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Introduction: Reproductive endocrine disorders (RED), including polycystic

ovary syndrome (PCOS), endometriosis (EMs), and female infertility (FI),

significantly affect women’s health globally, with varying prevalence across

different regions. These conditions can be addressed through medication,

surgical interventions, and lifestyle modifications. However, the limited

understanding of RED’s etiology and the substantial economic burden of its

treatment highlight the importance of investigating its pathogenesis. Metabolites

play a critical role in metabolic processes and are potentially linked to the

development of RED. Despite existing studies suggesting correlations between

metabolites and RED, conclusive evidence remains scarce, primarily due to the

observational nature of these studies, which are prone to confounding factors.

Methods: This study utilized Mendelian Randomization (MR) to explore the

causal relationship between metabolites and RED, leveraging genetic variants

associated with metabolite levels as instrumental variables to minimize

confounding and reverse causality. Data were obtained from the Metabolomics

GWAS Server and the IEU OpenGWAS project. Instrumental variables were

selected based on their association with the human gut microbiota

composition, and the GWAS summary statistics for metabolites, PCOS, EMs,

and FI were analyzed. The MR-Egger regression and random-effects inverse-

variance weighted (IVW) methods were employed to validate the causal

relationship. Cochran’s Q test was employed to evaluate heterogeneity,

sensitivity analysis was performed using leave-one-out analysis, and for

pleiotropy analysis, the intercept term of MR-Egger’s method was investigated.

Results: The MR analysis revealed significant associations between various

metabolites and RED conditions. For instance, a positive association was found

between 1-palmitoylglycerophosphocholine and PCOS, while a negative

association was noted between phenylacetate and FI. The study identified

several metabolites associated with an increased risk and others with

protective effects against PCOS, EMs, and FI. These findings highlight the

complex interplay between metabolites and RED, suggesting potential

pathways through which these conditions could be influenced or treated.
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Conclusion: This MR study provides valuable insights into the causal relationship

between metabolites and female reproductive endocrine disorders, suggesting

that metabolic alterations play a significant role in the pathogenesis of PCOS,

EMs, and FI , and offer ing a foundation for future research and

therapeutic development.
KEYWORDS

Mendelian randomization, metabolites, reproductive endocrine disorders, polycystic
ovary syndrome, endometriosis, female infertility, genome wide association study,
instrumental variables
1 Introduction

Reproductive endocrine disorders (RED) affecting females,

including polycystic ovary syndrome (PCOS), endometriosis

(EMs), and female infertility (FI), have been a major health issue

for women in their reproductive years (1, 2). Research studies reveal

that the global prevalence of PCOS varies between 4% and 21%. In

China, the reported incidence of PCOS among women aged 19-45

years is 5.6% (3). EMs affects approximately 10% of women of

reproductive age worldwide, affecting 190 million people (4). While

in the United States, approximately 10% to 15% of individuals are

affected by FI, with around 30% of cases having an unknown

etiology (5).

Early diagnosis of RED is crucial, especially of endometriosis,

given its significant impact on the reproductive health and fertility

potential of young patients (6). Timely identification, followed by

effective treatment, is essential to reversing infertility, increasing the

likelihood of a successful pregnancy, and improving overall quality

of life. RED can be managed through various approaches, including

medication, surgical intervention, and lifestyle adjustments,

emphasizing the importance of early and appropriate therapeutic

strategies (7). The major goal of medical care is to regulate the

menstrual cycle, hormone secretion, and metabolism. On the other

hand, surgical intervention generally aims to remove lesions,

control pain, and assist with reproductive technologies. Lifestyle

alterations prioritize the management of diet, exercise routines, and

behavioral adjustments. Because the understanding of the etiology

of RED is limited, the annual global expenditure on its treatment

remains enormous, which places a significant burden on the global

economy (4, 8, 9). Researching the pathogenesis of RED will not

only reduce the worldwide economic burden but also aid in the

advancement of more efficient treatments (1, 10, 11).

The development of the RED complex usually arises from an

unhealthy lifestyle, genetic and hormonal abnormalities,

inflammation, and metabolic disturbances (10–13). Metabolites

are pivotal in metabolic processes since they either produce or

consume resources, hence ensuring the proper functioning of

physiological processes. For example, disturbances in sugar
02
metabolism might result in the onset of chronic illnesses (14).

The findings of various studies have indicated that the processes of

lipid metabolism, glucose metabolism, and sphingolipid

metabolism may be intricately linked to the pathogenesis of RED

(15–17). Patients with PCOS exhibit a notable prevalence of

common metabolic dysfunction (16). A robust association exists

between inflammation in the FI signal and elevated androgen

metabolism (15, 18). Supplementing vitamin C and E has been

proposed as a possible treatment for reducing painful symptoms in

patients with Ems (19). Hence, metabolic alterations are closely

connected to the development of RED. Nevertheless, the existing

clinical evidence establishing the correlation between metabolites

and RED is restricted and mostly obtained from observational

studies, which may be influenced by confounding factors.

Therefore, gaining a deeper understanding of the connection

between metabolites and RED, as well as the probable

mechanisms involved, is of great therapeutic importance for

accurately assessing risk and improving treatment approaches.

Mendelian randomization (MR) is a commonly employed

method for inferring causality. It utilizes genetic variants that are

linked to the exposure of interest as instrumental variables (IVs) to

establish the causal impact of the exposure on the outcome. This

approach is effective in isolating the effect of exposures from

potential confounding factors, such as environmental influences

and lifestyle choices (20–24). It can reduce the impact of reverse

causality to ensure maximum validity (25, 26). The swift

advancement of Genome Wide Association Study (GWAS) data

additionally establishes a strong basis for the execution of MR

Research. The relationship between metabolomics and MR

research, particularly in the context of elucidating the causal

pathways in human diseases, exemplifies a compelling application

of this methodology (27, 28). Metabolomics, the comprehensive

study of small molecule metabolites within biological systems, offers

a dynamic and sensitive reflection of both genetic and

environmental influences on an organism’s state. When

integrated with MR, metabolomics can provide powerful insights

into the causal relationships between specific metabolic profiles and

disease outcomes.
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At present, there is a lack of research that uses the MR approach

to thoroughly examine the cause-and-effect relationship between

metabolites and the start of RED. Our study aimed to examine the

potential causal relationships between specific genotypes, plasma

metabolite levels, and the risk of developing PCOS, EMs, and FI

using MR analysis. We hypothesize that genetic variations directly

influence metabolite levels and, consequently, disease outcomes,

independent of confounding factors. By exploring these causal

connections, the findings could help identify pathogenic

metabolites with causal relationships, potentially guiding targeted

therapeutic strategies and preventive measures for these REDs.
2 Methods

2.1 Study design

In our study on the link between plasma metabolites and the

development of PCOS, EMs and FI levels, we propose three key

hypotheses. First, we expect a correlation between certain genotypes

and plasma metabolite levels, suggesting a genetic influence on

these metabolites that could affect disease risk. Second, these

genotypes should not be influenced by confounding factors,

ensuring that any observed relationship with metabolite levels is

likely due to a genuine biological mechanism. Third, we assume that

these genotypes directly impact the metabolites in question, thereby

affecting the risk or progression of PCOS, EMs, and FI. This

framework aims to clarify how genetic variations contribute to
Frontiers in Endocrinology 03
the observed outcomes, using Mendelian randomization to explore

potential causal connections. Figure 1 depicts the process of

Mendelian randomization including metabolites that are linked to

PCOS, EMs, and FI.
2.2 Data sources

The metabolite GWAS data was obtained from the

Metabolomics GWAS Server website (https://metabolomips.org/

gwas/), while the genetic variance data related to PCOS, EMs, and

FI was obtained from the IEU OpenGWAS project website (https://

gwas.mrcieu.ac.uk/) (Table 1). IVs were chosen as single-nucleotide

polymorphisms (SNPs) that are linked to the composition of the

plasma metabolites. Due to the fact that the data utilized in this

study were collected from published studies or public databases,

ethics approval was not necessary. The GWAS summary statistics

for the metabolites were acquired from the Metabolomics GWAS

Server, which may be accessed at https://metabolomips.org/gwas/.

This study involves genome-wide association scans combined with

high-throughput metabolic monitoring to get unique insights into

the impact of genetic variation on metabolism and complex

diseases. The researchers have conducted a thorough investigation

into the genetic factors that affect human metabolism. They studied

a total of 7,824 adult individuals from two European population

studies. The study identified significant associations between 145

metabolic loci and more than 1400 metabolites in human blood,

revealing their biochemical connectivity (29). The GWAS summary
FIGURE 1

Flow chart of the study. Image illustrates the Mendelian randomization (MR) framework used to investigate the causal effects of plasma metabolite
levels on reproductive endocrine disorders, including polycystic ovary syndrome (PCOS), endometriosis (EMs), and female infertility (FI). Instrumental
variables (IVs) are selected based on single nucleotide polymorphisms (SNPs) fulfilling stringent criteria for relevance (P < 1 × 10-5), linkage
disequilibrium (R2 < 0.001), and a sizable aggregation window (>10,000 kb). MR analyses utilize inverse variance weighted (IVW) methods and MR-
Egger regression for causal inference, with additional sensitivity testing (Cochran’s Q and leave-one-out analysis) to assess the robustness of
the findings.
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datasets for PCOS were obtained from the OpenGWAS database.

The GWAS ID is finn-b-E4_POCS, with a total of 118,870 female

participants, consisting of 642 cases and 118,228 controls. The total

count of SNPs is 16,379,676. The GWAS data for individuals with

endometriosis were obtained from a recent genome-wide

association study. The selected trait for analysis was

endometriosis, and the discovery sample consisted of 4,511 cases

of European ancestry and 227,260 controls of European ancestry

(30). The GWAS summary datasets for FI were obtained from the

Op e nGWAS d a t a b a s e . T h e GWAS ID i s finn - b -

N14_FEMALEINFERT, with a total of 75,470 female participants,

consisting of 6,481 cases and 68,969 controls. The total count of

SNPs is 16,377,038.
2.3 Selection of IVs

The following criteria were employed in this study for the

purpose of screening instrumental variables (31). Typically, this is

accomplished by utilizing data obtained from extensive GWAS. The

selected SNPs should possess a strong and firmly proven correlation

with the exposure. The IVs demonstrate a robust association with

exposure, as evidenced by a significant criteria of P < 1× 10-5

(correlation hypothesis) (32). It is necessary to measure the degree

of correlation between each SNP and the exposure. This entails

utilizing statistical analysis to quantify the magnitude of the impact

of each SNP on the exposure, often quantified as the beta coefficient

in a regression model (33). It’s crucial to ensure that the SNPs used

as IVs affect the outcome only through the exposure and not

through other pathways. This is known as the assumption of no

pleiotropy (34). The SNPs selected by the MRMethod adhere to the

genetic principle of random parental allele assignment to offspring,

thereby minimizing the influence of environmental and acquired

factors. Consequently, it can be theoretically assumed that

instrumental variables are independent of social, economic, and

cultural factors. SNPs in close proximity on the genome can be in

linkage disequilibrium, meaning they are often inherited together.

It’s important to ensure that the selected SNPs are independent of

each other, or to adjust the analysis for LD (35). The selected SNPs

should collectively explain a significant portion of the variance in

the exposure. Weak instruments (those that explain only a small

fraction of the variance) can lead to biased MR estimates. Moreover,

an F statistic greater than 10 is employed as a criterion for assessing

weak instrumental variables (36). The screening condition for
Frontiers in Endocrinology 04
selecting meaningful SNPs from the aggregated GWAS data of

metabolites were set as P < 1×10-5. The coefficient of linkage

disequilibrium is r2 < 0.001 and the width of the linkage

disequilibrium region was 10000kb. These were applied to ensure

the independence of each SNP and eliminate the impact of linkage

imbalance on the results (32, 33, 35). The PhenoScanner (http://

www.phenoscanner.medschl.cam.ac.uk/) was utilized to account for

confounding factors and assess the outcome associated with each

SNP. From the aforementioned screened SNPs, those extracted

from the aggregated GWAS data of PCOS, EMs, and FI had a

minimum r2 value greater than 0.8. This summarizes the

information contained in this dataset.
2.4 Verification of causality

The MR-Egger regression and random-effects inverse-variance

weighted (IVW) methods were employed to validate the causal

relationship between exposure (Metabolites) and outcomes (PCOS,

EMs, and FI), using SNPs as instrumental variables. IVW, which is

widely recognized as the primary outcome measure, was utilized

(37). In this approach, each locus’s inverse of variance (R2) served

as the weight for estimating the causal effect based on multiple SNPs

as instrumental variables. These weighted causal effect estimates

were then summed to obtain the final estimate using IVW method.

MR-Egger method essentially incorporates a weaker assumption

(InSIDE) within IVW framework to perform causal effect

estimation while introducing a regression intercept term to detect

and correct bias caused by pleiotropic effects of instrumental

variables in order to estimate the causal relationship between

exposure and outcome (38). When there is horizontal pleiotropy

present, MR-Egger results can be referenced. Additionally, random-

effects inverse-variance weighting method was applied for analyzing

the causal relationship between variables with MR-Egger regression

serving as a supplementary analysis technique (39). All

aforementioned methods were implemented using TwoSample

MR Package in R 4.1.0 software at a significance level of a=0.05.
The SNP annotation was performed using online tools available at

https://biit.cs.ut.ee/gprofiler/snpense. SNPense tool facilitated the

mapping of human SNP rs-codes to gene names, providing

chromosomal coordinates and predicted variant effects. Mapping

was restricted to variants that overlapped with protein-coding

Ensembl genes (40). All essential data were retrieved from

Ensembl variation.
TABLE 1 Detailed information of datasets.

Data source Phenotype Sample size Cases Population Adjustment

Exposure The Metabolomics GWAS Server Metabolites 7824 - European -

Outcomes

finn-b-E4_POCS Polycystic Ovarian Syndrome - 642 European Males and Females

ebi-a-GCST90018839 Endometriosis 231771 4511 European -

finn-b-N14_FEMALEINFERT Female Infertility - 6481 European Males and Females
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2.5 Heterogeneity and
horizontal pleiotropy

The heterogeneity was assessed using Cochran’s Q test, with

results considered heterogeneous if P < 0.05. I² (I-squared) was also

used to measure heterogeneity, indicating the proportion of

variation due to heterogeneity in total variation (34). The range

for I² is from 0% to 100%, with larger values indicating higher levels

of heterogeneity. The formula for calculating I = 2(Q - Q_df)/Q. For

pleiotropy analysis, the intercept term of MR-Egger’s method was

utilized, while leave-one-out analysis was employed for sensitivity

analysis. IVs were deemed non-pleiotropic when the intercept term

of the MR-Egger regression model equaled zero (P > 0.05) (41). To

conduct leave-one-out analysis on IVs, each SNP was gradually

removed and the remaining SNPs were re-analyzed to observe their

individual effects (42).
3 Results

3.1 IVs screening

After undergoing multiple screenings, the dataset of PCOS,

EMs, and FI associated with metabolites ultimately comprised

13,615 SNPs. Supplementary Table 1 presents the basic

information of select SNPs, while the remaining SNPs exhibit

similar characteristics. The F-statistic for each individual SNP

ranged from 17.64 to 1294.286 (mean: 26.468), suggesting that

weak instrumental variables were unlikely to significantly impact

the causal association. See the Supplementary Table 1 for

more details.
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3.2 The analysis of causal relationship

We conducted a comprehensive MR analysis to assess the causal

relationships between each screened metabolite and conditions with

PCOS, EMs, and FI (Figure 2, Supplementary Figure 1). The IVW

analysis results demonstrated that substances with confidence

intervals that do not cross the line of no effect and have a p-value

less than 0.05 are considered to have a statistically significant

association with the outcome (Figure 3).

In PCOS (Figure 2A), the analysis revealed significant

associations across a range of metabolite classes, including amino

acids, carbohydrates, lipids, nucleotides, and peptides.

Phenylacetate, an amino acid, exhibited a notable association with

an increased risk of PCOS (OR = 4.439, 95% CI: 1.070-18.417, p =

0.0401). In the carbohydrate category, glucose showed a protective

effect (OR = 0.058, 95% CI: 0.005-0.678, p = 0.0232), while glycerate

and mannitol were linked to varying effects on PCOS risk. Lipid

metabolites, particularly 1-oleoylglycerophosphocholine and

epiandrosterone sulfate, were significantly associated with PCOS,

underscoring their potential roles in its pathogenesis. Additionally,

nucleotide uridine and peptides like pyroglutamylglycine also

showed significant associations, suggesting their involvement in

PCOS development.

For Endometriosis (Figure 2B), our findings indicated

significant associations with amino acids such as creatinine and

leucine, pointing to a potential influence on EMs risk (OR = 4.425,

95% CI: 1.281-15.287, p = 0.0187 for creatinine). Carbohydrates like

mannose and energy metabolites such as acetylphosphate also

demonstrated significant links to EMs. Among lipids, several

metabolites including 1-eicosatrienoylglycerophosphocholine and

4-androsten-3beta,17beta-diol disulfate 1 showed associations with
FIGURE 2

Forest plots of MR-estimated effects of plasma metabolites on PCOS, endometriosis, and female infertility risk. Image depicts a comprehensive
Mendelian randomization (MR) analysis to assess the association between plasma metabolites and the risk of developing common reproductive
endocrine disorders: polycystic ovary syndrome (PCOS) in (A), endometriosis in (B), and female infertility (FI) in (C). For each disorder, forest plots
illustrate the estimated effects (odds ratios with 95% confidence intervals) of the metabolite levels, with the number of single nucleotide
polymorphisms (SNPs) utilized as instrumental variables (nSNP) presented alongside. A significant association is denoted by P values that breach the
threshold of statistical significance. The effect size for each metabolite is visually captured through the width of the horizontal lines
(confidence intervals).
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EMs risk, highlighting the complexity of lipid metabolism in EMs

etiology. The analysis further identified significant associations with

other lipid metabolites, emphasizing their potential regulatory roles

in EMs.

In the context of FI (Figure 2C), isovalerylcarnitine, an amino

acid, was inversely associated with FI (OR = 0.574, 95% CI: 0.394-
Frontiers in Endocrinology 06
0.836, p = 0.0038), suggesting a protective role against insulin

resistance. Carbohydrates and lipids also displayed significant

associations with FI levels. Specifically, glucose showed an inverse

relationship, while various lipid metabolites such as 1-

arachidonoylglycerophosphoinositol and docosapentaenoate were

linked to FI alterations, indicating their importance in insulin
FIGURE 3

Circular heatmap and bubble plot of MR results for metabolites in reproductive endocrine disorders. (A) is a circular heatmap that encapsulates the
MR findings for a spectrum of metabolites, with color intensities reflecting the magnitude of -log10 P values, indicating the strength of the
associations. Each segment is annotated with the metabolite’s name and the specific condition it’s associated with (PCOS for polycystic ovary
syndrome, EMs for endometriosis, and FI for female infertility), facilitating a comparative overview of metabolites across different outcomes. (B) is a
bubble plot, showcasing the odds ratios (OR) and the corresponding P values (-log10 scale) for each significant metabolite’s influence on the disease
states. The size of each bubble represents the number of single nucleotide polymorphisms (nSNP) used as instrumental variables, thus reflecting the
genetic weight of the analysis. The color gradient represents the significance levels, with cooler blue tones denoting stronger associations and
warmer red tones suggesting weaker statistical significance.
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metabolism and sensitivity. Additionally, nucleotides and peptides

demonstrated significant associations, further underscoring the

multifaceted nature of genetic influences on FI levels.

We summarized a comprehensive information of the metabolite

classifications (classified as amino acids, carbohydrates, lipids,

nucleotides, and peptides) associated with three diseases, as well

as the number of SNPs and their causality (Table 2).

The detailed list provides supplementary information for SNP

annotation in metabolites of imparity, and it uncovers genetic loci

where metabolites exert an impact on PCOS, EMs, and FI

(Supplementary Table 2).
3.3 Sensitivity testing

In our study employing MR to assess the impact of specific

metabolites on the risk of PCOS, EMs, and alterations in FI levels, we

evaluated outcomes across various metabolite classes. The results are

organized by disease condition, including assessments of heterogeneity

and horizontal pleiotropy, which are crucial for understanding the

robustness and specificity of the associations identified.

We summarized the analysis of MR heterogeneity and

directional pleiotropy in metabolites and outcome variables

associated with three diseases (Table 3, Supplementary Figure 2,

3). The identified SNPs did not exhibit a statistically significant

impact on the estimates of causal association.

For PCOS, heterogeneity, as measured by I2(%) and Cochran’s Q,

varied across metabolites, with phenylacetate (amino acid) showing

relatively low heterogeneity (I2 = 13%) but a significant horizontal

pleiotropy p-value (Egger intercept p-value = 0.6826). Other notable

findings include glucose (carbohydrate) with an I2 of 11% and no

significant pleiotropy (Egger intercept p-value = 0.3449), and 1-

oleoylglycerophosphocholine (lipid) with I2 = 7% and a marginally

non-significant pleiotropy p-value (Egger intercept p-value = 0.1477).

These results suggest a varied landscape of genetic instruments’ effects

on PCOS risk, with some metabolites showing more stable and

specific associations than others.

In EMs, creatinine (amino acid) exhibited moderate heterogeneity

(I2 = 15%) and no significant pleiotropy (Egger intercept p-value =

0.6733). A high level of heterogeneity was noted for leucine (amino

acid) with an I2 of 9% and a borderline significant pleiotropy (Egger

intercept p-value = 0.1682), suggesting the need for cautious

interpretation. The lipid metabolite 1-linoleoylglycerol (1-

monolinolein) showed a notable I2 of 21% and a pleiotropy p-value

nearing significance (Egger intercept p-value = 0.0781), indicating

potential pleiotropic effects influencing its association with EMs.

For alterations in FI, isovalerylcarnitine (amino acid) had a low

heterogeneity (I2 = 5%) and showed no evidence of significant

horizontal pleiotropy (Egger intercept p-value = 0.9512), suggesting

a more direct association with FI. Conversely, phenylacetate (amino

acid) and glucose (carbohydrate) displayed higher heterogeneity but

also no significant pleiotropy, highlighting the complexity of

these associations.

Furthermore, the robustness of our findings was further

validated by a leave-one-out sensitivity analysis, as illustrated in

Supplementary Figure 4.
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4 Discussion

This study represents a pioneering endeavor to unveil the

intricate connections between metabolites and REDs from a

metabolomics perspective. By employing MR analysis, we have

identified a combined total of 39 metabolites (10 for PCOS, 15

for EMs, and 14 for FI) across various classes that are significantly

associated with conditions. Through the process of gene annotation,

it has been shown that there are potentially 442 different types of

genes that could be linked to female REDs (Supplementary Table 2).

This work is the first to use MR analysis to establish a causal link

between metabolites and RED. These findings not only enrich our

understanding of the metabolic underpinnings of RED but also

pave the way for novel diagnostic and therapeutic approaches.

The Global Burden of Disease Study 2021 highlights infertility

as an escalating global health challenge marked by rising prevalence

and notable regional disparities (2). Identifying the causes of

infertility is essential for devising effective strategies to mitigate its

impact worldwide. Exploring these causes from an omics and

metabolic perspective could provide valuable insights into the

underlying mechanisms and potential therapeutic targets (43, 44).

Many recent studies have focused on the significance of metabolites

in female reproductive endocrine diseases. Li et al. discovered that

mono-(2-ethylhexyl) phthalate (MEHP), a byproduct of DEHP, can

disrupt ovarian function by causing irregularities in the 17b-
hydroxysteroid dehydrogenase (17b-HSD) signaling pathway.

This study sought to validate this idea in living organisms by

conducting experiments on adult female Wistar rats (45). Li et al.

conducted a study on the developmental abnormalities of the ovary

in quail caused by di-(2-ethylhexyl) phthalate (DEHP) and its

metabolite MEHP. They emphasized the receptor-mediated

signaling pathway through which these metabolites hinder

estradiol production and disrupt the hypothalamic-pituitary-

ovarian axis (46). Additionally, Charifson et al. suggested that

PCOS could be attributed to a mismatch between genetic

variations that developed in physically active subsistence settings

and the sedentary industrialized surroundings of modern times

(47). In their study, Chu et al. examined the impact of continuous

exposure to light on the disruption of circadian rhythm and its

implications on reproductive, metabolic, and gut microbiome

abnormalities resembling those seen in PCOS in a rat model. The

study highlights the significance of circadian rhythm in the

development of PCOS (48). In addition, Mukhopadhyay et al.

conducted a review on the relationship between bisphenol A

(BPA) and the risk of PCOS. Their focus was on how BPA can

change the expression of genes that play a role in regulating

hormones, which are often linked to the symptoms of PCOS (49).

Ding et al. emphasized the importance of comprehending the

impacts of endocrine disrupting chemicals (EDCs) on female

reproductive health, particularly in relation to ovarian aging (50).

To summarize, the data indicates that metabolites, namely those

originating from phthalates and BPA, have a substantial impact on

female reproductive endocrine disorders such as PCOS. Gaining a

comprehensive understanding of the processes by which these

metabolites interfere with endocrine pathways and affect ovarian

function is essential for the development of successful treatments
frontiersin.org

https://doi.org/10.3389/fendo.2024.1438079
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lu et al. 10.3389/fendo.2024.1438079
TABLE 2 MR results of causal links.

Data
source

Classification Classification Nsnp Methods OR (95%CI) P-value

PCOS

Amino acid phenylacetate 8

IVW

4.439(1.070-18.417) 0.0401

Carbohydrate glucose 33 0.058(0.005-0.678) 0.0232

Carbohydrate glycerate 11
17.181

(1.015-290.712)
0.0488

Carbohydrate mannitol 12 0.388(0.207-0.729) 0.0032

Lipid 1-oleoylglycerophosphocholine 12
16.147

(1.372-190.080)
0.0270

Lipid epiandrosterone sulfate 11 2.938(1.348-6.406) 0.0067

Lipid X-12990 11 4.260(1.074-16.901) 0.0393

Nucleotide uridine 18 0.032(0.001-0.961) 0.0474

Peptide gamma-glutamylisoleucine 22 0.202(0.041-0.986) 0.0480

Peptide pyroglutamylglycine 3 5.367(1.392-20.685) 0.0146

EMs

Amino acid creatinine 22

IVW

4.425(1.281-15.287) 0.0187

Amino acid leucine 149 0.497(0.266-0.931) 0.0289

Amino acid X-04499 20 0.379(0.188-0.764) 0.0066

Carbohydrate mannose 12 1.905(1.020-3.558) 0.0430

Energy acetylphosphate 15 0.162(0.036-0.724) 0.0171

Lipid 1-eicosatrienoylglycerophosphocholine 14 1.898(1.110-3.243) 0.0191

Lipid 1-linoleoylglycerol (1-monolinolein) 13 0.686(0.482-0.975) 0.0356

Lipid 1-palmitoylglycerophosphoethanolamine 25 0.635(0.434-0.930) 0.0197

Lipid
15-methylpalmitate (isobar with

2-methylpalmitate)
14 2.151(1.042-4.439) 0.0383

Lipid 3-hydroxybutyrate (BHBA) 9 0.829(0.695-0.988) 0.0365

Lipid 4-androsten-3beta,17beta-diol disulfate 1 17 1.363(1.102-1.685) 0.0042

Lipid epiandrosterone sulfate 10 0.681(0.472-0.982) 0.0398

Lipid X-11445 13 1.328(1.002-1.760) 0.0487

Nucleotide X-11422 5 5.070(1.574-16.330) 0.0065

Peptide leucylleucine 9 0.542(0.335-0.877) 0.0126

FI

Amino acid isovalerylcarnitine 19

IVW

0.574(0.394-0.836) 0.0038

Amino acid phenylacetate 8 0.580(0.344-0.978) 0.0408

Carbohydrate glucose 33 0.402(0.187-0.862) 0.0193

Lipid 1-arachidonoylglycerophosphoinositol 12 2.416(1.274-4.582) 0.0069

Lipid 1-palmitoylglycerophosphocholine 28 3.215(1.295-7.979) 0.0118

Lipid 2-hydroxyglutarate 11 0.525(0.291-0.945) 0.0317

Lipid 2-oleoylglycerophosphocholine 17 2.738(1.323-5.670) 0.0067

Lipid docosapentaenoate (n3 DPA; 22:5n3) 7 0.400(0.210-0.761) 0.0053

Lipid hexadecanedioate 19 1.431(1.007-2.033) 0.0454

Lipid margarate (17:0) 6 0.321(0.122-0.841) 0.0207

Nucleotide 7-methylguanine 8 2.079(1.129-3.828) 0.0187

(Continued)
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and interventions for these disorders (51). Additional investigation

is necessary to enhance our comprehension of the intricate

problems related to female reproductive health, including the

impacts of EDCs, circadian rhythm disruption, and toxicological

data from biomonitoring investigations (50, 52).

From the perspective of pathophysiological mechanisms, the

growth of endometriotic deposits is dependent on the presence of

estradiol, which is supplied by both systemic hormones and

enhanced expression of aromatase and steroidogenic acute

regulatory protein locally. Additionally, the expression of 17b-
hydroxysteroid dehydrogenase 2 is reduced by endometriotic

lesions, further contributing to the proliferation of these deposits

(53). Furthermore, lesions exhibit heightened expression of

estrogen receptor b (54). Moreover, the inhibition of progesterone

receptor B in both normal and abnormal endometrial tissue is

intensified in abnormal endometrial stromal cells due to epigenetic

differential methylation of PR-B, HOX, and GATA family

transcription-factor genes (55). This leads to disrupted

progesterone signaling, commonly referred to as “progesterone

resistance (56). PCOS is associated with adrenocortical

steroidogenic dysfunction, as evidenced by research (57) Around

one third of women with PCOS show elevated levels of

dehydroepiandrosterone sulfate, which is an androgen metabolite

or prohormone primarily produced by the adrenal cortex. Insulin

resistance and compensatory hyperinsulinemia are crucial factors in

the development of PCOS. Excessive insulin, in combination with

LH, enhances the production of androgens by ovarian theca cells

(58). Additionally, it reduces the production of sex hormone-

binding globulin in the liver, together with the excess of

androgens (59). The cause of the reduced insulin sensitivity in

PCOS is not yet fully understood. However, it is believed that the

different genetic and epigenetic abnormalities contribute to

impairments in the production and function of the main glucose

transporter in cells, known as glucose transporter 4 (GLUT4), as

well as impairments in the disposal of glucose through insulin.

Patients with PCOS also exhibit abnormalities in insulin-mediated

lipolysis. Furthermore, the level of insulin resistance in PCOS is

exacerbated by a condition of persistent mild inflammation, partly

caused by aberrant production and function of adipocytokines. On

the other hand, there is stronger evidence indicating that women

with PCOS have adipose tissue that shows different defects that

promote an inflammatory or insulin resistant condition. These

defects include dysfunction in adipocytokines, dysregulation of

free fatty acid metabolism, and abnormalities in epigenetics that

affect GLUT4 function (57). Further investigation is required to rule

out or confirm clinical evaluation using more targeted hormonal
Frontiers in Endocrinology 09
testing. Thyroid problems, hyperprolactinemia, and nonclassic

adrenal hyperplasia are the main conditions to consider. These

can be ruled out by measuring thyroid-stimulating hormone,

prolactin, and 17-hydroxyprogesterone, respectively. Nonclassic

adrenal hyperplasia caused by abnormalities in CYP21A2 affects a

percentage ranging from 1 to 10% of women with excessive hair

growth, depending on their ethnic background. This condition is

the most prevalent autosomal-recessive ailment in the human

population. Nonclassic adrenal hyperplasia caused by

abnormalities in CYP21A2 affects a percentage ranging from 1 to

10% of women with excessive hair growth, depending on their

ethnic background. This condition is the most prevalent autosomal-

recessive ailment in the human population. Additional evidence

indicates that promptly identifying the condition and administering

corticosteroid treatment may enhance the chances of achieving a

successful reproductive outcome (60). Therefore, it is recommended

to evaluate any woman exhibiting signs, symptoms, or complaints

of hyperandrogenism, regardless of severity, for nonclassic adrenal

hyperplasia. Practitioners must be aware that it is not feasible to

clinically identify or even make an educated guess about the

diagnosis of nonclassic adrenal hyperplasia. It is absolutely

necessary to evaluate the levels of 17-hydroxyprogesterone (61).

There are multiple benefits to our study. As far as we know, this

is the initial MR investigation conducted to assess the causal

connection between metabolites and REDs. Our current focus is

on conducting exploratory research with the specific aim of

enhancing our ability to support future metabolomics studies and

offering valuable insights for future endeavors. Metabolomics is a

scientific discipline that seeks to understand how living systems

react to genetic alterations, environmental shifts, or disease

conditions by examining the entire collection of metabolites

within a specific biological setting, providing a precise

representation of the biochemical processes occurring at the

moment of sample collection (62). By integrating advanced

approaches such as extracellular vesicles, liquid biopsies, and

single-cell metabolomics with our understanding of metabolites,

we can further refine our analyses, potentially leading to early

diagnosis and targeted early treatment of REDs (63–66). Thus, we

anticipate that our study can guide the analysis of metabolites and

genomes, enabling researchers to focus on fundamental

experiments and develop more effective therapeutic strategies.

But there also are certain constraints that need to be addressed.

First, identifying genetic variations that are strongly linked to specific

metabolites and can serve as instrumental factors can be a complex

task. Metabolites can be altered by a combination of genetic factors

and environmental conditions. These genetic variants account for only
TABLE 2 Continued

Data
source

Classification Classification Nsnp Methods OR (95%CI) P-value

Peptide ADpSGEGDFXAEGGGVR 5 2.077(1.301-3.315) 0.0022

Peptide DSGEGDFXAEGGGVR 11 1.628(1.127-2.353) 0.0095

Peptide glycylvaline 6 1.619(1.067-2.456) 0.0236
MR, Mendelian Randomization; PCOS, polycystic ovary syndrome; EMs, endometriosis; FI, female infertility; IVW, inversed-variance weighted; OR, odds ratio; CI, confidence interval.
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TABLE 3 Evaluation of heterogeneity and pleiotropy.

Horizontal Pleiotropy

Egger
intercept

SE P-value

0.0241 0.0562 0.6826

0.0260 0.0271 0.3449

-0.0670 0.0638 0.3206

-0.0945 0.0628 0.1634

0.0737 0.0470 0.1477

0.0335 0.0436 0.4625

-0.0140 0.0709 0.8479

0.0195 0.0584 0.7431

-0.0287 0.0345 0.4160

0.1157 0.1383 0.5563

-0.0053 0.0123 0.6733

0.0050 0.0036 0.1682

0.0188 0.0211 0.3838

0.0197 0.0144 0.2024

0.0058 0.0314 0.8567

-0.0284 0.0178 0.1360

0.0357 0.0184 0.0781

0.0052 0.0068 0.4529

0.0118 0.0140 0.4175

-0.0293 0.0130 0.0585

-0.0020 0.0101 0.8475

0.0016 0.0380 0.9668

0.0079 0.0307 0.8013

0.0016 0.0354 0.9658

-0.0076 0.0201 0.7172

(Continued)
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Outcomes Classification Metabolites

Heterogeneity

I2(%) Cochran’s Q P-valu

PCOS

Amino acid phenylacetate 13 8.0772 0.3258

Carbohydrate glucose 11 36.1044 0.2826

Carbohydrate glycerate 0 7.7892 0.6494

Carbohydrate mannitol 0 8.1490 0.6999

Lipid 1-oleoylglycerophosphocholine 7 11.8449 0.3754

Lipid epiandrosterone sulfate 25 13.3746 0.2035

Lipid X-12990 0 7.8790 0.6407

Nucleotide uridine 0 14.9945 0.5959

Peptide gamma-glutamylisoleucine 0 18.5263 0.6155

Peptide pyroglutamylglycine 0 0.9812 0.6122

EMs

Amino acid creatinine 15 24.6618 0.2621

Amino acid leucine 9 163.4983 0.1815

Amino acid X-04499 6 20.2751 0.3782

Carbohydrate mannose 0 5.5446 0.9020

Energy acetylphosphate 18 17.1042 0.2507

Lipid 1-eicosatrienoylglycerophosphocholine 17 15.7089 0.2652

Lipid 1-linoleoylglycerol (1-monolinolein) 21 15.2416 0.2285

Lipid 1-palmitoylglycerophosphoethanolamine 0 17.0084 0.8483

Lipid 15-methylpalmitate (isobar with 2-methylpalmitate) 21 16.3602 0.2302

Lipid 3-hydroxybutyrate (BHBA) 15 9.4153 0.3085

Lipid 4-androsten-3beta,17beta-diol disulfate 1 0 8.2044 0.9425

Lipid epiandrosterone sulfate 0 4.1942 0.8982

Lipid X-11445 35 18.5627 0.0996

Nucleotide X-11422 0 0.4459 0.9785

Peptide leucylleucine 0 1.9940 0.9812
e
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TABLE 3 Continued

Heterogeneity Horizontal Pleiotropy

I2(%) Cochran’s Q P-value
Egger

intercept
SE P-value

5 18.8542 0.4009 0.0005 0.0084 0.9512

29 9.8058 0.1998 0.0024 0.0208 0.9122

0 25.5290 0.7841 0.0004 0.0084 0.9602

0 10.7537 0.4641 -0.0144 0.0140 0.3279

0 24.6588 0.5936 0.0149 0.0192 0.4440

0 7.8895 0.6396 -0.0163 0.0151 0.3083

0 15.3490 0.4992 0.0311 0.0193 0.1269

0 2.4955 0.8690 -0.0034 0.0326 0.9204

27 24.7590 0.1317 -0.0025 0.0129 0.8468

0 3.9381 0.5584 0.0052 0.0440 0.9108

0 6.5614 0.4759 -0.0228 0.0196 0.2897

9 4.3992 0.3547 0.0106 0.0317 0.7596

0 9.7625 0.4616 0.0535 0.0295 0.1025

0 4.4344 0.4887 0.0322 0.0518 0.5683
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Outcomes Classification Metabolites

FI

Amino acid isovalerylcarnitine

Amino acid phenylacetate

Carbohydrate glucose

Lipid 1-arachidonoylglycerophosphoinositol

Lipid 1-palmitoylglycerophosphocholine

Lipid 2-hydroxyglutarate

Lipid 2-oleoylglycerophosphocholine

Lipid docosapentaenoate (n3 DPA; 22:5n3)

Lipid hexadecanedioate

Lipid margarate (17:0)

Nucleotide 7-methylguanine

Peptide ADpSGEGDFXAEGGGVR

Peptide DSGEGDFXAEGGGVR

Peptide glycylvaline

MR, Mendelian Randomization; PCOS, polycystic ovary syndrome; EMs, endometriosis; FI, female infertility
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a minor fraction of the variability in the metabolites, which may result

in a slight instrument bias and diminish the statistical power of the

study. The chosen genetic variants may impact the likelihood of female

reproductive endocrine disorders through biological pathways that are

not connected to the hypothesis, so contravening the third postulate of

MR. Pleiotropy may introduce a bias in the estimated causal effect.

Second, the study sample consists of individuals with varied genetic

backgrounds. Failing to effectively adjust for population stratification

could result in false relationships. This poses a significant challenge

when the correlation between genetic variations and metabolites

differs among different populations. The genetic variations utilized

are predominantly derived from specific groups with European

heritage, hence the findings may not be generalizable to individuals

with different genetic backgrounds. Therefore, the study’s capacity to

be applied to a wider population may be restricted. Third, if there is a

potential for bidirectional causation between specific metabolites and

female reproductive endocrine problems, relying solely on MR may

not provide an accurate determination of the actual causal

relationship. Furthermore, inaccuracies in detecting metabolite levels

may introduce bias in the assessment of causal links, particularly if the

measurements of metabolites are inaccurate or affected by batch

effects. If individuals in the sample are chosen or omitted based on

their disease status or other specific criteria, the study results may not

be applicable to the wider population. Subsequent metabolomics

investigations should include provisions to tackle these constraints.

This pioneering study marks a significant advancement in

understanding the complex interplay between metabolites and

RED from a metabolomics standpoint. Through meticulous MR

analysis, we’ve unveiled specific associations across various

metabolite classes—including amino acids, carbohydrates, lipids,

nucleotides, and peptides—with conditions like PCOS, EMs, and FI.

These insights not only deepen our comprehension of RED’s

metabolic foundations but also herald new avenues for diagnosis

and treatment. The identification of metabolites as potential

biomarkers offers promising pathways for early detection and risk

assessment, enabling more precise and personalized management

strategies. Furthermore, elucidating these causal relationships opens

up possibilities for targeted interventions aimed at correcting

metabolic imbalances, thereby offering hope for improved

outcomes. The diversity of implicated metabolites underscores the

necessity for a personalized medicine approach, tailoring treatments

to individual metabolic dysregulations to optimize care.

Consequently, this research not only contributes significantly to

our understanding of reproductive health but also paves the way for

transformative developments in the diagnosis, management, and

treatment of reproductive endocrine disorders, spotlighting the

critical role of metabolomics in advancing reproductive medicine.
5 Conclusion

Our work employed amultivariate two-sampleMR analysis using

publicly accessible GWAS meta-analysis data to examine the causal

connection between metabolites and several RED, such as PCOS,

EMs and FI. Ultimately, we conducted a thorough assessment of the

potential correlation between the metabolites and REDs. These
Frontiers in Endocrinology 12
metabolites and genes could potentially serve as biomarkers and

offer valuable insights for future studies on treatment.
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SUPPLEMENTARY TABLE 1

Comprehensive information of all SNPs associated with female infertility,
polycystic ovary syndrome, and endometriosis.

SUPPLEMENTARY TABLE 2

Detailed annotations for all single nucleotide polymorphisms employed as

instrumental variables.

SUPPLEMENTARY FIGURE 1

Scatter plot. This scatter plot depicts the correlation between the genetic

associations of instrumental variables and the risk of reproductive endocrine

disorders, providing a snapshot of the causal effects estimated by MR.

SUPPLEMENTARY FIGURE 2

Funnel plot. The funnel plot visualizes the distribution of effect estimates from

instrumental variables against their precision, assessing potential publication
bias and asymmetry in the MR analysis for metabolic markers related to

reproductive disorders.

SUPPLEMENTARY FIGURE 3

Forest plot. The forest plot aggregates the effect sizes and confidence
intervals for each metabolite’s impact on reproductive health outcomes,

facilitating a meta-analytic view of their significance and heterogeneity.

SUPPLEMENTARY FIGURE 4

Leave-one-out plot. The leave-one-out plot examines the influence of each
individual instrumental variable on the overall MR results, ensuring the

robustness and reliability of the associations with female infertility,
polycystic ovary syndrome, and endometriosis.
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