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Aims: Our study, employing a multi-omics approach, aimed to delineate the

distinct gut microbiota and metabolic characteristics in individuals under 30 with

unclassified diabetes, thus shedding light on the underlying pathophysiological

mechanisms

Methods: This age- and sex-matched case-control study involved 18 patients

with unclassified diabetes, 18 patients with classic type 1 diabetes, 13 patients

with type 2 diabetes, and 18 healthy individuals. Metagenomics facilitated the

profiling of the gut microbiota, while untargeted liquid chromatography-mass

spectrometry was used to quantify the serum lipids and metabolites.

Results: Our findings revealed a unique gut microbiota composition in

unclassified diabetes patients, marked by a depletion of Butyrivibrio

proteoclasticus and Clostridium and an increase in Ruminococcus torques and

Lachnospiraceae bacterium 8_1_57FAA. Comparative analysis identified the

combined marker panel of five bacterial species, seven serum biomarkers, and

three clinical parameters could differentiate patients with UDM from HCs with an

AUC of 0.94 (95% CI 0.85–1). Notably, the gut microbiota structure of patients

with unclassified diabetes resembled that of type 2 diabetes patients, especially

regarding disrupted lipid and branched-chain amino acid metabolism.

Conclusions: Despite sharing certain metabolic features with type 2 diabetes,

unclassified diabetes presents unique features. The distinct microbiota and

metabolites in unclassified diabetes patients suggest a significant role in

modulating glucose, lipid, and amino acid metabolism, potentially influencing

disease progression. Further longitudinal studies are essential to explore

therapeutic strategies targeting the gut microbiota and metabolites to modify

the disease trajectory.
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1 Introduction

The global incidence of diabetes mellitus has risen dramatically,

signifying a major public health dilemma in the twenty-first century

(1). Diabetes is characterized by increasing heterogeneity, resulting

in a broad spectrum of clinical manifestations and a more diverse

range of diabetic subgroups. The increasing incidence of overweight

and obesity in individuals with type 1 diabetes mellitus (T1DM) (2),

coupled with the occurrence of ketosis or ketoacidosis in types

beyond T1DM, further complicates the classification process,

especially at the initial diagnosis stage. Consequently, the

classification and management of diabetes will become

increasingly challenging (3). To underscore this complexity, the

World Health Organization (WHO) introduced the category of

unclassified diabetes (UDM) in 2019 (4). Nevertheless, the

distinctive characteristics and etiological factors of UDM have not

been fully elucidated.

Emerging evidence indicates a distinct imbalance in the gut

microbiota of patients with childhood-onset T1DM and type 2

diabetes mellitus (T2DM) (5, 6). In childhood-onset T1DM, a

reduced Firmicutes-to-Bacteroides ratio is common, as is an

increased prevalence of Bacteroides and Blautia (7, 8). Research in

T1DM animal models suggests that the gut microbiota may

influence the autoimmune destruction of pancreatic beta cells by

modulating toll-like receptor 2/4 signaling, Th17 cells in the

intestinal mucosa, sex hormone levels, and the secretion of

pancreatic antibacterial peptides (9–11). Conversely, T2DM

patients often exhibit a decrease in butyrate-producing bacteria,

notably Akkermansia muciniphila, and an increase in bacteria such

as Prevotella copri and Bacteroides vulgatus, which can synthesize

branched-chain amino acids (BCAAs), potentially exacerbating

insulin resistance (12–14). However, the relationships among the

gut microbiota, metabolic profiles, and unclassified diabetes status

remain unexplored, emphasizing the necessity for additional

research in this population.

In this investigation, we compared the gut microbiota and

metabolic profiles among individuals with UDM, T1DM, T2DM,

and healthy controls (HCs), elucidating the intricate relationships

between the gut microbiota composition, metabolite modules, and

clinical phenotypes across these groups. This comprehensive

analysis is intended to explore the features of UDM and unravel

potential pathogenic mechanisms, contributing to a more nuanced

understanding of diabetes subtypes.
2 Methods

2.1 Study participants and recruitment

This cross-sectional study included 18 patients with T1DM, 18

patients with UDM, 13 patients with T2DM, and 18 healthy

controls (HCs), all of Han descent and under 30 years. We

considered the age of onset ≤ 30 as young-onset. The patients

were diagnosed according to the World Health Organization

guidelines. T1DM was diagnosed based on the presence of acute

ketosis or ketoacidosis, the course of insulin replacement therapy,
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impaired islet function, or positivity for at least one autoantibody

(glutamic acid decarboxylase autoantibodies [GADA], insulinoma-

associated antigen-2 autoantibodies [IA-2A], or islet cell antibody

[ICA]). T2DM was diagnosed based on a typical history of

hyperglycemia, no immediate requirement for insulin treatment,

and negativity for islet autoantibodies. UDM was diagnosed

through an exclusion-based approach, beginning with genetic

tests to rule out monogenic diabetes and assessments to exclude

secondary causes like infections or pancreatic disorders. The

diagnosis also depended on the patient’s clinical profile not

matching the criteria for T1DM characterized by autoimmune

beta-cell destruction, or T2DM, which involves insulin resistance

and relative insulin deficiency. This process ensured the specificity

of UDM diagnoses, reserved for cases with unidentified etiologies

that do not fit known diabetes types or other defined disorders. All

healthy subjects and patients with T2DM tested negative for

GADA, IA-2A, and ICA. Additionally, all healthy subjects

underwent a standard 75-g oral glucose tolerance test (OGTT) to

confirm their normal blood glucose levels. The exclusion criteria for

this study included secondary diabetes, acute or chronic

inflammatory diseases, infectious diseases, pregnancy, malignant

tumors, a history of steroid or immunosuppressive drug use for

more than 7 days, a history of treatment with prebiotics, probiotics,

antibiotics, or any other medication that could influence the gut

microbiota for more than 3 days within the previous 3 months,

gastrointestinal diseases, a history of gastrointestinal surgery within

the previous year, and hepatic and renal dysfunction. The collected

demographic and clinical data included age, sex, diabetes duration,

height, weight, body mass index (BMI), systolic blood pressure, and

diastolic blood pressure. Additionally, biochemical data such as the

75-g OGTT, C-peptide release test, HbA1c, fasting plasma glucose

(FPG), lipid profile, and renal function were collected. All

participants provided written informed consent, and this study

was approved by the Ruijin Hospital ethics committee.
2.2 Metagenomic analysis of the human
gut microbiome

Metagenomic sequencing was utilized to investigate the gut

microbiome of the four groups in this study. Fecal samples were

collected from each patient for metagenomic analysis. Patients had

not been treated with antibiotics for at least one month before

sampling. Furthermore, they avoided probiotic-rich foods,

including yogurt, for a week before collecting the samples. Each

sample was immediately frozen at −80°C or temporarily held in

personal freezers at −20°C before being transported to the

laboratory within a 24-hour window. Total genomic DNA was

extracted using the QIAamp Fast DNA Stool Mini Kit from Qiagen,

Germany. Paired-end sequencing was performed on the NovaSeq

6000 platform from Illumina, Inc., in San Diego, CA, USA, at

Majorbio BioPharm Technology Co., Ltd., in Shanghai, China.

Reads that had adapter sequences or low quality, with a length

shorter than 50 bp or a quality value lower than 20, were discarded.

The remaining reads were aligned to the Homo sapiens genome

using the NCBI database(GCA_000001405.28) to remove host
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DNA. The short reads were assembled using Megahit. SOAPaligner

was used to map high-quality reads with 95% identity to

representative genes, and the abundance of genes in each sample

was assessed using RPKM. The overall information of all genes in

the environment can be summarized by constructing a non-

redundant gene set. This involves clustering the gene sequences

predicted from all samples using CD-HIT software(http://

www.bioinformatics.org/cd-hit/) with default parameters set to

90% identity and 90% coverage. The longest gene in each cluster

is selected as the representative sequence to create the non-

redundant gene sets, al lowing for the exploration of

commonalities and differences among the various samples. The

results from this step include a table of gene number and length

statistics before and after redundancy removal, as well as the base

sequences and amino acid sequences of the genes in the non-

redundant gene set. For taxonomic annotations, non-redundant

gene sets were aligned to the NR database using DIAMOND

software (http://ab.inf.uni-tuebingen.de/software/diamond/) with

BLASTP (Version 2.2.28+, http://blast.ncbi.nlm.nih.gov/Blast.cgi).

The alignment parameters were set with an expected value (e-value)

of 1e-5 (15), employing the best hit approach.

Using the species annotation results from the taxonomic

information database corresponding to the NR library, the

abundance of each species was calculated by summing the genes

associated with that species. The abundance was then assessed at

various taxonomic levels, including Domain, Kingdom, Phylum,

Class, Order, Family, Genus, and Species for each sample. To

construct the abundance table (abundance profile) at the

corresponding taxonomic level. At the domain level, 5 were

obtained; at the kingdom level, 13; at the phylum level, 149; at

the class level, 262; at the order level, 475; at the family level, 848; at

the genus level, 2727; and at the species level, 12836.

We used the KEGG database analysis. For KEGG functional

annotation, align non-redundant gene set sequences against the

gene database (GENES) using BLASTP (BLAST Version 2.2.28+,

http://blast.ncbi.nlm.nih.gov/Blast.cgi), set the expected value e-

value for BLAST alignment parameter 1e-5. Functional

annotation was performed using KOBAS 2.0 (KEGG Orthology

Based Annotation System) based on the alignment results (16). The

abundances of this functional category were calculated using the

sum of the gene abundances corresponding to KO, Pathway, EC,

and Module. There are probably 206112 genes that were obtained

and annotated.
2.3 Nontargeted lipidomic analysis

Human serum samples were analyzed using an ultrahigh-

performance liquid chromatography high-resolution mass

spectrometry/mass spectrometry (UHPLC-HRMS/MS)-based

non-targeted lipidomics platform. Lipidomic analysis was

performed using a ThermoFisher Ultimate 3000 UHPLC system

coupled to a Q Exactive Orbitrap Mass Spectrometry with a Heated

Electrospray Ionization Source. The raw UHPLC-HRMS/MS data

were processed using Compound Discoverer (version 3.3, Thermo

Fisher) with a lipidomics workflow template. This included
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retention time alignment, compound detection, and compound

group and structural identification of lipids using the LipidBlast

library (version 68).
2.4 Serum metabolites analysis

The quantification of human serum was performed using the

UHPLC-MS/MS platform, which involved several steps, including

sample preparation, UHPLC-MS/MS analysis, raw data

preprocessing, and the calculation of relative quantification of

target metabolites. The metabolites were analyzed using a Thermo

Fisher Ultimate 3000 UHPLC system coupled to a Q Exactive

Orbitrap Mass Spectrometry in Heated Electrospray Ionization

Source with positive and negative modes. The raw data were

processed using Xcalibur Software (version 4.0, Thermo Fisher

Scientific). In this step, the target metabolites and internal

standards were identified, and the integral areas were exported.

The relative quantification results were obtained by normalizing the

peak areas of the target metabolites to that of the corresponding

internal standard.
2.5 Statistical analyses

Differences in clinical parameters were analyzed using the chi-

square test or Kruskal−Wallis test, and multiple comparisons were

corrected using false discovery rate (FDR) post hoc tests. To

compare metabolite and lipid profiles, orthogonal projections to

latent structures discriminant analysis (OPLS-DA) algorithms were

used. Variable importance for the projection (VIP) scores were

obtained from the OPLS-DA. A Pfdr < 0.1 was considered

statistically significant for metabolites, and a P < 0.05, VIP > 1,

and fold change > 1.5 were considered statistically significant for

lipids. The Kruskal−Wallis rank-sum test was applied to assess the

differences in microbial alpha diversity. Permutational multivariate

analysis of variance (PERMANOVA) was used to compare

microbiota beta diversity, and redundancy analysis (RDA) was

used to evaluate the effects of demographic variables on

microbiota community variation. The maximum Pearson

correlation coefficient between environmental factors and the

sample community can be determined using the bioenv function,

which identifies the subset of environmental factors corresponding

to the highest correlation. RDA is then performed on the sample

species distribution table alongside the environmental factors or

their selected subset. The significance of the RDA results is assessed

through a permutation test similar to ANOVA, focusing on groups

where environmental factors influence differences in microbial

communities. Significant differences in the relative abundances of

taxa were identified using linear discriminant analysis (LDA) effect

size (LEfSe) analysis, and P values were corrected using the

Benjamini and Hochberg FDR. Taxa with LDA values > 2.0 and

P < 0.05 were considered to be differentially abundant, and taxa

with Pfdr < 0.1 were considered to be significantly different (15).

LEfSe (http://galaxy.biobakery.org/) is a software tool designed for

discovering high-dimensional biological identifiers and revealing
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genomic features, including genes, metabolic pathways, and

classifications, to distinguish between two or more biological

conditions (or taxa). The software first employs the non-

parametric factorial Kruskal-Wallis sum-rank test to detect

significant differences in abundance, identifying taxa that show

marked differences. Next, the Wilcoxon rank-sum test assesses the

consistency of these differences across various groups for the

identified species. Finally, LEfSe utilizes linear discriminant

analysis (LDA) to estimate the impact of the abundance of each

component (species, gene, or function) on the observed

differential effects.

To determine the effectiveness of the selected features, random

forest models were built using microbial features, metabolic

features, and a combination of the two types of data to

differentiate different groups. We calculated the area under the

curve (AUC) for the model using these features, which provided a

quantitative measure of the model’s ability to distinguish between

UNC and HC. The selected features yielded a maximum AUC,

indicating strong discriminatory power. The feature set was refined

iteratively based on the ROC analysis results, ensuring that only

those features that contributed significantly to the AUC were

retained. This process helped us focus on the most relevant

predictors while minimizing the potential for overfitting

(15).These models were built using the randomForest package in
Frontiers in Endocrinology 04
R. The data were analyzed using the Majorbio Cloud Platform

(https://cloud.majorbio.com/page/tools/) (17).
3 Results

3.1 Anthropometric and biochemical
measurements of different types
of diabetes

The study design is illustrated in Figure 1. In this study,

participants with T1DM, T2DM, UDM, and HCs under the age

of 30 were recruited following a stringent pathological diagnostic

and exclusion methodology. The delineation of unclassified diabetes

was based on the World Health Organization (WHO) criteria,

excluding known types such as T1DM, T2DM, and hybrid

diabetes and specific types such as monogenic diabetes, diseases

of the exocrine pancreas, endocrine disorders, drug- or chemical-

induced diabetes, infections, uncommon specific forms of immune-

mediated diabetes, and other conditions discerned through genetic,

clinical, and laboratory evaluations. The biochemical characteristics

of the study groups are presented in Table 1. Elevated fasting plasma

glucose (FPG) and hemoglobin A1C (HbA1c) levels were observed

across all patient groups relative to those of HCs. Compared with
FIGURE 1

Diagram of the study design. Created with BioRender.com.
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the T1DM group, the UDM group exhibited increased BMI, FPG,

and HbA1c, as well as notably increased uric acid (UA) levels.

Furthermore, the homeostatic model assessment for insulin

resistance (HOMA-IR) was significantly higher in the UDM

group than in the HCs and T1DM groups but remained below

the T2DM level. The homeostatic model assessment for beta-cell

function (HOMA-b) was significantly higher in the HC group

compared to both the UDM and T1DM groups, with the UDM

group showing higher levels than the T1DM group. Additionally,

levels of LDL, HDL, total cholesterol (TC), and triglycerides (TG)

were significantly elevated in the UDM group compared to the HCs

group. Furthermore, fasting C-peptide (FCP) and postprandial C-

peptide (PCP) levels were significantly higher in the UDM group

compared to the T1DM group, but significantly lower than those in

the T2DM group.
3.2 Structural modulation of the gut
microbiota in the four groups

First, we analyzed the microbial diversity of the four groups. The

Chao index results indicated no significant difference in bacterial

richness across the groups(healthy controls: 4118 ± 504.9; T1DM

patients: 3825 ± 828.7; T2DM patients: 4225 ± 828.1; UDM patients:

3847 ± 688.9; P > 0.05)(Figure 2A). Similarly, the Shannon and Simpson
Frontiers in Endocrinology 05
indices also demonstrated no significant differences in bacterial richness

among the groups (Supplementary Figure S1). Principal coordinate

analysis (PCoA) based on the Bray–Curtis distance revealed significant

differences in the overall microbial features across the four groups

(PERMANOVA, P = 0.001) (Figure 2B). The bacterial community

structure in young-onset UDM patients was significantly distinct from

that in HC and T1DM patients (PERMANOVA, T1DM vs HC: P =

0.005; T2DM vs HC: P = 0.005; UDM vs HC: P = 0.001; T1DM vs

UDM: P = 0.019), underscoring the different microbial composition

associated with UDM.
3.3 Taxonomic changes in microbial
composition in young-onset UDM patients

Next, we analyzed the microbial composition at different

taxonomic levels, with the phylum and family compositions shown

in Figures 2C, D. LEfSe analysis revealed no distinct bacterial phylum

structure unique to UDM at the phylum and family levels.

Bacteroidetes and Firmicutes dominated across all groups, followed

by Proteobacteria and Actinobacteria. Significantly, patients with

UDM had increased levels of Actinobacteria (0.5636% in HC vs.

3.331% in UDM; P=0.0005314, FDR adjusted=0.03154) and

Proteobacteria (3.057% in HC vs. 6.869% in UDM; P=0.001644,

FDR-adjusted=0.0515) compared with HC.
TABLE 1 Baseline anthropometric and biochemical variables.

Healthy
controls (n=18)

Unclassified
diabetes (n=18)

T1DM (n=18) T2DM (n=13) P value between
all groups

Age (years) 23.00 (21.00-24.00) 22.00 (16.50-27.00)# 22.00 (16.00-26.50) 20.00 (15.00-22.00) 0.963

Age of onset (years) / 22.00 (15.75-26.25) 21.50 (15.75-26.25) 19.00 (18.00-25.00) 0.931

Male/Female (n) 8/10 10/8 6/12 7/6 0.54

BMI (kg/m2) 19.85 (19.27-21.55) 26.95 (24.48-30.26)* 21.06 (19.28-25.34) 26.37 (23.38-28.45)* <0.001

FBG (mmol/L) 4.73 (4.46-4.96) 7.52 (6.19-10.30)* 6.04 (5.49-11.64)* 7.20 (6.94-12.00)* <0.001

PBG (mmpl/L) 5.85 (4.60-6.81) 15.97 (8.78-18.78)* 16.44 (8.67-25.66)* 14.18 (7.14-17.51)* <0.001

HbA1c (%) 5.05 (4.67-5.12) 9.65 (7.72-10.47)*^ 8.40 (6.70-10.60)* 6.00 (5.20-9.80)* <0.001

FCP (ng/ml) 1.61 (1.41-2.33) 1.90 (1.68-2.57)#^ 0.11 (0.01-0.49)* 3.83 (1.97-3.92)* <0.001

PCP (ng/ml) 6.92 (5.54-10.89) 4.53 (2.98-5.28)*#^ 0.14 (0.01-2.44)* 10.12 (5.98-39.82) <0.001

TC (mg/dL) 3.90 (3.32-4.38) 4.75 (3.74-5.21)* 4.32 (3.96-4.59) 5.17 (3.67-5.49) 0.054

TG (mg/dL) 0.62 (0.56-0.99) 1.40 (0.80-1.89)*# 0.85 (0.69-1.05) 2.08 (1.29-2.55) <0.001

HDL (mg/dL) 1.38 (1.30-1.57) 1.12 (0.90-1.46)*# 1.55 (1.23-1.71) 1.02 (0.91-1.07)* <0.001

LDL (mg/dL) 1.98 (1.68-2.51) 2.66 (1.99-3.75)* 2.52 (2.12-2.90)* 3.19 (2.80-3.56)* <0.001

UA (mmol/L) 313.00 (255.75-369.00) 362.50 (274.00-445.00)# 286.00 (230.00-345.50) 374.00 (362.00-481.00) 0.025

HOMA-IR 1.33 (0.93-1.65) 2.63 (2.13-5.91)*#^ 0.41 (0.11-0.86)* 4.94 (3.10-7.90)* <0.001

HOMA-b 101.72 (90.18-119.19) 58.19 (29.98-85.25)*# 6.81 (1.46-15.21)* 60.46 (23.88-133.56) <0.001
The data are presented as the median (25th–75th percentile). *versus healthy controls, P < 0.05; #versus T1DM patients, P < 0.05; ^versus T2DM patients, P < 0.05. T1DM, type 1 diabetes
mellitus; T2DM, type 2 diabetes mellitus; BMI, body mass index; FBG, fasting blood glucose; PBG, postprandial blood glucose; HbA1c, hemoglobin A1c; FCP, fasting C-peptide; PCP,
postprandial C-peptide; TC, cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; UA, uric acid; HOMA-IR, homeostasis model assessment for insulin
resistance; HOMA-b, homeostasis model assessment-b.
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LEfSe analysis was employed to discern differentially abundant

microbial species among HCs, T1DM patients, T2DM patients, and

UDM patients. A total of 81, 34, and 190 species were identified as

differentially abundant between T1DM and UDM, T2DM and UDM,

and UDM and healthy controls (HCs), respectively(LDA value > 2, P <

0.05) (Supplementary Tables S1-S3). The results from the LEfSe analysis

indicate that the UDM group has the fewest differential microbial

populations compared to the T2DM group. To determine the potential

influence of host factors on microbial composition, we conducted a

redundancy analysis (RDA) to ascertain potential confounders within

these groups. Key host factors, including age, sex, BMI, and diabetes

duration, were integrated into the RDA model. Our analysis revealed

that, even after adjusting for these confounding factors, 21 taxa in

young-onset UDM patients exhibited significant differential abundance

compared to healthy controls (HCs) (LDA value > 2, Pfdr < 0.1). Among

these, 6 taxa were particularly enriched in UDM patients, including
Frontiers in Endocrinology 06
Lachnospiraceae and Enterobacteriaceae. These taxa are associated with

metabolites involved in carbohydrate and amino acid metabolism,

suggesting a disturbed gut microbiome’s involvement in carbohydrate

and amino acid metabolic pathways (18), while there was a notable

depletion of 15 species, such as Flintibacter, Butyrivibrio_proteoclasticus,

s_Clostridium_sp_AF27_2AA and s_Clostridium_sp_AM33_3

(Figure 2E). Additionally, we identified critical functional alterations

in the gut microbiota of young-onset UDM patients. There was a

significant enrichment of carbon metabolism pathways in these

individuals compared to healthy controls, indicating a distinctive

metabolic signature. Moreover, the amino sugar and nucleotide sugar

metabolism pathways were also significantly enriched in UDM patients

compared to those in T1DM and T2DM patients. These findings

suggest that the gut microbiota may be involved in the pathogenesis

of UDM and shed light on metabolic dysregulation in this disease

(Supplementary Figure S2).
FIGURE 2

The structural shifts and signatures of the gut microbiota in the four groups. (A). Microbial community richness and diversity (Chao 1 index;
P = 0.3967). (B). Principal coordinate analysis (PCoA) analysis based on PERMANOVA (P = 0.001). (C, D). The relative abundance of microbial taxa at
the phylum and family levels; phyla or genera with a relative abundance <1% in each sample were merged into others. (E). Bar charts showing the
relative abundance of taxa that were exclusively altered in patients with UDM compared with HCs. HCs, healthy controls; T1D, type 1 diabetes; T2D,
type 2 diabetes; UDM, unclassified diabetes; PCoA, principal coordinate analysis; PERMANOVA, permutational multivariate analysis of variance. Bar
charts show the mean ± SD. *Pfdr < 0.1.(HCs,n=18:UDM,n=18;T1DM,n=18;T2DM,n=13).
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3.4 Associations of the microbiota with
serum metabolites and lipids

We observed significant differences in serummetabolites between

patients with diabetes and HCs (Supplementary Figure S3).

Specifically, the numbers of enriched differentially abundant

metabolites in the UDM, T1DM, and T2DM groups compared to

those in the HC group were 9, 12, and 18, respectively (Pfdr<0.1)

(Figures 3A-C). Notably, metabolites such as indolelactate, 3-

hydroxyisovalerate, acetylcamitine, and 2-hydroxyisocaproate were

more abundant in the UDM and T2DM groups than in the HC

group. Additionally, we analyzed serum lipids and revealed

significant differences across the groups (Supplementary Figure S4),

highlighting the metabolic distinctions inherent to diabetes. In

patients with UDM, we identified 50 differential lipids,

predominantly triglycerides (TGs), which were increased

(Figures 4A-C). Subsequent correlation analysis explored the

relationships between differentially abundant bacteria and

metabolites. This revealed that bacteria enriched in HCs had a

strong positive correlation with HC-enriched metabolites but

exhibited a negative correlation with diabetes-enriched metabolites

(Figure 3D). Notably, a decrease in carnitine and its derivatives, such

as valerylcarnitine and lauroylcarnitine, was observed in UDM

patients. These compounds are known to enhance glucose

utilization, improve lipid profiles, and reduce oxidative stress

markers, suggesting that their protective effects may be diminished

in UDM (Figure 3D) (19). In individuals with young-onset UDM, an
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increase in specific metabolic markers, including 3-hydroxybutyric

acid, BCAAs, and their catabolic intermediates, was noted. These

markers have been associated with an increased risk of transitioning

from normoalbuminuria to macroalbuminuria and CKD (20–22).

The abundances of bacteria such as s_Ruminococcus_torques and

s_Lachnospiraceae_bacterium_8_1_57FAA were positively correlated

with the abundances of metabolites such as 3-hydroxyisovalerate and

3-hydroxybutyric acid, suggesting an increased likelihood of complex

diabetic nephropathy in UDM patients. We also observed that amino

acids, fatty acid derivatives, and organic acids were enriched in the

T2DM group, including alanine, valerylcarnitine, and 2-

hydroxyisocaproate, which have been reported to be associated

with abnormal fat metabolism and insulin resistance (6, 23, 24).TG

and PE were enriched in the UDM and T2DM groups. Additionally,

a strong positive correlation between bacteria and lipids (TG and PE)

in the UDM and T2DM groups indicates potential parallels in their

pathogenic processes (Figure 4D).
3.5 Associations of the altered microbes
and metabolites with clinical parameters

To understand the role of the gut microbiota in the progression of

diabetes, we analyzed the associations between clinical parameters and

differentially abundant bacteria or metabolites in the four groups. We

discovered that certain taxa related to young-onset T2DM, including

Streptococcaceae (25) and Actinomycetaceae (26), were significantly
FIGURE 3

Differentially abundant serum metabolites and their associations with gut bacteria. (A–C). Distribution of serum-enriched differentially abundant
metabolites between the UDM group and the HC, T1DM, or T2DM group. Variable importance for the projection (VIP) scores were obtained via
OPLS-DA. (D). Associations of representative bacteria and serum metabolites that were altered in UDM patients, T1D patients, T2D patients, or both
compared with HCs were assessed by Spearman’s correlation analysis. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1440984
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2024.1440984
correlated with glucose metabolism and pancreatic beta cell function,

corroborating previous findings. These taxa had a positive correlation

with PCP and FCP (Figure 4E). In the UDM cohort, bacteria such as

Ruminococcus:torques, Lachnospiraceae_bacterium_8_1_57FAA, and

Nitrobacteraceae were positively associated with PBG and FCP.

Furthermore, we discovered novel associations between young-onset

UDM and increased metabolites such as 2-hydroxy-3-methylbutyrate,

2-hydroxyisobutyraten, and 3-hydroxyisovalerate, which are all

positively correlated with PBG, FBG, and FCP. Particularly in

UDM, high levels of 3-hydroxyisovalerate, 3-hydroxyisobutyrate,

and phenylalanine were strongly related to blood uric acid,

indicating their potential role in renal function, suggesting a

heightened risk of diabetic nephropathy in UDM patients. In UDM,

we observed an enrichment of metabolites integral to amino acid

metabolism, including 2-hydroxy-3-methylbutyric acid, cysteine, and

phenylalanine. This enrichment aligns with an increase in bacterial

pathways for amino sugar metabolites, providing insight into the
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metabolic landscape of UDM. In T2DM patients, elevated levels of D-

fructose, D-glucose, and D-mannose were linked to key glucose and

lipid metabolism parameters (Supplementary Figure S5A). Moreover,

TG, which was significantly elevated in T2DM patients, correlated

strongly with glucose metabolism (Supplementary Figure S5B).

Correlations analysis indicates potential links between the gut

microbiota, metabolites, and clinical parameters in UDM

(Supplementary Figure S6). The results from the LEfSe analysis

indicate that the UDM group has the fewest differential microbial

populations compared to the T2DM group. A total of 81, 34, and 190

species were differentially abundant between T1DM and UDM,

T2DM and UDM, and UDM and HCs, respectively (LDA value >

2, P < 0.05) (Supplementary Tables S1-S3). Meanwhile, the analysis of

alterations in gut microbiota functionality revealed that the differential

pathways between the UDM and T2DM groups were relatively fewer

compared to the other two groups (Supplementary Figure S2).

Regarding the differential metabolites compared to the HC group,
FIGURE 4

Differentially abundant serum lipids and their associations with gut bacteria. (A–C) Volcano plots demonstrating differential lipids between HCs
and UDM, T1DM, or T2DM patients. p<0.05, VIP>1, and FC>1.5 were used to screen for differentially abundant serum lipids. (D) Associations of
representative bacteria and serum lipids that were altered in UDM patients, T1D patients, T2D patients, or both compared with HCs were assessed
by Spearman’s correlation analysis. (E) Associations of differentially abundant taxa and clinical parameters in patients. *Pfdr < 0.1, **Pfdr < 0.05,
***Pfdr < 0.01, ****Pfdr < 0.001. FC, fold change; OPLS-DA, orthogonal partial least squares discriminant analysis; VIP, variable influence on
projection; HC, healthy controls; T1D, type 1 diabetes; T2D, type 2 diabetes; UDM, unclassified diabetes.
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the types of differential metabolites in UDM and T2DM were more

similar, primarily consisting of TG and amino acid metabolites, and

showed a positive correlation with their respective enriched microbial

communities (Figures 3D, 4D). Therefore, the gut microbiota

structure of patients with unclassified diabetes is relatively similar to

that of patients with type 2 diabetes.
3.6 Multiomic classifier discriminating
patients with young-onset UDM from
patients in the other three groups

To ascertain the potential of the gut microbiota and metabolites

as biomarkers for the differential diagnosis of diabetes, we

constructed random forest models based on changes in fecal

taxonomic or metabolic features between HCs and UDM patients

(Supplementary Table S4). The model revealed a bacterial signature

of 5 distinct species that could differentiate UDM patients from HCs,

with an area under the curve (AUC) of 0.66 (95% CI 0.45–0.87)

(Figure 5A). An additional random forest model was assessed for its

diagnostic efficacy utilizing a combination of 7 serum biomarkers,

including 3 metabolites and 4 lipids. Notably, this model produced an

AUC of 0.73 (95% CI 0.53–0.94) for distinguishing patients with

young-onset UDM from HCs (Figure 5B). Further enhancement of

the model with a panel of five bacterial species, seven serum

biomarkers, and three clinical parameters increased its

discriminative power, yielding an AUC of 0.94 (95% CI 0.85–1) in

differentiating UDM patients from HCs (Figure 5C), demonstrating

the potential of this comprehensive approach for accurate diagnosis.
4 Discussion

Eason RJ et al. (27) demonstrated that adults diagnosed with type

1 diabetes who are negative for islet antibodies have genetic and C-

peptide characteristics that are intermediate between those of type 1

and type 2 diabetes. This suggests a significant misclassification within

this cohort, potentially including individuals with islet antibody-
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negative autoimmune (type 1) diabetes as well as those with

nonautoimmune (predominantly type 2) diabetes who have been

erroneously classified. Such misclassification can lead to inappropriate

treatment regimens, including unnecessary lifelong insulin therapy,

and hinder access to effective type 2 diabetes treatments.

Currently, the high prevalence of type 2 diabetes in adults

makes robustly discriminating true type 1 diabetes from atypical

presentations of type 2 diabetes challenging. Some reported

characteristics of type 1 diabetes in older adults, such as low islet

autoantibody prevalence, may reflect the inadvertent study of those

with and without autoimmune diabetes, and some research in this

area suggests a need to combine clinical diagnosis with gut

microbiota and metabolite profile tests in this setting (28–30).

TheWorld Health Organization (WHO) introduced UDM in 2019

when there was no clear diagnostic category (4). In this study, we

revealed that unclassified diabetes patients have different gut microbiota

and metabolite profiles than healthy individuals as well as classic T1DM

and T2DM patients. Remarkably, the gut microbiota of unclassified

diabetes patients displayed distinctive characteristics, with significantly

increased abundances of s:_Ruminococcus:torquess and

Lachnospiraceae_bacterium_8_1_57FAA and decreased abundances of

s:unclassified_g:Clostridium, s:Clostridium_sp:AF27_2AA and s:

Clostridium_sp:AM33_3 compared with those in the other groups.

There was a clear correlation among the gut microbiota, serum

metabolites, and clinical phenotypes. Furthermore, the gut bacterial

pathway of “Amino sugar and nucleotide sugar metabolism” was

significantly enriched in young-onset UDM patients, differentiating

them from T1DM and T2DM patients and suggesting that unique

metabolic processes are involved in UDM.

In patients with unclassified diabetes, we detected an enrichment

of branched-chain amino acids (BCAAs) and their derivatives in the

blood, which correlated with glucose and lipid metabolism. Large

human population studies have shown that a high intake of dietary

BCAAs increases the risk of T2DM (31). In our study, BCAAs and

their derivatives might affect glucose metabolism and sensitivity in

patients with unclassified diabetes, which was consistent with the

functional differences in the bacteria. Metabolites such as indolelactate,

3-hydroxyisovalerate, acetylcarnitine, and 2-hydroxyisocaproate were
FIGURE 5

Disease classification based on the signatures of the gut microbiome and metabolome. Random forest classifiers composed of bacteria (A), combinations
of metabolites (B), and clinical parameters (C) were constructed to discriminate patients with UDM from HCs. HC, healthy controls; UDM, unclassified
diabetes; AUC, area under the curve.
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found at higher concentrations in the UDM and T2DM groups

compared to the HC group, and these metabolites are positively

associated with the risk of developing T2DM (32–34). In our

population, most UDM and T2DM patients exhibited both obesity

and deteriorated lipid metabolism, suggesting that these elevated

metabolite levels may be linked to the shared obesity characteristics

in both groups. Indeed, Patients with UDM or T2DM had We found

that, serologically, UDM was more similar to T2DM, but T2DM was

dominated by TG enrichment and UDM by amino acid derivatives.

Moreover, high levels of 3-hydroxyisovalerate and 3-

hydroxyisobutyrate were strongly related to blood uric acid in the

UDM group, which could suggest that unclassified diabetes patients

had a poor renal function in the subsequent course. Therefore, this

finding suggests that patients with unclassified diabetes mellitus need

to pay attention to changes in renal function in later follow-up.

Importantly, we developed a prediction model for UDM based on

gut microbial signatures and metabolic features, which demonstrated

high accuracy in distinguishing patients with this disease from HCs.

Furthermore, we have shown that the predictive power of the model

can be enhanced by incorporating metabolites, and the utilization of

the “5 + 7+3” model enables simultaneous differentiation of patients

with UDM from HCs. The differential metabolite composition

between the UDM and HC groups was similar to that of the T2DM

and HC groups. However, the increasing prevalence of obesity among

patients with T1DM due to environmental and lifestyle factors, the

presence of ketosis-prone individuals in patients with T2DM and

idiopathic T1DM, and the unavailability of autoantibody detection

facilities in certain clinics pose challenges in accurately classifying

different types of diabetes. In this regard, comprehending themetabolic

and microbiota characteristics of unclassified diabetes mellitus patients

is crucial for gaining insights into disease pathogenesis and prognosis.

Although our study provides valuable insights into unclassified

diabetes, it has several limitations that should be considered. First, the

cross-sectional design of our study cannot establish a causal

relationship between the identified gut microbiota and young-onset

unclassified diabetes. Additionally, the sample size is restricted due to

the limited number of adolescent-onset diabetes cases we were able to

collect. In future research, we plan to continue gathering data on

adolescent cases of type 1, type 2, and unclassified diabetes to develop

classification models that can differentiate UNC from other diabetes

types based on gut microbiota andmetabolites. Moreover, the relatively

small sample size and the restriction of subjects to a specific ethnic

population and geographic region may limit the generalizability of our

results. The taxonomy-based microbiome analysis heavily relies on

existing databases for taxonomic assignment in our manuscript. This

dependence can introduce biases if the database is incomplete or not

representative of the microbial diversity present in the samples.

Finally, despite our efforts to address confounding factors when

comparing the three groups (sex- and age-matched patients with

comparable demographic characteristics, antibiotic exposure, and

comorbidities), our findings could be influenced by other

confounders, such as disease duration and dietary intake.

Therefore, the significance of these findings should be confirmed

through larger prospective follow-up studies involving more diverse

ethnic populations and geographic regions.
Frontiers in Endocrinology 10
5 Conclusion

Our study revealed distinct characteristics of the gut microbiota

and metabolic profiles in patients with unclassified diabetes,

distinguishing them from healthy individuals. Additionally, we

observed correlations between these profiles and aspects of glucose

metabolism and islet function, suggesting their potential involvement

in the development and progression of unclassified diabetes.

Importantly, we also found that patients with unclassified diabetes

may experience impaired renal function in the future, highlighting

the need for careful monitoring. Overall, the findings from this study

provide valuable insights that could contribute to the classification

and comprehension of diabetes through the identification of

novel pathways.
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