissue-wide TH bioavailability and

local TH action are regulated during development and fasting (96).

Fasting decreases TH levels while keeping TSH concentrations

unaltered, which is linked to local Dios expression and activity

alterations in the brain hypothalamus and liver. The individual

contributions of the three Dio isoenzymes to systemic and local TH

provision are distinct during fasting and exhibit different

regulatory mechanisms.

The main source of daily circulating T3 comes from the out ring

deiodination of T4 by Dio1 and Dio2 in human. Thyroid gland

contributes with about 20% of the daily T3 production, and the

residual 80% is contributed outside the thyroid parenchyma, mainly

from liver (97–99). The decrease in hepatic deiodination activity

may be the primary factor for the decrease in circulating T3 during

fasting. A 30-hour fasting decreases the activity of Dio1 in the liver

and pituitary, with no changes in the kidney, and reduces the Dio2

activity in brown fat (57). However, fasting induces an increase in

Dio2 expression in the hypothalamus (68). The decrease in Dio2

expression and activity was tissue-specific given that cerebral cortex

Dio2 mRNA remains stable during fasting period, which leads to

reduction in serum T3 levels, whereas serum T4 remains largely

unaffected (98).

Dio3 is regarded as the major TH-inactivating enzyme

catalyzing both T4 and T3 into rT3 and T2. Fasting results in
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markedly decreased serum T3 concentration coupled with a marked

decrease in liver T3 concentration. Fasting also increases Dio3

mRNA expression mediated by the CAR and mTOR pathway in

mice liver and WAT (59). A 36-hour fasting increases Dio3 activity,

without changing Dio1 activity (14, 57). Dio3 plays a role in the

fasting-induced alteration of TH homeostasis because the decrease

of serum T3 is partially blunted in the Dio3-knockout mice after a

30-hour fasting (57). Leptin stimulates hypothalamus TRH

expression and plays an important role in the regulation of the

HPT axis. Fasting elicits significant reductions of serum leptin

concentrations as shown by meta-analysis (100). Leptin

administration restores the fasting-induced increase of hepatic

Dio3 expression in mice, while serum TH levels and liver TRb1
expression remain low (85). It is confirmed that fasting decreases

the expression of Dio2 in the liver and increases it in the

hypothalamus, and increases the expression of Dio3 in the liver.

However, further exploration is needed to understand the

expression and activity of Dios in the liver and hypothalamus, as

well as the molecular mechanisms underlying their regulation.
6.2 Different expression of transporters
in tissues

Concentrations of TH in local tissues are mediated by the

uptake of circulating THs via their transmembrane transporters.

The transport of T3 (55) and T4 (101) to liver cells is decreased,

presumably due to the depletion of ATP in a perfused rat liver

model. TH transport is mediated by widely expressed MCT8,

MCT10 or brain-specific OATP1C1. Both MCT8 and MCT10

mediate T3 transport, but MCT8 also transports rT3 and T4,

which are not efficiently transported by MCT10 (102). MCT10

mRNA expression is upregulated in the fasted liver, but MCT8 is

not affected (14, 59). In mice, a 48-hour fasting induces a 4-fold

increase of MCT8 mRNA expression in WAT, while MCT10

mRNA expression remains unchanged, indicating an enhanced

uptake of T3 by adipocytes (59). Decreased MCT8 and increased

MCT10 transcription in the fasted liver are also observed in rats.

Moreover, the expression of both transporters is increased in the

fasted gastrocnemius muscle (103). In the hypothalamus, the

expression of MCT8 was reduced, but MCT10 did not change

after 48-hour of fasting in mice, and its down-regulation upon

fasting may be involved in this feedback mechanism (92). Till now,

there is little data and research about the effects of fasting on

OATP1C1, which is low expression in primates, so it is not

discussed in present review.
7 Conclusion and perspective

Taken together, prolonged fasting has an application potential

in emergency rescue under some special environments with food

shortage, but the inducing efficiency to hypometabolism and the

health maintenance mechanism still need to be understood,

especially in the TH metabolism which plays an important role in
Frontiers in Endocrinology 07
energy expenditure regulation. Extended fasting significantly

influences TH metabolism through localized and differentiated

regulatory mechanisms in different tissues, involving the response

of the HPT axis, reduced uptake and conversion of THs in the

periphery, and nuanced regulation via tanycytes. The molecular

mechanism of this local differentiation regulating deiodinated

enzymes and transporters will be a top priority for future research.
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72. Rodrıǵuez-Rodrıǵuez A, Lazcano I, Sánchez-Jaramillo E, Uribe RM, Jaimes-Hoy
L, Joseph-Bravo P, et al. Tanycytes and the control of thyrotropin-releasing hormone
flux into portal capillaries. Front Endocrinol. (2019) 10:401. doi: 10.3389/
fendo.2019.00401

73. Barrett P, Ebling FJP, Schuhler S, Wilson D, Ross AW, Warner A, et al.
Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal
control of body weight and reproduction. Endocrinology. (2007) 148:3608–17.
doi: 10.1210/en.2007-0316

74. Crantz FR, Silva JE, Larsen PR. An analysis of the sources and quantity of 3,5,3’-
triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and
cerebellum. Endocrinology. (1982) 110:367–75. doi: 10.1210/endo-110-2-367

75. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-
wide atlas of gene expression in the adult mouse brain. Nature. (2007) 445:168–76.
doi: 10.1038/nature05453

76. Chandrasekar A, Schmidtlein PM, Neve V, Rivagorda M, Spiecker F, Gauthier K,
et al. Regulation of thyroid hormone gatekeepers by thyrotropin in tanycytes. Thyroid
Off J Am Thyroid Assoc. (2024) 34:261–73. doi: 10.1089/thy.2023.0375

77. Sánchez E, Vargas MA, Singru PS, Pascual I, Romero F, Fekete C, et al. Tanycyte
pyroglutamyl peptidase II contributes to regulation of the hypothalamic-pituitary-
thyroid axis through glial-axonal associations in the median eminence. Endocrinology.
(2009) 150:2283–91. doi: 10.1210/en.2008-1643

78. Müller-Fielitz H, Stahr M, Bernau M, Richter M, Abele S, Krajka V, et al.
Tanycytes control the hormonal output of the hypothalamic-pituitary-thyroid axis. Nat
Commun. (2017) 8:484. doi: 10.1038/s41467-017-00604-6

79. Langlet F. Tanycyte gene expression dynamics in the regulation of energy
homeostasis. Front Endocrinol. (2019) 10:286. doi: 10.3389/fendo.2019.00286

80. Mullier A, Bouret SG, Prevot V, Dehouck B. Differential distribution of tight
junction proteins suggests a role for tanycytes in blood-hypothalamus barrier
regulation in the adult mouse brain. J Comp Neurol. (2010) 518:943–62.
doi: 10.1002/cne.22273

81. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, et al.
Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell
Metab. (2014) 19:293–301. doi: 10.1016/j.cmet.2013.12.015

82. Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, et al.
Tanycytic VEGF-a boosts blood-hypothalamus barrier plasticity and access of
metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. (2013)
17:607–17. doi: 10.1016/j.cmet.2013.03.004

83. Barahona MJ, Langlet F, Labouèbe G, Croizier S, Picard A, Thorens B, et al.
GLUT2 expression by glial fibrillary acidic protein-positive tanycytes is required for
promoting feeding-response to fasting. Sci Rep. (2022) 12:17717. doi: 10.1038/s41598-
022-22489-2
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