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Background: In addition to hypertension or diabetes, elderly people are also

considered one of the high-risk groups for chronic kidney disease (CKD).

Although niacin is recognized for its renal protective properties, the link between

dietary niacin intake and CKD remains uncertain. This study investigated this

relationship in the elderly.

Methods: We included participants aged 60 and older from the National Health

and Nutrition Examination Survey (NHANES) for the years 2003-2018. Dietary

niacin intake was assessed through two non-consecutive 24-hour dietary recalls.

CKD was diagnosed in individuals with a urine albumin-to-creatinine ratio

exceeding 30 mg/g or an estimated glomerular filtration rate below 60 mL/

min per 1.73m^2. The study cohort comprised 4,649 participants, 1,632 of whom

had CKD. Propensity score matching (PSM) was utilized to adjust for baseline

differences between the groups.

Results:Our analysis, using smooth curve fitting and generalized additive models

both before and after PSM, found a U-shaped curve depicting the relationship

between dietary niacin intake and CKD risk, confirmed by a log-likelihood ratio

test (P < 0.05). Threshold effect analysis (after PSM) indicated a reduced risk of

CKD in older adults with a niacin intake below 38.83 mg per day [odds ratio

(OR) = 0.99, 95% confidence interval (CI) 0.97-1.00]. In contrast, higher intake

levels significantly increased the risk (OR = 1.03, 95% CI 1.00-1.06). Subgroup

analysis indicated that these associations were consistent across different

stratification variables (P for interaction > 0.05).

Conclusion: Our findings suggested a U-shaped association between dietary

niacin intake and CKD risk among older Americans. However, further prospective

cohort studies are needed to confirm this finding.
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1 Introduction

Chronic kidney disease (CKD) constitutes a major public health

issue worldwide, afflicting more than 10% of the adult population in

the United States and resulting in an annual financial burden

exceeding $50 billion (1). Not only does CKD elevate the risk of

cardiovascular diseases, but it also leads to renal insufficiency and

end-stage renal disease, necessitating interventions such as dialysis

or kidney transplantation (2). Individuals aged 60 years and older

are particularly susceptible to CKD, a concern that was exacerbated

by the aging population dynamics, thereby underlining the critical

need for strategies to prevent CKD in the elderly (3, 4).

Among the range of controllable lifestyle factors, dietary habits

were particularly crucial. Appropriate nutritional intake can not

only mitigate the risk of CKD but also enhances the overall health

status of individuals (5). Niacin, or Vitamin B3, is an essential

nutrient prevalent in a diverse array of foods such as meats, fish,

grains, and dairy products (6). It functions as a precursor for

synthesizing nicotinamide adenine dinucleotide (NAD), playing a

crucial role in cellular metabolic processes, redox reactions, and

energy metabolism (7). Niacin mitigates endothelial dysfunction by

elevating intracellular NAD levels, enhancing glutathione synthesis,

and diminishing reactive oxygen species production in endothelial

cells (8). Current research suggests that supplementation with NAD

precursors might represent a promising preventative and

therapeutic strategy against renal damage (9, 10). Abnormal levels

of myeloperoxidase, lipids and hyperphosphatemia, to varying

degrees, indirectly or directly compromise the body’s ability to

counteract oxidative stress and inflammation, thereby exacerbating

renal dysfunction (11–13). There were indications that niacin could

improve dyslipidemia, oxidative stress, inflammatory responses,

endothelial function, and serum phosphate levels, thus potentially

delaying the progression of CKD (14). Studies suggested that a high

dietary intake of niacin might benefit renal function in the elderly to

some extent (15). However, some metabolites of niacin, such as

prostaglandin D2, homocysteine, and 5-hydroxytryptamine, may

also adversely affect renal function. Given niacin’s potential dual

effects on kidney health, it is crucial to establish an optimal daily

intake range to maximize its protective benefits (16–18).

As far as we know, the association between dietary niacin intake

and CKD in the elderly continues to be poorly understood, especially

the effects of excessive intake. Considering this, exploring the

curvilinear association between the two, and determining the

optimal intake threshold, is of paramount importance for shaping

public health policies and managing individual health among elderly.

In this study, we utilized data spanning from 2003 to 2018 from the

National Health and Nutrition Examination Survey (NHANES) to

conduct a cross-sectional analysis.
2 Materials and methods

2.1 Study participants

NHANES, overseen by the National Center for Health Statistics

at the Centers for Disease Control and Prevention, utilizes a
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stratified, multistage sampling approach for its continuous survey

efforts. NHANES is a nationwide cross-sectional study. This

initiative seeks to thoroughly evaluate the health and nutritional

conditions of U.S. adults and children via structured interviews and

physical exams. The data required for this analysis were obtained

directly from the NHANES official website (https://www.cdc.gov/

nchs/nhanes). Written consent was obtained from all NHANES

participants for their participation.

This study is a cross-sectional analysis utilizing continuous

NHANES data collected over eight cycles from 2003 to 2018.

Over this 16-year span, an initial pool of 80,312 participants was

considered. Firstly, 64,931 individuals under the age of 60 were

excluded from the analysis. Subsequently, 2,151 individuals with

unclear CKD diagnoses and 1,969 participants with missing dietary

niacin intake data were also excluded. Furthermore, 6,612

participants lacking other relevant covariate information were

removed from the analysis. Ultimately, this study included 4,649

participants who met all the inclusion criteria (Figure 1).
2.2 Dietary niacin intake

Dietary niacin intake is evaluated using the dietary interview

section of NHANES. All individuals eligible to participate in

NHANES are required to complete two rounds of 24-hour dietary

recall interviews. These interviews record the dietary intake for the

day prior to the interview, from midnight to midnight. To more

accurately estimate long-term nutrient intake, it is recommended to

compute an average based on at least two non-consecutive days of

dietary data (19). This methodological approach enhances the

reliability of the nutrient intake estimates by mitigating the day-

to-day variability in intake patterns.
2.3 Definition of CKD

CKD is diagnosed when at least one of the following criteria is

met: 1) a ratio of albumin to creatinine in the urine exceeding 30

mg/g; 2) the estimated glomerular filtration rate (eGFR) estimated

to be less than 60 mL/min per 1.73 m^2 (20). The measurement of

albumin in the urine utilizes a solid-phase fluorescent immunoassay

approach. Creatinine levels in the urine are assessed using the Jaffé

method, which involves a kinetic reaction (21). Calculations of

eGFR are based on the creatinine formula from the Chronic Kidney

Disease Epidemiology Collaboration (CKD-EPI) (22).
2.4 Selection of covariates

To mitigate potential confounding factors, this study

considered several covariates: age, body mass index (BMI),

gender, race, marital status, educational level, poverty index ratio

(PIR), smoking status, drinking status, activity, hypertension,

diabetes, and various biochemical markers. The biochemical

markers analyzed included uric acid, serum phosphate, total

cholesterol (TC), triglycerides (TG), low-density lipoprotein
frontiersin.org
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cholesterol (LDL-C), and high-density lipoprotein cholesterol

(HDL-C).
2.5 Statistical analysis

Considering the complexities of the multistage sampling design,

we employed the sample weighting data and combination methods

recommended by NHANES to ensure national representativeness in

our analyses. For baseline characteristics, continuous variables were

described using weighted means (95% confidence intervals), while

categorical variables were presented as the number of observed

(weighted percentage). To assess differences among CKD

populations, the study employed weighted linear regression analysis

for the appraisal of continuous variables and utilized weighted Chi-

square tests to examine categorical variables. To investigate the

relationship between dietary niacin intake and CKD, we employed

weighted multivariate logistic regression models, establishing three

different analytical models: 1) Model 1, which adjusted for no

covariates; 2) Model 2, which included preliminary adjustments for

age, gender, race, marital status, educational level, and PIR; 3) Model

3, which comprehensively adjusted for all covariates. Initially, dietary

niacin intake was examined as a continuous variable. To preliminarily

explore potential dose-response relationships, we divided niacin

intake into four equally spaced quartiles (Q1, Q2, Q3, Q4) and

conducted tests for trend.

To corroborate the robustness of our initial findings, we

conducted a series of sensitivity analyses. We utilized smoothing

spline fits and generalized additive models (GAM) to probe the

non-linear relationship between dietary niacin intake and CKD.

GAMs can explore the non-linear relationship between

independent and dependent variables through smooth functions,

offering greater expressive power than linear models (23). Based on

previous literature, we set the smoothness parameter to 3 to ensure
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the curve’s smoothness (24). Subsequently, a piecewise linear

regression approach was adopted to delineate two distinct

segments and compute threshold effects. We contrasted this with

a traditional linear model, applying a Log-likelihood ratio test to

verify the presence of any thresholds. The threshold size was

identified using a two steps recursive method (25). Additionally,

subgroup analyses were conducted to explore whether the impact of

dietary niacin intake on CKD varied across different strata,

assessing interaction effects through likelihood ratio tests. Lastly,

given the baseline differences between CKD and non-CKD

participants (Table 1), propensity score matching (PSM) was used

to align baseline characteristics between the two groups, thereby

controlling for confounding and preventing bias. All baseline

characteristics in Table 1, except for dietary niacin intake, were

included in the PSM model, employing a 1:1 nearest neighbor

matching technique with a caliper width allowing for a 0.05

difference in propensity scores. A smaller caliper width helps to

improve the balance between matching pairs, thus better

controlling for the effect of confounding variables (26).

R software (version 4.3.2) and EmpowerStats (X&Y Solutions,

Inc., Boston, MA) were the tools utilized for the statistical

computations and graphical representations in this study. We

defined statistical significance at a cutoff of p<0.05 using a two-

sided test.
3 Results

3.1 Baseline characteristics of participants

Our research encompassed 4,649 individuals aged 60 and above,

all subject to detailed inclusion and exclusion criteria outlined

(Figure 1). Within this group, 1,632 were identified as having

CKD. Before PSM, significant statistical differences were observed
FIGURE 1

Flow chart for inclusion and exclusion of study participants. NHANES, National Health and Nutrition Examination Survey. .
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TABLE 1 Baseline characteristics of participants between 2003 and 2018 before and after PSM.

Characteristic

Before PSM After PSM

Non-CKD CKD
P

Non-CKD CKD
P

(N = 3017) (N = 1632) (N = 1369) (N = 1369)

Age, years 67.82 (67.54, 68.11) 72.74 (72.28, 73.20) <0.0001 70.47 (69.99, 70.95) 71.89 (71.39, 72.38) <0.0001

BMI, kg/m2 29.00 (28.67, 29.33) 29.65 (29.25, 30.04) 0.0125 29.13 (28.71, 29.55) 29.52 (29.08, 29.96) 0.1734

Gender, n (%) 0.0158 0.0794

Male 1506 (46.46) 786 (41.59 ) 689 (47.03) 673 (42.81)

Female 1511 (53.54) 846 (58.41) 680 (52.97) 696 (57.19)

Race, n (%) 0.4038 0.7087

Mexican American 694 (6.84) 276 (6.19) 278 (6.80) 241 (6.35)

Non-Hispanic White 1582 (81.40) 990 (81.15) 750 (79.37) 812 (80.66)

Non-Hispanic Black 558 (7.58) 285 (8.68) 254 (8.88) 243 (8.67)

Other 183 (4.17) 81 (8.68) 87 (4.95) 73 (4.31)

Marital status, n (%) <0.0001 0.015

Married/with partner 1934 (69.83) 912 (58.23) 822 (65.99) 796 (60.79)

Single 1083 (30.17) 720 (41.77) 547 (34.01) 573 (39.21)

Education level, n (%) <0.0001 0.3031

Less than high school 812 (15.98) 498 (21.03) 410 (20.75) 409 (20.30)

High school
or equivalent

720 (24.62) 446 (29.94) 315 (24.61) 349 (28.07)

College or above 1485 (59.40) 688 (49.04 ) 644 (54.64) 611 (51.63)

PIR, n (%) <0.0001 0.682

< = 1.30 750 (14.05) 465 (19.46) 375 (17.18) 385 (18.84)

> 1.30, < = 3.50 1259 (39.39) 762 (47.17) 620 (46.78) 625 (45.58)

> 3.50 1008 (46.56) 405 (33.37) 374 (36.04) 359 (35.58)

Smoking status, n (%) 0.7 0.5159

No 1420 (47.34) 798 (48.19) 648 (45.87) 668 (47.57)

Yes 1597 (52.66) 834 (51.81) 721 (54.13) 701 (52.43)

Drinking status, n (%) <0.0001 0.1035

No 876 (25.20 ) 580 (34.13) 436 (28.75) 467 (32.52)

Yes 2141 (74.80) 1052 (65.87) 933 (71.25) 902 (67.48)

Activity, n (%) <0.0001 0.1156

Inactive or moderate 2654 (86.28) 1535 (93.16) 1239 (89.88) 1277 (92.22)

Vigorous 363 (13.72) 97 (6.84) 130 (10.12) 92 (7.78)

Hypertension, n (%) <0.0001 0.0075

No 1365 (47.80) 445 (27.09) 482 (36.92) 424 (30.60)

Yes 1652 (52.20) 1187 (72.91) 887 (63.08) 945 (69.40)

Diabetes, n (%) <0.0001 0.0003

No 2391 (82.82) 1047 (68.28) 990 (76.20) 908 (70.99)

Yes 525 (13.93) 535 (28.29) 306 (18.70) 426 (26.13)

(Continued)
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across most baseline characteristics between the groups categorized

by CKD status (Table 1). After applying a 1:1 PSM, the number of

participants reduced to 2,738, evenly distributed between the CKD

and non-CKD groups. After PSM, significant reductions were

observed in the statistical differences between the two groups

regarding BMI, gender, educational level, PIR, drinking status,

activity, HDL-C, TG, and TC.
3.2 Associations between dietary niacin
intake and CKD in older adults

Findings from the logistic regression revealed a notable inverse

correlation between dietary niacin intake and the occurrence of

CKD among older adults (Table 2). The link was statistically

significant in the unadjusted Model 1 [odds ratio (OR) = 0.97,

95% confidence interval (CI) 0.96-0.98], showed persistence in the

minimally adjusted Model 2 (OR = 0.98, 95% CI 0.97-0.99), and

remained stable in the fully adjusted Model 3 (OR = 0.99, 95% CI

0.97-1.00). The robustness of these findings was corroborated by the

Model 4 (after PSM: OR = 0.99, 95% CI 0.98-1.00).

In Model 3, a negative association was found between dietary

niacin intake and CKD when the lowest quartile of intake was used

as a reference. OR for the second, third, and highest quartiles were

0.86 (95% CI 0.66-1.13), 0.64 (95% CI 0.48-0.85), and 0.70 (95% CI

0.51-0.95) respectively, with a trend significance (P for trend =

0.0075). It is of particular interest that the most pronounced

protective effect of niacin was evident in the third quartile,

implying a potential threshold effect. This pattern aligns with

results from the Model 4, suggesting a non-linear link between

niacin and CKD risk among the elderly.
Frontiers in Endocrinology 05
3.3 The non-linear relationship between
dietary niacin intake and CKD prevalence
in older adults

After multivariate adjustments in Model 3, smoothing spline

fitting and GAM elucidated a U-shaped association between these

variables (Figures 2A, C). Using a two-piecewise linear regression

model, we demonstrated a significant non-linear relationship

between dietary niacin intake and CKD risk both before and after

PSM (P for log likelihood ratio test < 0.05) in Table 3.

The turning points of dietary niacin intake were calculated

using the two steps recursive method, identified at 40.35 mg/d

before PSM and 38.83 mg/d after PSM. For most participants,

daily dietary niacin intake was below these turning points

(Figures 2B, D). Before reaching these turning points, an

increase in dietary niacin intake was significantly associated

with a reduced risk of CKD (before PSM: OR = 0.99, 95%CI

0.98-1.00; after PSM: OR = 0.99, 95%CI 0.97-1.00). However,

beyond these turning points, the relationship inverted, and higher

dietary niacin intake appeared to correlate with an increased risk

of CKD, particularly after PSM where the association became

more pronounced (OR = 1.03, 95%CI 1.00-1.06).
3.4 Subgroup analysis

Further investigation through subgroup analysis was

conducted to explore if this curvilinear association differed across

various participant characteristics. The findings, as detailed in

Supplementary Table 1, were very stable, showing no significant

interactions in any stratification variables (P for interaction > 0.05).
TABLE 1 Continued

Characteristic

Before PSM After PSM

Non-CKD CKD
P

Non-CKD CKD
P

(N = 3017) (N = 1632) (N = 1369) (N = 1369)

Borderline 101 (3.24) 50 (3.43) 73 (5.10) 35 (2.88)

Uric acid, mg/dL 5.46 (5.40, 5.53) 6.27 (6.18, 6.36) <0.0001 5.76 (5.67, 5.86) 6.03 (5.94, 6.12) 0.0003

Phosphorus, mg/dL 3.63 (3.59, 3.66) 3.72 (3.69, 3.76) 0.0004 3.65 (3.61, 3.68) 3.70 (3.66, 3.74) 0.0376

HDL-C, mg/dL 57.54 (56.54, 58.53) 55.73 (54.34, 57.12) 0.0257 56.27 (55.21, 57.33) 56.54 (54.96, 58.81) 0.7634

LDL-C, mg/dL
115.12

(113.36, 116.88)
106.13

(103.72, 108.55)
<0.0001

111.55
(109.39, 113.71)

107.49
(104.73, 110.25)

0.0177

TG, mg/dL
122.21

(118.25, 126.16)
130.90

(126.39, 135.41)
0.0035

127.93
(123.06 ,132.80)

128.54
(123.55 ,133.53)

0.8644

TC, mg/dL
197.09

(194.97, 199.21)
188.04

(185.26, 190.82)
<0.0001

193.40
(190.84 ,195.95)

189.73
(186.54, 192.92)

0.0588

Dietary niacin
intake, mg

23.76 (23.02, 24.50) 20.78 (20.12, 21.43) <0.0001 22.34 (21.69, 22.99) 21.03 (20.26, 21.79) 0.0025
CKD, chronic kidney disease; PSM, propensity score matching; BMI, body mass index; PIR, poverty income ratio; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; TG, triglyceride; TC, total cholesterol; N/n, number of observed; %, survey-weighted percentage.
For continuous variables: numerical value with survey-weighted mean (95% CI), P was by sur-vey-weighted linear regression.
For categorical variables: number of observed with survey-weighted percentage, P was by sur-vey-weighted Chi-square test.
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Consistency in results was maintained after PSM, as indicated in

Supplementary Table 2.
4 Discussion

In this nationally representative cross-sectional study, a U-

shaped relationship was identified between dietary niacin intake

and CKD prevalence among individuals aged 60 and older. We

determined the inflection points for dietary niacin intake to be 40.35
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mg/d before PSM and 38.83 mg/d after PSM. These thresholds were

near the upper intake level of 35 mg/d recommended by the

Institute of Medicine for adults (27), suggesting a close alignment

with our findings. However, it was notable that the majority of

elderly individuals did not reach these niacin intake thresholds. The

findings of this study have potential implications for clinical

practice, aiding doctors in recommending appropriate niacin

intake for elderly. It is crucial to avoid excessive or insufficient

niacin intake to maintain a safe range. For public health, these

findings underscore the importance of building public awareness
TABLE 2 Before and after PSM, weighted multivariable logistic regression for the association between dietary niacin intake and CKD.

Before PSM OR (95%CI) After PSM OR (95%CI)

Model 1 Model 2 Model 3 Model 4

Niacin continuous, mg 0.97 (0.96, 0.98) 0.98 (0.97, 0.99) 0.99 (0.97, 1.00) Niacin continuous, mg 0.99 (0.98, 1.00)

Niacin quartile, mg Niacin quartile, mg

Q1 ( < 14.90) 1.00 (reference) 1.00 (reference) 1.00 (reference) Q1 ( < 14.58) 1.00 (reference)

Q2 (14.90 - 20.09) 0.83 (0.66, 1.03) 0.92 (0.72, 1.18) 0.86 (0.66, 1.13) Q2 (14.59 - 19.68) 0.80 (0.61, 1.06)

Q3 (21.10 - 26.38) 0.57 (0.45, 0.71) 0.66 (0.51, 0.86) 0.64 (0.48, 0.85) Q3 (19.69 - 25.95) 0.64 (0.47, 0.89)

Q4 ( > 26.38) 0.48 (0.38, 0.62) 0.67 (0.51, 0.89) 0.70 (0.51, 0.95) Q4 ( > 25.96) 0.68 (0.51, 0.90)

P for trend <0.0001 0.0012 0.0075 P for trend 0.0043
OR: odds ratio; 95%CI: 95% confidence interval; Q: quartile; PSM: propensity score matching.
Model 1: No covariates were adjusted.
Model 2: Age, gender, race, education level, marital status, and PIR were adjusted.
Model 3: Age, gender, race, educational level, marital status, PIR, smoking status, drinking status, activity, hypertension, diabetes, BMI, uric acid, phosphorus, HDL-C, LDL-C, TG and TC
were adjusted.
Model 4: After PSM, the covariates were adjusted in accordance with model 3.
FIGURE 2

U-shape association of the dietary niacin intake and CKD prevalence before and after PSM. (A, B) Smooth curve fitting and frequency distribution
before PSM. (C, D) Smooth curve fitting and frequency distribution after PSM. PSM, propensity score matching; CKD, chronic kidney disease. Age,
gender, race, educational level, marital status, PIR, smoking status, drinking status, activity, hypertension, diabetes, BMI, uric acid, phosphorus, HDL-
C, LDL-C, TG and TC were adjusted.
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about appropriate nutrient intake, developing policies for dietary

supplement regulation to prevent excessive intake, updating dietary

guidelines for elderly, and emphasizing both upper and lower limits

of niacin intake to prevent CKD and other related health issues. In

conclusion, this study not only informs individual clinical practice

but also provides an empirical basis for public health policy-

making. This finding can help reduce the prevalence of CKD in

elderly and improve overall health.

Niacin has been reported to contribute to the slowing of eGFR

decline, demonstrating significant potential as a renal protective

agent (14). However, research linking dietary niacin intake with

CKD risk remained limited. A study involving children

demonstrated a noteworthy positive correlation between dietary

niacin intake and eGFR (28). However, the study did not quantify

the niacin intake, and the sample size was limited to 19

participants. The results suggest a potential association between

niacin and kidney function in children, but not in the elderly.

Moreover, a recent cross-sectional study conducted in Japan

discovered a significant association between higher dietary

niacin intake and reduced CKD risk among individuals aged 40

and older who were homozygous for the rs883484 allele (OR =

0.74, 95% CI 0.57–0.96) (29).. However, the findings are specific to

individuals homozygous for the RS883484 allele, who constitute

only 15% of the population. It is also worth noting that the study

participants had a mean age of 62.1 ± 10.8 years, which somewhat

represents the older population. To a certain extent, this

supported some of our findings and underscored the potential

preventive benefits of dietary niacin against CKD. Additionally,

this study introduced the concept of dietary niacin indications for

specific genetic types, which could be an interesting direction for

future research. Earlier prospective cohort studies also aligned
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with our findings, demonstrating that higher dietary niacin intake

(14.7 mg/d) was associated with a reduced risk of renal function

decline in individuals aged 65 and over compared to the lowest

quartile (7.9 mg/d) [Relative Risk (RR) = 0.728, 95% CI 0.548–

0.966] over an average follow-up of 3.2 years, highlighting the

benefits of niacin for elderly renal function (15). However,

compared to our study, the baseline levels of dietary niacin

intake were relatively low in this research. For instance, the

lowest quartile had an intake of 7.9 mg/d and the highest 14.7

mg/d, which might explain why the previous study did not observe

significant threshold effects associated with excessive

niacin intake.

Our study offered a new insight into the prevention of CKD

among individuals aged 60 and older. We found that for

participants with dietary niacin intake below the threshold of

38.83 mg/d (after PSM), an increase in niacin intake was

significantly associated with a decreased risk of CKD (OR = 0.99,

95% CI 0.97-1.00). The pathogenesis of CKD was mediated by

various risk factors such as oxidative stress, inflammatory

responses, and endothelial dysfunction (30). Research in

animal models of CKD demonstrated that niacin could

mitigate conditions like hypertension, proteinuria, and

glomerulosclerosis in mice, reducing kidney oxidative stress,

inflammation, and tissue damage (31). Additionally, niacin

assisted in mitigating endothelial dysfunction by elevating cellular

NAD levels, replenishing glutathione, and decreasing reactive

oxygen species production in endothelial cells (8). Recent studies

had established a close link between disruptions in NAD synthesis

and kidney damage (32), suggesting that modulating NAD

metabolism could be a novel therapeutic approach to combat

renal cell damage (9). Furthermore, myeloperoxidase (MPO)

served as a critical mediator linking oxidative stress,

inflammation, and endothelial dysfunction. Elevated MPO activity

was linked to the advancement of glomerular lesions (11). Niacin

effectively inhibited neutrophil MPO release and treated MPO-

mediated inflammatory lesions (33). An increasing number of

prospective cohort studies had demonstrated an association

between diverse abnormalities in the lipid profile and the

progression of CKD (14). This association was particularly

significant given the kidney’s highly vascular nature; lipid

abnormalities generally exerted harmful effects on renal function.

Abnormal lipid levels could impair the body’s antioxidative and

anti-inflammatory capacities, subsequently damaging renal vascular

endothelial function (12). In summary, dyslipidemia was identified

as a predictive factor for the progression of CKD. Niacin had been

proven to reduce lipid and serum phosphate levels in the short term,

improving the eGFR of CKD patients (34). However, further

research is required to evaluate the long-term effects of niacin.

Serum phosphate might play an independent pathogenic role in the

progression of CKD (13). Hyperphosphatemia was linked with

several key regulators of renal vascular calcification, such as

elevated levels of fibroblast growth factor 23 (FGF23) and

decreased expression of Klotho (35). Niacin not only reduced

phosphate absorption in the gut but also promoted its excretion

in the urine, helping to control serum phosphate levels (36). A

randomized controlled trial confirmed that niacin significantly
TABLE 3 Threshold effect analysis using two-piecewise linear regression
based on dietary niacin intake and CKD before and after PSM.

Dietary niacin intake, mg
OR
(95%CI)

P

Before PSM

Fitting model by two-piecewise linear regression

Inflection point

< 40.35 0.99 (0.98, 1.00) 0.0054

> = 40.35 1.02 (0.99, 1.04) 0.1563

P for log likelihood ratio test 0.04

After PSM

Fitting model by two-piecewise linear regression

Inflection point

< 38.83 0.99 (0.97, 1.00) 0.0055

> = 38.83 1.03 (1.00, 1.06) 0.0426

P for log likelihood ratio test 0.007
PSM, propensity score matching; OR, odds ratio; 95%CI, 95% confidence interval.
Age, gender, race, educational level, marital status, PIR, smoking status, drinking status,
activity, hypertension, diabetes, BMI, uric acid, phosphorus, HDL-C, LDL-C, TG and TC
were adjusted.
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reduced serum phosphate levels by approximately 0.40 mg/dL,

regardless of whether eGFR was <60 or ≥60 ml/min compared to

placebo (37). Additional studies also indicated that niacin could

significantly improve serum phosphate levels in CKD patients,

providing strong evidence for niacin’s role in ameliorating the

progression of CKD (34, 38, 39).

In participants with dietary niacin intake exceeding 38.83 mg/d

(after PSM), an increase in niacin intake was associated with a

significant rise in CKD risk (OR = 1.03, 95%CI 1.00-1.06). This

might be attributed to increased levels of metabolites such as

prostaglandin D2 (PGD2) (16), homocysteine (HCY) (17), and

serotonin (5-HT) (18) following excessive niacin intake. PGD2 was

reported to promote renal fibrosis in CKD via CRTH2-mediated

activation of Th2 lymphocytes (40). A prospective cohort study

identified elevated serum homocysteine (HCY) levels as an

independent risk factor for CKD in the general population (41).

Hyperhomocysteinemia mediated several key pathogenic

mechanisms in CKD, such as oxidative stress, endoplasmic

reticulum stress, inflammation, and hypomethylation (42). Afolabi

et al. found that 5-HT impaired renal function by activating the

transient receptor potential vanilloid 4 channels in smooth muscle

cells of the renal microvasculature (43). Using antagonists to inhibit 5-

HT expression helped reduce renal fibrosis and inflammation (44).

Additionally, recent research indicated that the end metabolite

produced from excessive niacin intake, N1-methyl-4-pyridone-3-

carboxamide, had biological activity and could cause vascular

inflammation and leukocyte adhesion (45). This metabolite was

previously considered to be an obsolete uremic toxin (46). Therefore,

when consumingdietaryniacin, itwas crucial to consider the dosage to

avoid potential renal side effects. Our study identified a threshold of

38.83mg/d (afterPSM), closelyaligningwith the tolerableupper intake

limit set at 35 mg/d (27). However, considering the adverse effects of

exceeding the tolerable intake limit, this threshold might need to

be optimized.

Our study had several strengths. Firstly, it was the first to

comprehensively assess the association between dietary niacin intake

and CKD among the elderly. Secondly, our research considered the

complex sampling design and weights of NHANES, ensuring that the

data was representative of the national population. Additionally, we

adjusted for multiple covariates and used PSM to minimize bias from

confounding factors.Moreover, to check the stability of the results, we

conducted subgroup analyses. Finally, we fitted smoothing curves and

identified a nonlinear relationship between dietary niacin intake and

CKD, including determining the threshold effects through analysis.

Nonetheless, our study also encountered some limitations. Firstly,

its cross-sectional design precluded definitive establishment of

causality. Secondly, despite obtaining dietary data through two 24-

hour dietary recalls, the potential for recall bias could not be entirely

eliminated. Niacin is predominantly found in animal-derived foods;

however, the absence of specific data on vegetarian dietary patterns in

the NHANES may introduce a degree of bias that could potentially

impact the results. Moreover, there might have been confounding

factors thatwere not fully accounted for. These limitationsmay impact

the accuracy of the study’s findings. However, as a preliminary study,

this work will provide a theoretical foundation for future prospective

research. Lastly, our study was limited to the population aged 60 and
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over in the United States and extrapolating the results to other

populations necessitates further investigation. In the future,

prospective cohort studies of dietary niacin intake in different

populations could be conducted to explore the effects of niacin

on CKD.
5 Conclusions

Our study demonstrates a U-shaped relationship between

dietary niacin intake and CKD among the U.S. population aged

60 and older, with a curve inflection point at 38.83 mg/d. This

finding offers new perspectives and scientific evidence for early

prevention and intervention strategies for CKD in elderly

Americans. However, due to the inherent limitations of the cross-

sectional study design, it is important to interpret the findings

cautiously, as they cannot establish causality or long-term effects.

Therefore, further validation through large-scale prospective cohort

studies is needed.
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