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Throughout our evolutionary history, physical activity has played a significant role

in shaping our physiology. Advances in exercise science have further reinforced

this concept by highlighting how exercise can change gene expression and

molecular signaling to achieve various beneficial outcomes. Several studies have

shown that exercise can alter neuronal functions to prevent neurodegenerative

conditions like Parkinson’s and Alzheimer’s diseases. However, individual

genotypes, phenotypes, and varying exercise protocols hinder the prescription

of exercise as standard therapy. Moreover, exercise-induced molecular signaling

targets can be double-edged swords, making it difficult to use exercise as the

primary candidate for beneficial effects. For example, activating PGC-1 alpha and

BDNF through exercise could produce several benefits in maintaining brain

health, such as plasticity, neuronal survival, memory formation, cognition, and

synaptic transmission. However, higher expression of BDNFmight play a negative

role in bipolar disorder. Therefore, further understanding of a specific

mechanistic approach is required. This review focuses on how exercise-

induced activation of these molecules could support brain health and

discusses the potential underlying mechanisms of the effect of exercise-

induced PGC-1 alpha and BDNF on brain health.
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Introduction

While advancement in the sciences increases the longevity of people, it has also

challenged discoveries in the medical field witnessed by several non-communicable diseases

such as diabetes, hypertension, obesity, neurodegeneration, and cancer. Indeed, all these

non-communicable diseases contribute to mortality rates of up to 80 percent in certain

developing countries and are considered to be the number one killer around the world

(1, 2). However, all these diseases are somehow attributed to less or without any physical

activity, which fails to adapt or sustain the body to fight against these diseases. The
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physically inactive people ratio has been increasing globally,

according to the World Health Organization (WHO), showing

physical inactivity can be the current or future pandemic and can

make this issue the most important public health priority (3). It is

well established that a proper diet with moderate physical activity

can reverse most of these non-communicable diseases, representing

exercise as a promising health strategy for decreasing these diseases.

It has been recommended that children and adults perform at least

150-300 minutes of moderate exercise or 75-150 minutes of

vigorous exercise in a week to reverse these health effects (4).

Nevertheless, it is also recommended that adults perform strength

exercises with a moderate intensity 2 to 3 times a week (4). After all,

these forms of exercise could contribute to activating certain

molecular signaling that ultimately produces longevity benefits

and prevents these non-communicable diseases. This review

narrows the way of discussing general molecular pathways and

molecules involved in these pathways into more specific molecular

targets, such as brain-derived neurotrophic factor (BDNF) and

peroxisome proliferator-activated receptor gamma coactivator 1-

alpha (PGC-1 alpha), in maintaining brain health.

Research has shown that moderate exercise has multiple

benefits for maintaining brain health, especially for improving

neuronal plasticity, cell survival, and cognitive functions (5).

However, the effects of exercise reported by these studies are

minimal, and better understandable mechanisms are required to

bridge the gaps in our knowledge so far and pave the way to

designing exercise regimens for brain health. For example, studies

reported so far for improving brain health and cognition are based

on pre-and post-exercise, which do not take BDNF and PGC-alpha

as the primary targets. Therefore, presenting how pre- and post-

exercise can potentially modulate the BDNF and PGC-alpha to

improve brain health could reveal BDNF and PGC-alpha as

therapeutical targets for improving brain health.

As mentioned, exercise is one of the major nontherapeutic

methods in maintaining brain health. For example, endurance

training (treadmill running) improves neurogenesis in the

hippocampal area (6), while resistance training can increase the

proliferation of neural cells and neurogenesis (7). We systematically

analyzed the available results in different databases, including

PubMed, Web of Science, and Google Scholar, focusing on articles

published in the last two decades related to physical activity, physical

exercise, brain health, BDNF, and PGC-1 alpha. The search strategy

involved a combination of keywords and abstracts (MeSH terms)

related to physical activity, physical exercise, BDNF, and PGC-1

alpha. These keywords were used with the boolean operators (AND

and OR) to identify articles that directly addressed the link between

physical exercise and BDNF and PGC-1 alpha in brain health.
Pleiotropic effects of BDNF

The novel neurotrophic factor called BDNF was identified in

1982 to support the survival and growth of chick embryo dorsal

ganglia (8). Since then, several studies have been reported on

different aspects of BDNF in the central nervous system,

including its role in neuronal development and synaptic plasticity
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(9–11), indicating the role of BDNF as a key regulator in the

learning and memory (12). Although these studies show the

importance of BDNF in brain physiology and pathology, its

multifunctional role with various signaling pathways in the larger

aspects still fails to formulate specific hypotheses or directions for

future research, which is a daunting challenge in this field (13).

Therefore, additional studies that specifically stimulate the

activation of BDNF or its upstream targets, which can activate

BDNF, could take BDNF research to the next level.

BDNF is a single molecule that could transiently activate multiple

signaling based on its expression, concentration, and release site.

Physical exercise can also activate this molecule or its upstream

targets to activate BDNF exclusively (13, 14). For instance, exercise-

induced activation of PGC-1 alpha, a mitochondrial biogenesis

protein (15, 16), could mediate this BDNF activation. This can

contribute to neuronal health by reducing ROS concentration and

oxidative stress and increasing neuronal survival. Nevertheless, it is

unclear whether PGC-1 alpha-induced biogenesis is the major reason

for all these BDNF-induced benefits in the brain. Evidence suggests

that PGC-1 alpha promotor activation can increase BDNF levels in

the hippocampal region (17, 18). This may be due to the activation of

extracellular signal-regulated kinases (ERKs) and cAMP response

element-binding protein (CREB), which mediate the activation of

PGC-1 alpha by BDNF (18–20), while BDNF-activated PGC-1 alpha,

nuclear respiratory factor 1/2 (NRF1/2), and mitochondrial

transcription factor TFAM can increase mitochondrial biogenesis

and synapse formation in the hippocampal neurons (18). However,

there is currently no comprehensive review of how exercise-induced

PGC-1 alpha regulates the beneficial effects of BDNF in the central

nervous system.
Exercise role on BDNF downstream
signaling for brain health

Both pro and matured BDNF proteins are expressed at higher

levels in the hippocampal and cortex regions of the brain. Exercise

could influence the transport of BDNF within the axon terminal and

dendritic compartments. However, whether exercise can initially

activate pro or matured BDNF for signaling activities is unknown.

For instance, an exercise-induced (both aerobic and resistance with

high-intensity) increase in lactate can directly activate the matured

BDNF in the brain, either directly or through enzymatical cleavages of

pro-BDNF (21–23). This could further activate the BDNF-induced

signaling. For example, treadmill exercise once a week for two weeks

can increase the BDNF-mediated N-methyl-D-aspartate (NMDA)

receptor expression to improve neuronal plasticity and synaptic

signaling through its ionotropic properties (24–26). Further, running

exercise increases the activation of glutamate receptors to improve

mental health (27). Furthermore, voluntary wheel-running exercise-

induced activation of tyrosine receptor kinase B (TrkB) by BDNF

enhanced dopamine release, possibly triggering the many downstream

pathways for improving neuronal functions and survival (28). For

example, TrkB activation can lead to activate the Src homolog domain

2 (SH2) and phosphorylation of the Phospholipase C-g (PLC-g),
phosphatidylinositol 3 kinase/mechanistic target of rapamycin (PI3K/
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mTOR) activation, and mitogen-activated protein kinase/extracellular

signal-regulated kinase (MAPK/ERK) pathways (29–31) (Figure 1). All

of these signals are linked to the improvement of synaptic plasticity. For

example, 5 weeks of aerobic exercise programs decreased the

phosphorylation of PLC-g to normalize the BDNF upregulation and

glial hyperactivity in neuropathic pain (32). In addition, exercise-

induced activation of PLC-g pathway could activate the PI3k/Akt

and Ras/Erk1/2 signaling, which are responsible for survival and

regeneration (33). Also, exercise-induced activation of the PLC-g
pathway can support calcium release by activating calcium-

dependent protein kinases for regulating synaptic plasticity and

proliferation and differentiation. Swimming exercise can increase

the activation of TrkB receptor and BDNF (34), which could activate

the MAPK and PLC-g pathways to influence the presynaptic

neurotransmitter release.
The interplay between BDNF and
PGC-1 alpha for maintaining brain
health-role of exercise

As mentioned, BDNF regulates cell proliferation, differentiation,

and survival in brain physiology and pathology. For example,
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activating protein synthesis signaling, such as the mammalian

target of rapamycin (mTOR), by BDNF could increase translation

and local protein synthesis within the axon body. Physical exercise

(treadmill exercise for 2 weeks for 20 mins a day for five days/week) is

the obvious activator of protein synthesis signaling, including AKT/

mTOR by BDNF-mediated autophagy, resulting in microglia

polarization after the peripheral nerve injury, evidenced by the

higher expression of autophagy markers such as LC3-II/LC3-I and

Beclin1 (35–37) (Figure 2). This may be due to the PGC-1 alpha-

mediated BDNF that could cause the microglial M1/M2 polarization

and autophagy flux to prevent neurotoxicity (38). However, this effect

depends on the dose-response relationship between exercise

protocols and BDNF concentration or PGC-1 alpha levels. For

instance, acute exercise for 15 minutes and 4 hours of rowing can

increase BDNF concentration, while long-term sprint exercise can

decrease BDNF levels (39). These findings suggest that exercise

protocols can significantly influence the concentration of BDNF,

especially for longer periods with higher intensity, which can

negatively influence BDNF levels (Figure 2). In addition to PGC-1

alpha, running exercise can activate other transcription factors like

cAMP response element-binding protein (CREB), increasing BDNF

expression and promoting hippocampal neuron survival (40). For

example, running exercise doubles the CREB level in the

hippocampus, and it can be kept increasing for at least a week (41).
FIGURE 1

Possible signaling pathways that interfere with BDNF and PGC-1 alpha during exercise: Exercise-induced lactate increases BDNF concentration
mediated by Sirt1, PGC-1 alpha, and FNDC5. Exercise-induced beta-hydroxybutyrate decreases HDAC2 and HDAC3 for epigenetic regulation,
favoring BDNF levels. CREB activation activates PGC-1 alpha to increase BDNF concentration. Exercise-induced phosphorylation of PLC-g increases
BDNF-induced glutamate release and Ca2+ flux. Exercise-induced phosphorylation of PLC-g activates CREB through PI3/AKT, Ras/Raf, MEK/MAPK/
ERK1/2. CREB can activate PGC-1 alpha to increase BDNF.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1433750
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bi et al. 10.3389/fendo.2024.1433750
Other exercise-induced signaling, such as insulin-like growth factor-1

and nitric oxide/cGMP, can crosstalk for increasing CREB

expression, resulting in higher levels of BDNF in the neurons (42).

Further, maintaining synaptic plasticity requires local protein

synthesis; exercise-induced BDNF could compensate for the local

protein synthesis by activating mTOR signaling (43–46). A study has

reported that BDNF can regulate the transport of mRNAs and their

translations in the synapses by altering the initiation and elongation

phase of protein synthesis (47). This can help in the long-term

alteration of the synaptic proteome (47). In addition, mTOR is

involved in neuronal development, synaptic plasticity, and

cognition (48), and any deregulation in the mTOR signaling can be

involved in brain pathologies such as Parkinson’s disease and

Alzheimer’s disease. Studies have shown that exercise with different

protocols (treadmill running) regulates the mTOR signaling (35, 44),

which could contribute to more specific functions in the brain,

including axonal sprouting and regeneration and myelination and

dendritic spine growth (48). Moreover, mTOR regulates the

mitochondrial function in the neuronal cell through PGC-1 alpha

by reducing the accumulation of ROS in the neuronal cell. Running

exercises for 90 days could activate the PGC-1 alpha and other
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protein expressions, including fibronectin type III domain-containing

protein 5 (FNDC5) and mTOR, extracellular signal-regulated kinases

(ERK), and sirtuin 1 (SIRT1) in the hippocampal (49). The possible

mechanism for these protein expressions in the hippocampus may be

due to the expression of PGC 1 alpha, which might regulate FNDC5/

BDNF (50) (Table 1).

Other signaling proteins, such as SIRT1, can also regulate the PGC-

1 alpha by exercise. For example, swimming could reduce

neuroinflammation through SIRT1-mediated pathways, including

PGC-1 alpha, and improve cognitive functions (56). Furthermore,

NMDAR plays a crucial role in neuronal communication, and

treadmill running exercise regulates the NMDAR by BDNF

expression for regulating dendritic regeneration, which can

contribute to decrease the neurologic and psychiatric disorders (25).

In addition, other studies have shown that exercise-induced activation

of NMDAR could induce motor neuron protection and learning

capacity (57, 58). Exercise plays a significant role in activating

Dexras1, essential for promoting hippocampal neurogenesis and

improving cell survival. Inhibition of Dexras1, on the other hand,

can interfere with the exercise-dependent activation of ERK/MAPK

and CREB, abolish NMDAR upregulation, and inhibit BDNF in the
FIGURE 2

Regular physical exercise can increase BDNF levels, which can activate PGC-1 alpha and FNDC5. This can lead to the activation of the mTOR
signaling pathway, resulting in an increase in local protein synthesis in the axon body. Additionally, BDNF can induce autophagy, which causes
microglial polarization. This helps to remove damaged neurons. However, it is important to note that high-intensity exercise with longer duration
can decrease BDNF concentration, as indicated in the graphical representation. On the other hand, acute exercise with high intensity can increase
the BDNF level, as shown by the green mark.
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dentate gyrus (59). Therefore, the activation of Dexras1 through

exercise is crucial for maintaining healthy brain function. In

addition, other PGC- 1 alpha stimulating factors, such as nitric oxide

and estrogen, could be positively regulated by exercise (60–63), and this

could be helpful to increase the mitochondrial biogenesis through

PGC- 1 alpha for restoring synaptic functions in neurodegenerative

diseases such as Parkinson`s and Alzheimer’s diseases (18).

Nevertheless, further research is required to determine whether these

factors can upregulate the BDNF through PGC-1 alpha.

Effect of environmental enrichment
and physical exercise on
BDNF response

An enriched environment naturally influences brain morphology,

molecular signaling, and behavior (64, 65). This effect has primarily
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been observed in laboratory settings (66). However, an excessively

enriched environment can also negatively impact brain functions due

to the stress it imposes on the organism, resulting in reduced

sensorimotor stimulation (67). A recent study has demonstrated that

a combination of physical exercise and an enriched environment yields

superior effects on the brain by activating molecules such as BDNF/

TrkB (68). For example, combining an enriched environment and

swimming exercise improved the BDNF/TrkB response more than

either the enriched environment or swimming alone, suggesting the

effectiveness of the combined approach (69). A study has shown that

treadmill running for 40 mins for 6 days at a moderate intensity in an

enriched environment improved learning and memory through

elevating BDNF/TrkB (70). This is mainly due to rearranging novel

objects to induce a fresh, enriched environment (70). At the molecular

level, PGC-1 alpha could be the main trigger for BDNF response under

an enriched environment and exercise. A study has shown that an

enriched environment increased cognitive impairment in the aged
TABLE 1 Exercise protocols that interferes the BDNF and PGC-1 alpha-induced signaling pathways in brain health.

Exercise types Duration and protocols Pathways that interfere
BDNF and PGC-1 alpha

Significance References

Acute aerobic exercise Two 30-min exercise bouts
(cycle ergometer)

Lactate induced activation of BDNF is
mediated by SIRT1, PGC-1 alpha

and FNDC5.

Neurological and cognitive
improvements and learning memory.

(51)

Motorized treadmill for
30 min once a day for

2 weeks

Exercise is running at a speed of 2
meters/min for the first 5 min, 5

meters/min for the next 5 min, and 8
meters/min for the last 50 min

Treadmill exercise induced NMDA
receptor decrease the
neuronal apoptosis

Improve neuronal plasticity and
synaptic signaling through its

ionotropic properties and inhibit the
neuronal apoptosis.

(52)

voluntary wheel-
running exercise

30 days TrKB and BDNF increase could
enhance the dopamine release

in striatum

Exercise induced BDNF could
enhance the dopamine release in

neuropsychiatric disorders, including
Parkinson's, depression, and anxiety.

(28)

Swimming exercise Once a day for 5 days for 5 weeks
(Animal study)

Exercise induced phosphorylation of
PLC-g increase the BDNF induced

glutamate release.
BDNF and other cellular signaling
such as nitric oxide and kinase
pathways such as PKA, ERK and

PLCg-1 can increase the
CREB phosphorylation.

PLC-g phosphorylation can improve
the recovery of mechanical allodynia

after nerve lesion.
Converging BDNF mediated signaling
can improve in neuropathic pain.

(32)

Swimming exercise
(Animal studies)

Swimming exercise was consist of 15
min/day, 5 days/week, to begin their
exercise training for first two weeks.
Next duration was extendend upto 20

min from 3rd week and 30 mins
during the 4th to 12th weeks.

This exercise protocol could activate
BDNF/TrkB survival signaling such as
MEK/MAPK/ERK, PI3K/AKT, and

Bcl2-family survival pathways.

Activation of BDNF induced survival
pathways decrease the

neural apoptosis.

(53)

treadmill exercise Treadmill exercise training was
performed at 12 m/min, 60 min/day, 5

days/week for 3 months.

Treadmill exercise could increase
BDNF, PI3-k/Akt pathway and HSP70

for improving Ab-induced
cognitive dysfunction

Improve the cognitive dysfunction and
neuronal survival.

(54)

running wheel exercise Voluntary exercise for 4 weeks Exercise induced increase of b-
hydroxybutyrate decreases the

HDAC2 and HDAC3 to increase
the BDNF

Changes in the epigenetic landscape to
promote BDNF expression and

exercise induced b-hydroxybutyrate
increase the neurotransmitter release

via TrkB receptor.

(55)

Running exercise 30 days of free- running
wheel exercise

Running exercise activate the PGC-1
alpha mediated BDNF

through FNDC5

Reducing the accumulation of ROS
and oxidative damage in the neuronal

cell and improve the
mitochondrial function.

(49)
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offspring by reducing neuroinflammation and oxidative stress through

elevating Sirt1/PGC-1 alpha and FNDC5, which can overlap the BDNF

signaling for its elevation. These BDNF-induced cognitive

improvements are due to neural plasticity, including BDNF-induced

neurogenesis and BDNF-caused structural modification and molecular

changes. For example, elevation of BDNF response due to an enriched

environment increases the neurogenesis through pCREB, stromal-cell

derived factor-1, and C-X-C chemokine receptor type 4 and improves

cognition (70). In addition, enriched environment influences the

epigenetic landscape by affecting the BDNF gene methylation. For

example, enriched environment reduced the exon IV expression by

reversing histone methylation, which is linked with the

pathophysiology of depression (71). Physical exercise has also been

linked with the alteration of the epigenetic landscape, and studies have

shown that exercise decreases BDNF methylation and increases BDNF

mRNA, which increases learning and memory (72). However, it is

important to recognize that these effects should be further studied in an

enriched environment and under physical exercise conditions.
Conclusion and future directions

Physical exercise has several benefits for promoting a healthy

body and mind at any age. This can claim that exercise is one of the

nonpharmacological therapies that delays the negative effects of

physiological aging and pathological neurodegeneration on brain

health. The exercise protocols used to achieve these benefits in

rodents and humans have varied in terms of types, intensity,

duration, and individual phenotypes and genotypes. While

exercise is known to maintain physical and mental health, it is

unclear whether it should be seen as an enjoyable activity or as a

drug or therapy to influence brain health. Further studies are

needed to determine how different exercise protocols, whether

performed before, during, or after exercise, can affect molecular

signaling in the brain. Specifically, researchers need to investigate

how individual molecules or proteins activated by exercise can

influence downstream molecules in molecular signaling and

contribute to brain health. For example, a single molecule

activated by exercise can synergistically impact the entire brain

(57), such as BDNF, which can activate various downstream targets

to improve plasticity, proliferation, differentiation, and cell survival

while helping release multiple neurotransmitters (55, 57). Other

pharmacological approaches, such as gene therapy, can also

increase BDNF. However, the vector toxicity used in this method

can cause protein instability and tumor formation in the local

neuron, mainly; protein instability can increase BDNF expression

overly and may produce deleterious effects on neuronal circuits,

learning, and memory (73). To circumvent this issue, engineered

cell grafts can be used to increase BDNF expression, which can

improve motor performance and decrease striatal neuron damage

(74). Nevertheless, graft rejection may be a risk factor in this

approach. Other small molecules, such as drugs (ampakines,

memantine, and riluzole), significantly enhance the expression

and release of BDNF to treat Alzheimer’s and Parkinson’s

diseases (75, 76). In addition, approaches like intermittent fasting,

enriched environment, and physical exercise can also increase the
Frontiers in Endocrinology 06
BDNF response (76). Exercise-induced activation of PGC-1 alpha

can regulate BDNF expression to bring about the benefits of both

BDNF and PGC-1 alpha, such as increasing mitochondrial

biogenesis and decreasing ROS formation and oxidative damage.

However, it still needs to be determined whether exercise activates

these molecules simultaneously or activation of one molecule leads

to the activation of others, and further investigation is necessary in

this regard.

Certain groups cannot perform physical exercise for various

reasons, such as aging, undergoing a rehabilitation program, or

having motor function impairment. Recently, virtual reality-based

exercise programs have been developed to support these individuals.

Further research is needed to investigate how molecular changes

occur during virtual exercise programs. If these types of exercise

programs prove to be effective, they could be particularly useful for

people who are unable to perform real-time exercise programs.

Designing exercise programs tailored to each individual’s needs

could potentially overcome people’s genetic and epigenetic

differences. This could be particularly helpful in understanding the

benefits of exercise on the nervous system, considering that each

individual’s learning system is unique and may cause frequent

changes in the genetics and epigenetics of the brain. In particular,

studying the expression of exercise-induced genes such as PGC-1

alpha and BDNF during or after exercise could provide insights into

the specific benefits of these molecular targets for brain health.
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