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Post-translational modification (PTM) plays a crucial role in adaptation of

mammals to environmental changes, enabling them to survive in stressful

situations. One such PTM is SUMO modification, which is evolutionarily

conserved. It involves the covalent and reversible attachment of a small

ubiquitin-like modifier (SUMO) to lysine (Lys) residues in the target protein.

SUMOylation regulates various functions, including cell proliferation,

differentiation, apoptosis, senescence, and maintenance of specific cellular

activities. It achieves this by influencing protein-protein interactions,

subcellular localization, protein stability, and DNA binding activity. Mounting

evidence suggests that SUMOylation is implicated in the pathogenesis of

metabolic disorders such as obesity, insulin resistance, and fatty liver. This

review aims to provide an overview of the role of SUMOylation in regulating

tissue adaptation to metabolic stress. Recent advancements in spectroscopic

techniques have shed light on potential targets of SUMOylation and the

underlying regulatory mechanisms have been elucidated, laying the theoretical

foundation for the development of targeted SUMOylation interventions for

metabolic syndrome while minimizing side effects.
KEYWORDS

post-translational modification, SUMOylation, metabolic homeostasis, obesity,
insulin resistance
1 Introduction

The process of SUMOylation involves the reversible covalent binding of small molecules

from SUMO family to the lysine (Lys) residue in the target protein, under the action of E1

activating enzyme, E2, and E3 ligase (1). In mammalian cells, the SUMO family of small

molecules comprises SUMO1, SUMO2/3, SUMO4, and SUMO5 (2–4). Among these, SUMO1

is the most extensively studied subtype. SUMO2 and SUMO3 share a high homology of 95%

(5), but they only exhibit 45% homology with SUMO1 (6). Interestingly, both SUMO1 and
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SUMO2/3 possess very similar three-dimensional structures. SUMO4

is the least characterized SUMO subtype, and analysis of single

nucleotide polymorphisms (SNPs) has revealed its association with

type 1 diabetes (7, 8). In addition, SUMO4 expression is increased in

the models of placental oxidative stress and hypoxia injury associated

with pre-eclampsia (9). SUMO5 and SUMO4 have restricted

expression to specific tissues, SUMO5 was found to regulate

promyelocytic leukemia nuclear bodies (10, 11) (Figure 1).

The ATP-dependent heterodimer consisting of SUMO activating

enzyme subunit 1 (SAE1) and SUMO activating enzyme subunit 2

(SAE2) plays a crucial role in activating the SUMO molecule and

transferring the activated SUMO protein to a specific and unique E2

conjugating enzyme called Ubc9 (12, 13). Ubc9 typically works in

conjunction with E3 ligases to facilitate the attachment of SUMO to the

substrate (14). Several proteins with SUMO E3 activity, such as

RanBP2, PIASs, Pc2, have been identified, and they enhance the

binding of SUMO to the target protein (15, 16). The site structure

for SUMOylation isy-K-X-E/D, wherey is a hydrophobic amino acid,

K denotes the lysine residue where modification occurs, X represents

any amino acid, and D/E stands for Asp or Glu (17). SUMOylation is a

reversible and dynamic process, and the modified protein can be

deSUMOylated by SUMO-specific proteases known as SENPs. The
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SENP family comprises six members: SENP1-3 (18–20) and SENP5-7

(21–24). Different SENP members act on proteins bound to different

types of SUMO molecules (25). SENP1 and SENP2 catalyze proteins

bound to all types of SUMO molecules (26), while SENP3, SENP5,

SENP6, and SENP7 preferentially remove SUMO2/3-bound proteins

(27, 28). The process of SUMOylation shares similarities with

ubiquitination, as both modifications occur on lysine residues of

proteins (29). SUMOylation impacts ubiquitination-mediated protein

degradation in a cooperative or competitive manner (30, 31). It also

plays a role in regulating protein subcellular localization, protein-

protein interactions, and protein-DNA binding. SUMOylation

governs various functions of target proteins and interacts with other

post-translational modifications, contributing to their irreplaceable

roles in pathological and physiological conditions.
2 The role of non-covalent SUMO
Interactions in cellular regulation

Non-covalent SUMO interactions involve proteins with one or

multiple SUMO-interacting motifs (SIMs), distinct from covalent

SUMOylation (32, 33). SIMs are characterized by short sequences
FIGURE 1

The process of SUMOylation. Maturation: The SUMO precursor molecule undergoes processing by ubiquitin-like specific protease 1 (Ulp1) or SUMO-
specific protease (SENP), which removes the last four amino acids from the C-terminus, thereby exposing the terminal double glycine GG.
Activation: The SUMO activating enzyme E1 (SAE1 or Aos1) and SUMO activating enzyme 2 (SAE2 or Uba2) usually form a heterodimer of SAE1-SAE2
or Aos1-Uba2. SAE2/Uba2 forms a thioester bond with the C-terminal carboxyl group of SUMO through its cysteine residue, thus activating the
SUMO protein. Conjugation: The E2 conjugating enzyme Ubc9 forms an E2-SUMO thioester compound by establishing a thioester bond with the
activated SUMO protein through its cysteine residue at position 93. Simultaneously. It attaches the SUMO molecule to the lysine residue of the
target protein, completing the SUMOylation modification. Ligation: The SUMO E3 ligase promotes the detachment of the SUMO protein from Ubc9
by stabilizing the substrate and SUMO-E2 complex. It then attaches the SUMO protein to the substrate.
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rich in large hydrophobic residues like leucine, isoleucine, or valine,

often flanked by acidic residues (34). These interactions can affect

protein subcellular localization as well as nuclear events like

transcription and chromosomal maintenance (35, 36), and are

crucial in DNA repair processes such as XRCC4-mediated

double-strand break repair (37).
3 The role of SUMOylation
in physiology

SUMOyla t ion se rves a s a p ivota l mechanism in

spermatogenesis, orchestrating critical processes such as meiotic

sex chromosome inactivation, centromeric heterochromatin

organization, XY body formation, and regulation of meiotic

recombination in coordination with the ubiquitin-proteasome

system (38, 39). Moreover, it targets an array of proteins involved

in fundamental tasks like chromosome pairing and recombination,

although the full functional implications of this modification await

comprehensive elucidation. In mouse oocyte maturation,

SUMOylation distinctly governs spindle organization,

chromosome congression, and segregation, with SUMO1 and

SUMO2/3 assuming discrete roles (40). The activity of

deSUMOylases like SENP2, SENP3, and SENP7 is imperative for

proper oogenesis, while in C. elegans, SUMO modification

modulates chromosome congression (41–43). Overall ,

SUMOylation emerges as indispensable for the seamless

progression of oocyte development and for effect ive

communication with ovarian somatic cells.

In embryogenesis, SUMOylation assumes crucial roles. Early

studies showed that the absence of SUMO1 results in embryonic

developmental defects and embryonic death between E13.5-E18.5

(44). The lack of SUMO1 is also associated with high prenatal and

postnatal lethality due to heart defects (45). However, other studies

have reported that the SUMO1-deficient mouse model does not

exhibit abnormalities under normal feeding conditions (46–48).

Interestingly, mice lacking SUMO3 can survive, possibly due to the

compensatory effect of SUMO2 (49). In contrast, the absence of

SUMO2 cannot be compensated by SUMO3 or SUMO1, indicating

that certain key proteins modified by SUMO2 are irreplaceable for

maintaining cellular function (49). SUMO2 and SUMO3 are

dynamically regulated in response to various cellular stresses like

DNA damage (50, 51) or during cell cycle progression (52).

Notably, the larger free pool of SUMO2 enables its conjugation

under stress conditions, highlighting its significance in cellular

stress response mechanisms (53).

Consistent with the pivotal role of SUMOylation in embryonic

development, the deletion of the conjugating enzyme Ubc9 caused

embryonic lethality in mice. additionally, mice lacking E3 ligases

such as PIAS1 (54) and CBX4 (55) exhibit varying levels of perinatal

death. Among them, the surviving Pias1-/- that survive are smaller

than wild-type mice but do not display significant histological

defects (54). They do, however, exhibit enhanced immune

responses to viruses or microbes (54). Other factors with SUMO

E3 ligase activity, such as RanBP2 or KAP1, are also essential for
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embryonic development (56, 57). Conversely, the knockout of the

SUMO protease SENP1 or SENP2 also results in embryonic

lethality during mid-embryo development. Overall, maintaining

the balance of SUMOylation is indispensable for embryonic

development and maintenance of organ function.
4 The role of SUMOylation in
metabolic homeostasis

4.1 Liver

SUMOylation plays a significant regulatory role in hepatic cells

and liver diseases, influencing various cellular processes such as the

cell cycle, apoptosis, DNA repair, and signal transduction, and is

crucial for maintaining hepatocytes function and addressing liver

diseases. The development of hepatocytes requires the synthesis of

new proteins in response to environmental stress, enabling the cells

to acquire functions. Each stage of hepatic maturation is

distinguished by a distinct expression pattern of liver- and stage-

specific genes (58). Simultaneously, existing proteins can undergo

post-translational modifications (PTMs), leading to structural

changes and eliciting signal responses (59). During the

differentiation human embryonic stem cell (hESC) into

hepatocytes, the levels of SUMO1- and SUMO2-modified

proteins was observed to decrease, concomitant with an increased

expression of the SUMO-deconjugating enzyme SENP7 (60).

Hepatocyte nuclear factor 4 alpha (HNF4a) is a key regulator of

liver-specific genes involved in metabolism and coagulation (61–

63). It controls hepatocyte differentiation and acts as a tumor

suppressor, regulating cell growth (64). Loss of HNF4a leads to

dedifferentiation and impaired liver regeneration after partial

hepatectomy (65). DeSUMOylation of HNF4a is essential for

hepatocyte maturation by preventing its ubiquitin-mediated

degradation, thereby coordinating nutrient metabolism and

managing intracellular stress, including xenobiotics and metabolic

wastes (60, 66).

The imbalance between energy intake and expenditure is a

common characteristic of metabolic diseases, including obesity,

insulin resistance, and fatty liver (67). Non-alcoholic fatty liver

disease (NAFLD), a prevalent liver metabolic disease, is

characterized by lipid accumulation in the liver, leading to

steatosis, inflammation, cirrhosis, and liver cancer (68). The liver,

as the central regulatory system of metabolic homeostasis, is finely

regulated. Sterol regulatory element binding protein 1c (SREBP1c)

is a key transcriptional factor for lipogenesis, and its transcription

and translation levels are strictly controlled (69, 70). SUMOylation

of SREBP1c reduced its transcriptional activity and decreased the

expression of lipogenic genes in the liver (71). PIASy promotes the

SUMOylation of SREBP1c, resulting in the reduction of hepatic

lipogenesis and alleviations of hepatic steatosis (30). Similarly, liver-

specific knockout of Senp2 in mice confers to resistance to hepatic

steatosis and obesity induced by a high-fat diet. SUMOylation of

peroxisome proliferator-activated receptor alpha (PPARa)
decreased its ubiquitination-relative degradation, thereby
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enhancing fatty acid oxidation (72). PPARa and farnesoid X

receptor (FXR) have opposite regulatory effects on liver lipid

metabolism (73, 74). PPARa is activated during fasting and

induces fatty acid oxidation, while FXR controls bile acid

homeostasis and is activated during feeding (75). SUMO2

modification of FXR at K277 alleviated liver inflammation and

lipid accumulation by reducing the expression of inflammatory

gene expression regulated by NF-kB (76). It appears that promoting

protein SUMOylation in hepatocyte enhances liver energy

metabolism and alleviates metabolic stress (Figure 2).

Under metabolic stress, increased mitochondrial oxidative

respiration and fatty acid oxidation exacerbate oxidative stress in

hepatocytes, contributing to impaired liver function and disrupting

the body’s energy metabolism (77). Hepatic ischemia/reperfusion-

induced metabolic stress results from glucose or fatty acid energy

substrates undergoing mitochondrial oxidation in the presence of

sufficient oxygen, leading to cellular oxidative stress (78).

SUMOylation is believed to play a role in maintaining the liver’s

antioxidative capacity by regulating proteins associated with redox

balance, such as Nrf2 (nuclear factor-2) (79). In particular, the

deSUMOylation of sirtuin-3 (Sirt3) restores mitochondrial

function, reduces oxidative stress, and prevents apoptosis induced

by hepatic ischemia/reperfusion injury (80). Further research is

needed to understand the precise role of SUMOylation in metabolic

and pathological processes in the liver and to identify potential

therapeutic targets.
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4.2 Adipose tissue and adipocytes

Obesity is typically characterized by the expansion of adipose

tissue and ectopic fat deposition, leading to various metabolic

diseases such as insulin resistance, fatty liver, and cardiovascular

diseases (81, 82). Adipose tissue is not only the largest energy

reservoir in mammals but also an endocrine organ capable of

synthesizing various bioactive secretory factors that regulate

metabolic homeostasis. In mammals, adipose tissue is primarily

composed of mature adipocytes, microvessels, and a complex

stromal vascular fraction (SVF), which can be classified into two

main types: white adipose tissue (WAT) and classic brown adipose

tissue (BAT). White adipocytes, with a single large lipid droplet, are

involved in lipid storage, mobilization, secretion of adipokines and

immunoregulation (83–85). In contrast, distinguished by

multilocular lipid droplets and abundant mitochondria,

specialized in energy expenditure and adaptive thermogenesis (86,

87). Another type of adipocyte, known as beige or brite adipocytes,

shares similarities with brown adipocytes and originates from

smooth muscle-like progenitor cells or white adipocytes.

Interestingly, alterations in the expression or activity of specific

SUMO system components regulate the fate of adipocytes and the

function of adipose tissue (88).

For example, Knockdown of Senp1 leads to reduced levels of key

adipogenic regulators, such as C/EBP-a/b and PPARg, impairing

the migratory and proliferative capacities of human adipose-derived
FIGURE 2

SUMOylation regulates liver energy metabolism. The SUMOylation of HNF4a inhibits hepatocyte proliferation and post-injury repair. The
SUMOylation of SREBP1C suppresses its ubiquitination degradation pathway, thereby increasing lipid synthesis. The SUMOylation of FXR enhances its
transcriptional activity on inflammatory factors. Additionally, disruption of PPARa not only enhances lipid oxidation in hepatocytes but also increases
hepatic FGF21 secretion, which promotes lipid oxidation in adipocytes.
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stem cells (hADSCs) and promotes apoptosis, ultimately inhibiting

adipocyte differentiation (89, 90). Additionally, the SUMOylation of

SETDB1 promotes its binding to the promoter region of PPARg and
C/EBPa, thereby reducing the lipid storage capacity of adipocytes

(91). The small ubiquitin-like modifier-conjugating enzyme Ubc9

also plays critical role in adipocyte differentiation, as demonstrated

by the fluctuation in its expression during the differentiation of

adipose precursor cells into mature adipocytes (92, 93).

Interestingly, adipocyte-specific depletion of Ubc9 protects mice

from high fat diet (HFD)-induced obesity and insulin resistance

(94). In this context, SUMOylation of ERp44 aggravates ER stress in

adipocytes, contributing to the development of obesity and insulin

resistance, partly by increasing Ero1a retention in ER. Furthermore,

the differentiation of brown adipocytes is also influenced by

SUMOylation, as demonstrated by changes in SENP2 expression

throughout the differentiation process (95). SENP2 catalyzes the de-

SUMOylation of cAMP response element-binding protein (CREB),

thereby promoting the differentiation of brown preadipocytes (96).

Activating brown adipose tissue (BAT) or promotion of white-beige

transition is a promising strategy for the treatment of obesity and

type 2 diabetes mellitus (97, 98). Cold exposure or treatment of b-
adrenergic receptors (b-ARs) agonist can induce the emergence of

beige adipocytes from smooth muscle-like progenitor cells or white

adipocytes (99–101). It is noteworthy that SUMOylated C/EBPb
promotes the formation of beige adipocytes in subcutaneous

adipose tissue by downregulating the expression of the inhibitory

gene HOXC10 (102). Additionally, the SUMOylation of PRDM16 is

induced by exposure to cold environments and is also essential for

white fat browning (103). In summary, SUMOylation is involved in

multiple crucial biological processes in adipocytes and adipose
Frontiers in Endocrinology 05
tissue, and its dysregulation may be associated with the

occurrence and development of obesity and related metabolic

diseases. A thorough understanding of the molecular mechanisms

of SUMOylation and its specific effects on obesity holds the

potential to provide a theoretical basis for the development of

novel therapeutic strategies in the future (Figure 3).
4.3 Islet

Pancreatic b cells, originating from the pancreatic primordium

during embryonic development, play a crucial role in synthesizing

and releasing insulin to regulate blood glucose levels (104). In

diabetic individuals, pancreatic b cells may undergo reduction,

atrophy, or functional abnormalities, rendering them incapable of

effectively responding to glucose stimuli and causing elevated blood

glucose levels (105). SUMOylation plays various crucial roles in

pancreatic islet cells, involving physiological regulation, insulin

secretion, and the survival and apoptosis of pancreatic islet cells.

For instance, MafA is a b-cell-restricted basic leucine-zipper

transcriptional activator, whose transactivator domain is

SUMOylated, a process enhanced by PIASy (106). The interaction

between MafA and PIASy requires the basic domain of MafA and

the amino-terminal region of PIASy, which contains the SAP

domain. Furthermore, the SUMO-interacting motif 1 (SIM1)

located in the carboxyl-terminal region of PIASy is essential for

repressing the synergistic transactivation of MafA along with other

key transcription factors, Pdx1 and Beta2, which are critical for b-
cell differentiation and function (107). Additionally, Kv2.1 channels

contribute to maintaining the density of membrane-associated
FIGURE 3

SUMOylation regulates adipocyte function and plays role in the development of obesity and insulin resistance. Reducing the level of SUMOylation
increases the proliferative and differentiative capacities of adipose precursor cells. DeSUMOylation of SETB1 enhances the differentiation of adipose
precursor cells into white adipocytes. Moreover, DeSUMOylation of CREB promotes the production of brown adipocytes. However, SUMOylation of
C/EBPb enhances the white-to-beige adipose transition.
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insulin granules and the number of fusion “hotspots”. SUMOylation

of Kv2.1 occurs at the N-terminal (K145) and C-terminal (K470)

sites, potentially regulating the relative proportion of fusion events

within specific regions (108, 109).

Moreover, previous studies have indicated that SENP2

expression is upregulated in the islets of T2D animal models and

patients, and chronic glucose stimulation also increases SENP2

expression in INS1 cells (110). SUMOylation of DRP1 due to

SENP2 deficiency impairs its phosphorylation, leading to

mitochondrial dysfunction and reduced insulin secretion in

pancreatic b cells (111, 112),. Thus, investigating changes in

mitochondrial function may be a key direction for studying

SUMOylation in the physiological function of pancreatic b cells.

SUMOylation may participate in regulating the survival and

apoptosis of pancreatic islet cells. Persistent high blood glucose level

increases oxidative stress and endoplasmic reticulum stress in

pancreatic beta cells, which can lead to cell apoptosis or

transdifferentiation, consequently reducing insulin secretion (113,

114). Previous studies have shown that cytokine stimulation

induces endoplasmic reticulum stress, accompanied by alterations

in the SUMOylation profile in mouse/human pancreatic b cells

(115). Specifically, SUMOylation of disulfide isomerase a3 (Pdia3)

exacerbates proinsulin misfolding and endoplasmic reticulum stress

(115). it seems that increased SUMOylation aggravates beta cell

apoptosis while impairing insulin secretion (116). Conversely, the

loss of Ubc9 increased oxidative stress in pancreatic beta cells,

resulting in spontaneous diabetes in the mice (117). Because

deSUMOylation of NRF2 suppresses its nuclear translocation and

reduces the expression of its downstream antioxidant genes,

resulting in accumulation of reactive oxygen species (ROS) (117).

In short, both upregulation of downregulation of SUMOylation,

through overexpression or ablation of Ubc9, induces pancreatic beta

cells death and dysfunction (117). In essence, maintaining the

dynamic balance of SUMOylation in b cells is crucial for

transitioning from cell survival to secretory function (Figure 4).
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4.4 Skeletal muscle

It is generally accepted that appropriate exercise can alleviate

insulin resistance in patients with obesity or type 2 diabetes,

primarily by enhancing skeletal muscle glucose uptake and fatty

acid oxidation (118, 119). Skeletal muscle fibers possess a unique

SUMO modification system involved in regulating the transition

between different fiber types in terms of contractile and metabolic

properties (120). The levels of SUMOylation and its substrates are

strongly correlated with fiber type and exhibit significantly change

before and after exercise (121). Recent studies have also reported the

SUMOylation of a-actin in rat skeletal muscle (122). Intense muscle

contractions promote the nuclear translocation of SUMO1 in

human myofibres suggesting that SUMOylated proteins may be

participate in the modulation of contractility (123).

Although the effects of exercise on glucose uptake and oxidation

in myotubes from individuals with obesity compared with lean

individuals are inconsistent (124–126). Effects of exercise on obesity

in vivo results from a combination of mechanical, metabolic and

oxidative perturbations (127). During prolonged exercise, fat

mobilization is the main source of the free fatty acids (FFAs) for

muscle contraction (128, 129). FFA increase the expression of

SENP2 in myotubes, leading to the up-regulation of fatty acid

oxidation-related enzymes via decreasing SUMOylation of PPARd
and PPARg (130). Similarly, treatment C2C12 muscle cells with

palmitate induces the expression of SENP2 and enhances oxidation

of fatty acids through toll-like receptor (TLF) 4/MyD88/NF-kB
signaling pathway (130–132). Overexpression of muscle-specific

Senp2 alleviates high-fat diet-induced obesity and insulin

resistance (132). In addition, leptin activates the binding of

STAT3 to the promoter region of SENP2 and promotes its

expression, indicating the synergistic effect of adipose tissue and

skeletal muscle in regulating the body’s energy homeostasis (130).

In conclusion, in view of the fact that increasing the SUMOylation

in skeletal muscle can enhance energy expenditure, inhibiting
FIGURE 4

SUMOylation regulates islet b cell integrity and insulin secretion. Maintaining the balance between SUMOylation and deSUMOylation is crucial for
preserving the stability of endoplasmic reticulum and mitochondrial function in b cells. SUMOylation of NRF2 increases the transcription of
antioxidant genes, while SUMOylation of DPIA3 exacerbates oxidative folding and ER stress. Disruption of DRP1 SUMOylation leads to a reduction in
mitochondrial fission by inhibiting the translocation of DRP1 to the mitochondria.
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SENP2 expression could serve as a novel therapeutic approach to

alleviate obesity and hyperlipidemia (Figure 5). Actually,

SUMOylation may play a role in regulating proteins related to

muscle contraction and movement, such as myosin and troponin

(133). A thorough understanding of the molecular mechanisms of

SUMOylation in these processes is of significant importance for

comprehending muscle biology and the pathogenesis of

metabolic diseases.
4.5 Nervous system and
gastrointestinal system

SUMOylation plays a crucial role in regulating appetite in the

nervous system and nutrient absorption in the gastrointestinal

system. In the nervous system, SUMOylation may regulate

appetite through modulating the activity of neurons and

influencing neurotransmitter systems such as norepinephrine and

dopamine (134–136). Additionally, SUMOylation can impact

interactions between neurons, potentially by altering the

SUMOylation status of proteins, thereby regulating synaptic

transmission and neuronal network activity (137, 138). In the

gastrointestinal system, SUMOylation primarily acts by

modulating proteins related to nutrient absorption and

metabolism (139, 140). This involves affecting the stability of

proteins and regulating cell signaling pathways, such as insulin

signaling (141). Furthermore, SUMOylation may regulate the

secretion of hormones that play a role in the gastrointestinal

system, such as glucagon-like peptide-1 (GLP-1) and gastric

hormones (142). In summary, SUMOylation plays a critical role in

regulating appetite and nutrient absorption in both the nervous

system and gastrointestinal system. These processes involve complex

molecular mechanisms that require further in-depth research to

understand their mechanisms of action and biological effects.
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5 Discussion and prospective

Broadly speaking, the interplay between with liver, adipose

tissues, muscle, islet, nervous and gastrointestinal system plays a

central role in the regulation of systemic glucose and lipid fluxes

during feeding and fasting. Research has highlighted the

tremendous potential of SUMOylation in modulating metabolism

and endocrine function of these tissues to maintaining systemic

energy balance and metabolic homeostasis (Figure 6). Disruption

the balance of SUMOylation between deSUMOylation can lead to

the occurrence of metabolic syndrome, including NAFLD,

cardiovascular disease, obesity associated diseases, and cancer.

However, the diverse components of the SUMO system

sometimes yield contradictory results due to their distinct roles in

specific pathophysiology. Therefore, it is important not to

generalize the regulatory role of SUMO modification in different

cells under the same pathological conditions

To further investigate the role of SUMOylation in

pathophysiology, researchers have established mouse models with

inducible knockout or overexpression of Ubc9, a key enzyme

involved in SUMOylation. The effects of SUMOylation can vary

significantly across different metabolic environments and cell types,

primarily due to the diversity of SUMO molecules and their

substrates. The effects of SUMOylation can vary significantly

across different metabolic environments and cell types due to the

diversity of SUMO molecules and their substrates. However, as the

sole E2 conjugating enzyme for SUMOylation, Ubc9 serves as a

pivotal point for understanding the overall regulatory role of this

modification. Importantly, Ubc9 can be selectively depleted in

different tissues through the administration of tamoxifen to adult

mice, allowing for the exploration of SUMOylation’s role in

regulating cellular functions (94, 143).Investigating Ubc9

knockout models offers a comprehensive perspective on the

functional significance of SUMOylation, as the deletion of Ubc9
FIGURE 5

The role of SUMOylation in enhancing skeletal muscle plasticity and improving insulin resistance during exercise. Exercise promotes the mobilization
of fat to produce free fatty acids that provide energy to skeletal muscles. Meanwhile, free fatty acids and leptin increase the expression of SENP2 in
skeletal muscle. Reducing PPARd and PPARg SUMOylation enhances fatty acid oxidation, thereby increasing energy expenditure to promote weight
loss and improve insulin sensitivity.
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eliminates all SUMO modifications. For instance, research using

Ubc9 KO mice has revealed that the loss of Ubc9 leads to a marked

increase in oxidative stress in pancreatic beta cells due to impaired

NRF2 activity, which is crucial for ROS detoxification (117).

Additionally, Ubc9 deletion in macrophages has been shown to

disrupt the M2 macrophage activation program (144), exacerbating

type 1 diabetes progression through enhanced T cell activation

(145). This approach allows us to discern the collective impact of

SUMOylation on various cellular processes without the

compensatory effects seen with individual SUMO proteins. By the

way, Ubc9 is found in both the nucleus and cytoplasm, including

the endoplasmic reticulum and mitochondria, but its potential role

in regulating metabolic function independently of SUMOylation

remains unclear. Further research is needed to fully explore the

additional features of this protein.

The study of SUMOylation has lagged behind the discovery of

other post-translational modifications, such as phosphorylation and

ubiquitination. However, approaches for the enrichment of

endogenous wild-type SUMO-modified peptides and the

identification of SUMOylation sites remain limited. Continuous

advancements in analytical methods are essential for enriching our

understanding of the spatiotemporal characteristics of

SUMOylation and pinpointing specific SUMOylated sites. For

instance, Francis Impens et al. generated SUMO1 T95R and

SUMO2 T91R variants, which enabled the identification of

SUMO-modified peptides via classical LC-MS/MS following

trypsin digestion (146). Cai et al. utilized a high-affinity SUMO1

antibody to facilitate the enrichment of SUMO1-modified peptides,

leading to the identification of 53 high-confidence SUMO1-
Frontiers in Endocrinology 08
modified sites in mouse testis (147). Additionally, peptide-level

immunoprecipitation has proven effective, allowing for the

identification of 14,869 endogenous SUMO2/3 sites in human

cells under stress conditions, while quantitatively mapping 1963

SUMO sites across various mouse tissues (17). Moreover, WaLP

digestion has produced peptides with KGG remnants at the SUMO

modification sites, facilitating the identification of 1209 unique

SUMO modification sites under native conditions (148). The K0

strategy, which involved His10-tagged SUMO with all lysines

substituted by arginines, has further enhanced this field by

preventing digestion by the endoproteinase Lys-C and allowing

for stringent purification and improved identification of

SUMOylation sites (149). In their study, Michael et al. employed

an augmented K0-SUMO proteomics technique to identify an

impressive 40,765 SUMO acceptor sites and assess their impact

on 6,747 human proteins. In their study, Michael et al. employed an

augmented K0-SUMO proteomics technique to identify 40,765

SUMO acceptor sites and assess their impact on 6,747 human

proteins (53). They uncovered 807 SUMOylated peptides co-

modified by phosphorylation and detected co-modifications with

ubiquitylation, acetylation, and methylation. Particularly

noteworthy was the finding that 9% of the SUMOylome was in

proximity to phosphorylation, with certain SUMOylation sites

reliant on prior phosphorylation events (53). Collectively, these

methodologies not only provide deeper insights into SUMOylation

but also pave the way for a more comprehensive understanding of

the dynamic interplay between various post-translational

modifications, ultimately enriching our knowledge of protein

function and regulation. For example, phosphorylation of
FIGURE 6

The balance between SUMOylation and deSUMOylation maintains energy metabolism homeostasis. SUMOylation impacts neural proteins, including
neurotransmitter receptors and appetite-controlling neurons, modulating their activity and influencing appetite regulation, hunger, and eating
behavior. Additionally, SUMOylation affects hormone secretion and gastrointestinal motility, regulating food absorption and satiety. SUMOylation also
plays a key role in insulin secretion and metabolic tissues (liver, adipose, and muscle), facilitating communication through secreted factors to
maintain overall energy balance. In summary, SUMOylation regulates neural, appetite, gastrointestinal, and metabolic interactions, ensuring energy
balance across various tissues and metabolic states.
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SREBP1c by PKA enhances its SUMOylation, which in turn

promotes ubiquitin-mediated degradation of SREBP1c (30). Post-

translational modifications, including phosphorylation and

SUMOylation, intricately regulate Drp1’s activity and mitochondrial

localization, governing mitochondrial fission dynamics (150). The

S616A mutant, which represents the non-phosphorylated state of

Drp1, showed increased SUMOylation compared to the wild type,

while the S616D mutant, representing the constitutively

phosphorylated state, exhibited decreased SUMOylation (151).

Additionally, the non-SUMOylated Drp1-4KR mutant increased

Ser616 phosphorylation, and inhibiting SUMOylation also enhanced

this phosphorylation, suggesting a complex regulatory mechanism

between Drp1 phosphorylation and SUMOylation SUMO1

conjugation stabilizes Drp1’s association with mitochondria,

promoting mitochondrial fragmentation and apoptosis (152).

Interestingly, metabolites not only function as energy carriers but

also serve as signalingmolecules crucial in the onset andprogressionof

metabolicdisorders.Thepost-translationalmodificationofproteinsby

metabolites, encompassing acetylation, palmitoylation, succinylation,

and lactylation, involves intricate interactions within multiple

metabolic pathways. Such investigations are poised to further

elucidate the interconversion between various post-translational

modifications, expanding the chemical space and functional

repertoire of proteins through PTMs on diverse amino acid residues.

Current therapeutic strategies targeting the SUMOylation

pathway, including E1 inhibitor TAK-981 (52), E2 inhibitor 2-

D08 (153), and SENP1 inhibitor (154), modulate overall

SUMOylation levels but may cause side effects. Regarding the

safety and potential side effects of targeted SUMOylation

interventions, most research has primarily focused on cancer and

other diseases, with limited application in metabolic syndrome. In

our unpublished study, we developed competitive peptides targeting

SUMOylation-modified sites, using cell-penetrating peptides to

inhibit abnormal SUMOylation without affecting normal protein

function or overall SUMOylation, thus minimizing side effects. To

further mitigate these side effects, future studies must deepen our

understanding of the specific in vivo functions of SUMOylation,

particularly in metabolic diseases. Unlike GLP-1 receptor agonists,

which have well-established clinical safety data for treating

metabolic syndrome, SUMOylation interventions lack extensive

validation. Developing selective SUMOylation inhibitors with

safety profiles similar to GLP-1 agonists could enhance their

clinical value. Current trials of TAK-981 and other SUMO

inhibitors in cancer provide a reference for future use in

metabolic disorders. Advances in catalytic site and protein

structure design techniques also offer promise for developing

selective inhibitors, highlighting the need for further clarification

of SUMOylation’s regulatory mechanisms.
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