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Evaluating the impact of
type 2 diabetes mellitus on
pulmonary vascular function
and the development
of pulmonary fibrosis
Nhlakanipho Mzimela*, Nosipho Dimba, Aubrey Sosibo
and Andile Khathi

Department of Human Physiology, Faculty of Health Sciences, University of KwaZulu-Natal,
Durban, South Africa
The increasing prevalence of type 2 diabetes mellitus (T2DM) is a significant

worldwide health concern caused by sedentary lifestyles and unhealthy diets.

Beyond glycemic control, T2DM impacts multiple organ systems, leading to

various complications. While traditionally associated with cardiovascular and

microvascular complications, emerging evidence indicates significant effects

on pulmonary health. Pulmonary vascular dysfunction and fibrosis,

characterized by alterations in vascular tone and excessive extracellular matrix

deposition, are increasingly recognized in individuals with T2DM. The onset of

T2DM is often preceded by prediabetes, an intermediate hyperglycemic state

that is associated with increased diabetes and cardiovascular disease risk. This

review explores the relationship between T2DM, pulmonary vascular dysfunction

and pulmonary fibrosis, with a focus on potential links with prediabetes.

Pulmonary vascular function, including the roles of nitric oxide (NO),

prostacyclin (PGI2), endothelin-1 (ET-1), thromboxane A2 (TxA2) and

thrombospondin-1 (THBS1), is discussed in the context of T2DM and

prediabetes. Mechanisms linking T2DM to pulmonary fibrosis, such as oxidative

stress, dysregulated fibrotic signaling, and chronic inflammation, are explained.

The impact of prediabetes on pulmonary health, including endothelial

dysfunction, oxidative stress, and dysregulated vasoactive mediators, is

highlighted. Early detection and intervention during the prediabetic stage may

reduce respiratory complications associated with T2DM, emphasizing the

importance of management strategies targeting blood glucose regulation and

vascular health. More research that looks into the mechanisms underlying

pulmonary complications in T2DM and prediabetes is needed.
KEYWORDS

type 2 diabetes mellitus (T2DM), prediabetes, pulmonary vascular function, pulmonary
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1 Introduction

Type 2 diabetes mellitus (T2DM) remains a substantial global

health concern, with its prevalence escalating together with modern

lifestyles characterized by sedentary habits and poor dietary choices

(1). T2DM has long been known to have systemic effects that go

beyond glycemic control, affecting several organ systems and

subjecting patients to a wide variety of complications (2). T2DM

is characterized by chronic hyperglycemia resulting from insulin

resistance (1, 2). With its prevalence steadily rising worldwide,

T2DM not only poses considerable burden on the healthcare system

but also brings substantial morbidity and mortality risks to affected

individuals (2). Unlike type 1 diabetes, which typically manifests in

childhood or adolescence and involves autoimmune destruction of

pancreatic beta cells, T2DM predominantly affects adults, and it is

strongly associated with lifestyle factors such as obesity, physical

inactivity, and an unhealthy diet (1, 3).

The pathogenesis of T2DM involves a complex interaction of

genetic, environmental, and metabolic factors (4). Insulin

resistance, a hallmark feature of T2DM, arises from impaired

insulin signaling in peripheral tissues such as skeletal muscle,

liver, and adipose tissue (5). In T2DM, the skeletal muscle, liver,

and adipose tissue cells cannot respond to insulin as they should (5,

6). This can be due to insulin receptor resistance that develops over

time, mainly from an inactive lifestyle and diet high in

carbohydrates (5). This means blood glucose uptake by cells

cannot occur due to impaired signaling resulting from the

ineffective binding of insulin to its receptors (6). The impaired

insulin signaling leads to a diminished uptake of blood glucose,

resulting in chronic hyperglycemia and the clinical manifestation of

diabetes (6). Beyond its well-established associations with

cardiovascular disease, nephropathy, and neuropathy, growing

evidence suggests that T2DM may also exert profound effects on

pulmonary health and function (7, 8). Emerging research indicates a

potential link between T2DM and pulmonary vascular dysfunction,

characterized by alterations in pulmonary vascular tone, endothelial

dysfunction, and increased risk of pulmonary hypertension (9, 10).
Abbreviations: T2DM, Type 2 Diabetes Mellitus; NO, Nitric Oxide; PGI2,

Prostacyclin; ET-1, Endothelin-1; TxA2, Thromboxane; TxAS, Thromboxane

Synthase; THBS1, Thrombospondin-1; mPAP, Pulmonary Artery Pressure; PVR,

Pulmonary Vascular Resistance; eNOS, Endothelial Nitric Oxide Synthase;

cGMP, Cyclic Guanosine Monophosphate; COX, Cyclooxygenase; RAGE,

Receptor for AGEs; NF-kB, Nuclear factor kappa B; cAMP, Cyclic Adenosine

Monophosphate; IPF, Idiopathic Pulmonary Fibrosis; MAPKs, Mitogen-

activated protein kinases; CTD-ILD, Connective Tissue Disease-associated

Interstitial Lung Disease; HRCT, High-Resolution Computed Tomography;

PFTs, Pulmonary Function Tests; FVC, Forced Vital Capacity; FEV1, Forced

Expiratory Volume in one second; DLCO, Diffusing Capacity of the Lungs for

Carbon monoxide; TGF-b, Transforming Growth Factor-beta; BAL,

Bronchoalveolar lavage; SP-D, Surfactant protein-D; KL-6, Krebs von den

Lungen-6; ROS, Reactive oxygen species; AGEs, Advanced glycation end

products; PKC, protein kinase C; IGT, Impaired glucose tolerance; OGTT,

Oral glucose tolerance test; IFG, Impaired fasting glucose; FPG, Fasting

plasma glucose.
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Moreover, T2DM has been implicated in the pathogenesis of

pulmonary fibrosis, a progressive lung disorder characterized by

aberrant wound healing, fibroblast activation, and excessive

extracellular matrix deposition in the pulmonary interstitium (10).

The onset of T2DM has been shown to be preceded by an

intermediate hyperglycemic condition known as prediabetes (11,

12). Prediabetes is an asymptomatic state where the blood glucose

concentration is greater than average but remains below the

diagnostic threshold of T2DM (11). Studies have reported that

T2DM-related disorders begin during prediabetes (11–13). The

review aims to discuss the relationship between T2DM,

pulmonary vascular dysfunction, and pulmonary fibrosis, with a

specific focus on exploring potential links with prediabetes.
2 Overview of pulmonary vasculature
and its function

Gaseous exchange in the lungs is made more accessible by the

unique circulatory system of the pulmonary vascular system (14,

15). Its physiology and anatomy have been precisely tuned to

maximize carbon dioxide and oxygen exchange while preserving

the proper flow of blood and pressure (14). The pulmonary arteries

receive deoxygenated blood from the heart’s right ventricle and

pump it to the lungs, where it is oxygenated (15). As the pulmonary

arteries get closer to the alveoli, they gradually divide into arterioles

and capillaries (16). Effective gas exchange between alveolar air and

blood is made possible by the thin walls of the pulmonary capillaries

and alveoli (15). Oxygen diffuses from the alveoli into the

capillaries, where it binds to hemoglobin in red blood cells, while

carbon dioxide diffuses in the opposite direction, from the blood

into the alveoli, to be exhaled (15, 17). Unlike the systemic

circulation, the pulmonary circulation operates at much lower

pressures (18). The mean pulmonary artery pressure (mPAP) is

typically around 12–16 mmHg at rest, compared to around 70–120

mmHg in the systemic circulation (16). Dysfunction in the

abovementioned processes can lead to pulmonary vascular

diseases such as pulmonary hypertension, impair gas exchange

and compromise respiratory function (18).

The pulmonary vascular system is under the control of various

physiological mechanisms that regulate blood flow and pressure (16).

Alveolar oxygen tension, carbon dioxide levels, and pulmonary

vascular resistance (PVR) influence pulmonary blood flow (18, 19).

PVR refers to the resistance to blood flow in the pulmonary circulation

(19). It is primarily determined by the degree of constriction or dilation

of the pulmonary arterioles and small arteries, which are regulated by

factors like oxygen tension, endothelial-derived vasodilators such as

nitric oxide (NO) and prostacyclin (PGI2), and vasoconstrictors such

as endothelin-1 (ET-1) and thromboxane A2 (TxA2) (20–22).

Thrombospondin-1 (THBS1), a matricellular protein, also plays a

crucial role by regulating vascular cell interactions and influencing

the extracellular matrix (23, 24). These mechanisms collectively

maintain relatively low pulmonary arterial pressure compared to

systemic arterial pressure, facilitating efficient oxygenation of blood

in the lungs without imposing undue stress on the pulmonary

vasculature (20, 21).
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2.1 The role of nitric oxide and prostacyclin
in the pulmonary vascular system

In endothelial cells, NO is produced by endothelial nitric oxide

synthase (eNOS) and is released in response to various stimuli,

including shear stress and vasoactive substances (25, 26). NO

diffuses into nearby smooth muscle cells in the pulmonary

vasculature, activating guanylate cyclase and producing cyclic

guanosine monophosphate (cGMP) (27). The cascade of events

results in the relaxation of vascular smooth muscle cells,

vasodilation, and, ultimately, a decrease in pulmonary vascular

resistance (27). NO also inhibits platelet activation and adhesion

to endothelial surfaces, thus ensuring that blood vessels remain

open and unobstructed (28, 29). Additionally, NO has anti-

inflammatory properties and modulates endothelial cell function,

contributing to the overall health and integrity of the pulmonary

vasculature (27, 30). NO and PGI2 play crucial roles in maintaining

normal pulmonary vascular function by promoting vasodilation

and inhibiting platelet aggregation, among other functions (30, 31).

PGI2 is synthesized by endothelial cyclooxygenase (COX) in the

endothelial cells and acts as a potent vasodilator and inhibitor of

platelet aggregation (32). Like NO, PGI2 signals through cyclic

adenosine monophosphate (cAMP) to induce relaxation of vascular

smooth muscle cells and vasodilation (33). PGI2 also antagonizes

the effects of vasoconstrictors such as ET-1 and TxA2, further

promoting vasodilation and maintaining vascular tone (21, 33).

Moreover, prostacyclin exerts anti-inflammatory and anti-

thrombotic effects, contributing to the overall homeostasis of the

pulmonary circulation.

NO and PGI2 act synergistically to regulate pulmonary vascular

tone, promote vasodilation, inhibit platelet aggregation, and maintain

vascular homeostasis (21). Dysregulation of NO and PGI2 pathways

can lead to endothelial dysfunction, vasoconstriction, and increased

vascular resistance, contributing to the pathogenesis of pulmonary

vascular diseases such as pulmonary hypertension (21, 33). Therefore,

preserving the production and signaling of nitric oxide and

prostacyclin is essential for preserving normal pulmonary vascular

function and preventing vascular pathology (34).
2.2 The role of endothelin-1 and
thromboxane A2 in the pulmonary
vascular system

ET-1 is a potent vasoconstrictor peptide produced primarily by

endothelial cells (35). In pulmonary circulation, ET-1 contributes to

regulating vascular tone by causing the vascular smooth muscle cells

in pulmonary arterioles to contract (36, 37). Under normal

conditions, ET-1 levels are tightly regulated to prevent excessive

vasoconstriction, ensure appropriate pulmonary blood flow, and

maintain sufficient arterial oxygenation (37). However,

dysregulation of ET-1 can result in pulmonary hypertension and

elevated pulmonary vascular resistance in several pathological

conditions (37, 38). In addition to its vasoconstrictive properties,

ET-1 also plays a role in triggering inflammatory responses and
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promoting the proliferation of endothelial cells, both of which can

affect the remodeling of the pulmonary vascular system and disease

progression (37). ET-1 and TxA2 are vasoactive substances that are

essential in regulating pulmonary vascular function, although they

primarily exert vasoconstrictive effects (38).

TxA2 is a lipid mediator primarily produced by platelets, and it

is obtained from the metabolism of arachidonic acid with the help

of COX and thromboxane synthase (TxAS) (39). TxA2 promotes

thrombosis and vascular smooth muscle contraction in the

pulmonary vasculature by acting as a strong vasoconstrictor and

platelet aggregator (39). Similar to ET-1, TxA2 has a role in

maintaining hemostasis and pulmonary vascular tone in normal

physiological conditions (39). On the other hand, unregulated TxA2

signaling, which is frequently linked to endothelial dysfunction and

inflammation, can cause excessive vasoconstriction, platelet

activation, and blood clotting incidents in the pulmonary

circulation (40, 41). In the pulmonary vascular system, ET-1 and

TxA2 both essentially have vasoconstrictive actions, although their

exact roles extend beyond simple vasoconstriction (40).

Understanding the interplay of these vasoactive mediators is

crucial for hopefully understanding the pathophysiology of

pulmonary vascular diseases and developing targeted therapeutic

interventions to restore normal pulmonary vascular function.

Increased ET-1 and TxA2 concentrations promote vascular

constriction, inflammation, and fibroblast activation, thereby

exacerbating fibrotic processes in the lung (38, 41). Conversely,

NO and PGI2 are vasodilators with anti-inflammatory and anti-

fibrotic effects, counteracting the actions of ET-1 and TxA2 (42).

NO and PGI2 inhibit fibroblast proliferation, collagen deposition,

and myofibroblast differentiation, reducing pulmonary fibrotic

remodeling (21, 33). Dysregulation of the balance between these

vasoactive mediators, characterized by decreased NO and PGI2 and

increased ET-1 and TxA2, contributes to the development and

progression of pulmonary fibrosis (43). See Figure 1 below.
2.3 The role of thrombospondin-1 in the
pulmonary vascular system

The THBS1 is a protein that plays a significant role in regulating

pulmonary vascular function and remodeling (23). THBS1 is

produced by different cell types, including endothelial cells,

smooth muscle cells, and fibroblasts, and is involved in cell-

matrix interactions, angiogenesis, and tissue remodeling (23, 24).

In the pulmonary vasculature, THBS1 regulates endothelial cell

function, vascular smooth muscle cell proliferation, and

extracellular matrix deposition (24, 44). THBS1 can inhibit NO

signaling by binding to and activating CD36 and CD47 receptors on

endothelial cells, leading to a decrease NO bioavailability and

increased vascular resistance (24, 44). Additionally, THBS1 can

promote the activation of latent transforming growth factor-beta

(TGF-b), a key mediator of fibrosis and extracellular matrix

deposition (44). Elevated THBS1 levels have been associated with

pulmonary hypertension, fibrosis, and other vascular diseases,

highlighting its role in pulmonary vascular dysfunction (24).
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3 Overview of pulmonary fibrosis

Pulmonary fibrosis is a group of interstitial lung diseases

characterized by progressive scarring (fibrosis) of the lung tissue

(43). The scarring thickens and stiffens the lung walls, which

hinders the circulatory system’s capacity to receive oxygen (43).

There are several kinds of pulmonary fibrosis, the most common

and prevalent among them being idiopathic pulmonary fibrosis

(IPF) (45).

Additional subgroups include drug-induced interstitial lung

disease, hypersensitivity pneumonitis, and connective tissue

disease-associated interstitial lung disease (CTD-ILD) (46).

Several variables, including exposure to pollutants, drug toxicity,

autoimmune disorders, infections, and genetic predispositions, can

cause pulmonary fibrosis (47). Older age, male gender, smoking,

specific employment, and a family history of interstitial lung disease

are risk factors for developing pulmonary fibrosis (48). While the

exact cause of idiopathic pulmonary fibrosis remains unknown, a

combination of genetic susceptibility and environmental triggers is

thought to contribute to its development (48, 49).

Complex interactions between immune cells, fibroblasts,

extracellular matrix, and epithelial cells are part of the

pathophysiology of pulmonary fibrosis (47). Chronic damage to

the alveolar epithelium results in abnormal wound healing

responses marked by excessive collagen deposition, dysregulated

inflammation, and fibroblast activation (49). These reactions are

frequently brought on by recurring microinjuries or environmental

exposures (49). This impairs gas exchange and lung function by

causing fibrotic foci to develop and gradual scarring inside the lung

parenchyma (49). The lungs’ fibrotic remodeling is sustained by
Frontiers in Endocrinology 04
defective repair mechanisms, poor apoptotic cell clearance, and

abnormal activation of profibrotic signaling pathways including

Wnt/b-catenin and TGF-b (50). Additionally, THBS1 plays a

significant role in the pathogenesis of pulmonary fibrosis (23).

THBS1, a matricellular protein, is involved in the regulation of

cellular interactions and the extracellular matrix and it mediates

TGF-b activation, contributing to fibrotic remodeling and

progression of the disease (51).

Pulmonary fibrosis diagnosis is a complex process that includes

imaging assessments, pulmonary function testing, clinical

assessment, and invasive procedures for final diagnosis and

monitoring of the disorder’s progression (49). High-resolution

computed tomography (HRCT) imaging, which enables the

identification of distinctive radiological characteristics such as

reticular opacities, honeycombing, and traction bronchiectasis

inside the lung parenchyma, is one of the critical criteria tested to

diagnose pulmonary fibrosis (10, 49). The assessment of lung

function and the severity of fibrotic lung disease is primarily

dependent on pulmonary function tests (PFTs), which measure

parameters including forced vital capacity (FVC), forced expiratory

volume in one second (FEV1), and diffusing capacity of the lungs

for carbon monoxide (DLCO) (49).

Restrictive lung physiology is frequently observed in pulmonary

fibrosis, and it is indicated by reduced FVC and DLCO as well as a

maintained or increased FEV1/FVC ratio (52). Furthermore, arterial

blood gas measurement aids in determining the degree of reduced

oxygen levels, respiratory failure, and gas exchange efficiency (53). In

some cases, the bronchoalveolar lavage (BAL) or surgical lung biopsy

may gather tissue samples for histological examination, which is still

the gold standard for diagnosing pulmonary fibrosis and
FIGURE 1

Illustration depicting the roles of Nitric Oxide (NO) and Prostacyclin (PGI2) in promoting vasodilation and inhibiting platelet aggregation, contrasting
with the vasoconstrictive and prothrombotic effects of Endothelin-1 (ET-1) and Thromboxane A2 (TxA2) in the pulmonary vascular system.
Dysregulation of these signaling pathways can contribute to pulmonary vascular diseases such as pulmonary hypertension and fibrosis.
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differentiating it from other interstitial lung diseases (54). Surfactant

protein-D (SP-D) and Krebs von den Lungen-6 (KL-6) serum levels

are examples of biomarkers that may offer further insights into the

prognosis and progression of the disease (55). Proper diagnosis

generally depends on a thorough assessment of clinical,

radiological, functional, and histological criteria.
3.1 Exploring the interplay between T2DM
and pulmonary vascular function

T2DM is a chronic metabolic disorder characterized by insulin

resistance and impaired glucose metabolism that can cause systemic

complications that impact several organs, including the lungs (2).

Findings suggest that T2DM may significantly impact the

pulmonary vasculature and systemic vasculature, which may aid

in developing pulmonary vascular dysfunction (34, 56).

Research on the epidemiology of diabetes mellitus has

demonstrated a strong association between T2DM and pulmonary

vascular disorders, including pulmonary arterial stiffness and

pulmonary hypertension (34). Pulmonary vascular dysfunction,

characterized by endothelial dysfunction, vascular remodeling, and

decreased pulmonary vascular reactivity, is more common in people

with T2DM (56). One of the main characteristics of T2DM is

endothelial dysfunction, defined by decreased NO bioavailability,

impaired vasodilation, and increased endothelial permeability (57).

Oxidative stress can reduce NO bioavailability by promoting the

formation of peroxynitrite, a reactive nitrogen species that inactivates

NO and damages endothelial cells (58). Additionally, oxidative stress

can enhance the expression and activity of ET-1, TxA2, and THBS1,

further contributing to vasoconstriction, endothelial dysfunction and

vascular remodeling (58, 59). These factors cause abnormal

pulmonary vascular tone and responsiveness (57).

Physiologically, endothelial dysfunction and vascular remodeling

in the pulmonary circulation are caused by hyperglycemia-induced

oxidative stress, inflammation, and dysregulated insulin signaling

pathways (34, 57). Reactive oxygen species (ROS), proinflammatory

cytokines, and advanced glycation end products (AGEs) increase

smooth muscle growth, fibrotic remodeling, and vascular oxidative

damage in the pulmonary vasculature, aggravating pulmonary

vascular dysfunction in people with T2DM (60, 61).

Furthermore, by encouraging vasoconstriction, platelet

activation, and vascular inflammation, metabolic dysregulation in

T2DM, which includes dyslipidemia, hyperinsulinemia, and insulin

resistance, increases pulmonary vascular dysfunction (62). The

buildup of lipids and cholesterol in the pulmonary arteries caused

by dyslipidemia impairs pulmonary vascular compliance and

function by causing atherosclerosis, arteriosclerosis, and

pulmonary vascular stiffness (62). Exercise intolerance, dyspnea,

and decreased exercise capacity are clinical manifestations of

pulmonary vascular dysfunction in people with T2DM, which

resembles symptoms of pulmonary arterial hypertension (PAH)

(63). Due to symptoms that might be confused with those of other

cardiopulmonary disorders, diagnosing pulmonary vascular

dysfunction in patients with T2DM is complicated (63). This
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highlights the importance of a thorough cardiovascular

examination and interdisciplinary therapeutic strategies.

3.1.1 Nitric oxide and prostacyclin in T2DM
In individuals with type T2DM, changes in the PGI2 and NO

signaling pathways are linked to endothelial dysfunction and

impaired pulmonary vascular function (64). Due to decreased

eNOS activity, impaired endothelial NO synthase coupling, and

hyperglycemia-induced elevated oxidative stress, there is a reduced

bioavailability of NO in T2DM (61). This contributes to pulmonary

vascular remodeling and hypertension in the pulmonary

vasculature by causing endothelial dysfunction, vasoconstriction,

and increased vascular smooth muscle growth (61).

In individuals with T2DM, dysregulation of prostacyclin

synthesis and signaling pathways occurs due to various

mechanisms, including impaired endothelial function, oxidative

stress, and inflammation (61). Reduced bioavailability of

prostacyclin, often accompanied by an imbalance with

vasoconstrictor mediators like TXA2, disrupts the delicate

equilibrium of vasodilation and vasoconstriction, leading to

endothelial dysfunction and vascular remodeling (65).

Additionally, hyperglycemia-induced activation of protein kinase

C (PKC) and increased production of ROS inhibit prostacyclin

synthesis and promote vascular oxidative damage, exacerbating

vascular dysfunction in T2DM (66).

3.1.2 Endothelin-1 and thromboxane A2 in T2DM
In individuals with T2DM, dysregulated endothelial function

and increased vascular tone are mediated by various molecular

pathways, among which ET-1 and TxA2 play pivotal roles (67). In

T2DM, oxidative damage and inflammation triggered by

hyperglycemia cause ET-1 to be excessively expressed (67).

Increased PVR and compromised pulmonary hemodynamics

result from endothelial dysfunction and vascular remodeling in

the pulmonary circulation, which are facilitated by elevated ET-1

levels (21). Similarly, TxA2 contributes to pulmonary vascular

dysfunction in T2DM by promoting platelet aggregation,

inflammation, and vasoconstriction (58). Disrupting vascular

homeostasis caused by dysregulation of the ET-1/ET receptor and

TxA2/prostaglandin pathways leads to pulmonary artery

construction and remodeling, significant indicators of pulmonary

vascular disorders in people with T2DM (58, 68).

3.1.3 Thrombospondin-1 in T2DM
Chronic high blood glucose concentration in T2DM result in

the production of AGEs, stimulating THBS1 expression via the

receptor for AGEs (RAGE) and downstream pathways (69, 70).

Insulin resistance in T2DM disrupts metabolic signaling, impairing

the regulatory effects of insulin on THBS1 and promoting

inflammation, further increasing THBS1 concentration (62). The

chronic low-grade inflammation in T2DM involves elevated TNF-a
and IL-6, inducing THBS1 expression through activation of nuclear

factor kappa B (NF-kB) (69, 71). Oxidative stress activates pathways
like mitogen-activated protein kinases (MAPKs), driving THBS1

transcription (71). Endothelial cells exposed to hyperglycemia and
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oxidative stress produce more THBS1, inducing vascular damage

(72). This multifactorial increase in THBS1 plays a crucial role in

T2DM vascular complications, including endothelial dysfunction,

vascular remodeling, and increased risk of thrombosis (73).

THBS1 interacts with receptors like CD36, integrins, and CD47,

activating pathways that promote endothelial cell apoptosis, inhibit

angiogenesis, and reduce NO bioavailability (74, 75). By binding to

its receptors, THBS1 inhibits the activation of eNOS, reducing NO

production (74). NO deficiency leads increases vascular tone and

endothelial dysfunction, hallmark of the vascular complications in

T2DM (76). Reduced NO impairs vasodilation, increasing vascular

resistance and hypertension (73). Elevated THBS1 in T2DM

activates TGF-b, contributing to vascular remodeling, fibrosis,

and stiffness, promoting a pro-fibrotic environment, and

advancing complications (77, 78).

THBS1 also facilitates macrophage recruitment and activation,

releasing pro-inflammatory cytokines and ROS, damaging the

endothelium, and promoting atherosclerosis (70, 73). Oxidative

stress from THBS1-mediated inflammation leads to endothelial cell

injury and dysfunction, perpetuating vascular damage (79). THBS1,

released from activated platelets, promotes aggregation and

adhesion to the endothelium, increasing vascular occlusions and

cardiovascular event risk in T2DM (79, 80). By enhancing platelet

activation and promoting a pro-coagulant state, THBS1 increases

the vascular complications associated with diabetes (80).

Together, these processes induce vascular stiffness, intensify

atherosclerosis, and increase the risk of thrombotic events, all of

which are important in the development of severe cardiovascular

complications associated with T2DM (62, 78, 79).
3.2 Mechanisms linking T2DM to
pulmonary fibrosis

Findings have shown that T2DM can significantly impact several

organ systems, including the lungs (81). The complicated

mechanisms by which T2DM aids in the onset and progression of

pulmonary fibrosis, a crippling lung condition marked by an

overabundance of extracellular matrix protein deposition and tissue

remodeling, have been clarified by recent studies (81, 82). One well-

known mechanism is the interaction of oxidative stress, dysregulated

fibrotic signaling cascades, and chronic inflammation in the

pulmonary environment (81, 82). The production of ROS and

proinflammatory cytokines is enhanced by T2DM-associated

hyperglycemia and dyslipidemia, which in turn causes

inflammatory reactions and cellular damage in lung tissues (60).

Profibrotic pathways, such as the TGF-b signaling pathway,

encourage fibroblast activation and collagen deposition is

subsequently activated by these inflammatory mediators (60, 83).

Furthermore, abnormal vascular remodeling and dysregulated lipid

metabolism lead to the buildup of AGEs and endothelial dysfunction

in the pulmonary vasculature, exacerbating lung fibrotic

modifications (84). The multifaceted character of this disease

process is further demonstrated by the possibility that interactions

between fibrogenic signaling cascades and metabolic pathways could
Frontiers in Endocrinology 06
speed up the development of pulmonary fibrosis in T2DM patients

(21, 84).

Recent research indicates that complications related to T2DM

often manifest during the prediabetic state, underscoring the

significance of early detection and intervention (11, 12). There is

growing evidence that respiratory disorders may also be associated

with prediabetes (11–13). While the primary focus has traditionally

been on the risk of cardiovascular disease and microvascular

complications in prediabetes, attention should also be increased

to the potential impact on pulmonary health (85). See in

Figure 2 below.
4 Prediabetes

Prediabetes is a metabolic condition that serves as an

intermediate stage in the progression from normal glucose

metabolism to overt diabetes and is associated with an increased

risk of developing T2DM and cardiovascular disease (85, 86). This

intermediate hyperglycemic state is characterized by impaired

glucose tolerance and elevated blood sugar levels below the

threshold for diabetes diagnosis (86). Prediabetes encompasses

two fundamental conditions: impaired glucose tolerance (IGT),

which occurs when blood glucose levels increase above normal

after an oral glucose tolerance test (OGTT), and impaired fasting

glucose (IFG), which occurs when fasting blood glucose levels

increase above average but not diagnostic of T2DM (87).

Prediabetes is diagnosed based on specific threshold values for 2-

hour plasma glucose (2-h PG) and fasting plasma glucose (FPG)

levels obtained following an OGTT (88). Obesity, a sedentary

lifestyle, a family history of diabetes, and specific ethnic origins

are risk factors for prediabetes. Although prediabetes has

historically been linked to abnormalities in systemic metabolism

and a higher risk of cardiovascular disease, new research indicates

that lung health may also be affected (87, 88). Risk factors for

prediabetes include obesity, sedentary lifestyle, family history of

diabetes, and specific ethnic backgrounds (88). While prediabetes

has traditionally been associated with systemic metabolic

disturbances and an increased risk of cardiovascular disease,

emerging evidence suggests potential implications for pulmonary

health as well (7, 13).
4.1 Possible links of prediabetes to the
pulmonary system

Prediabetes shares standard pathophysiological features with

T2DM, including insulin resistance, dyslipidemia, and chronic low-

grade inflammation, which can exert detrimental effects on the

pulmonary vasculature and lung parenchyma (89, 90). Emerging

evidence suggests a potential interconnection between prediabetes

and pulmonary health, raising intriguing questions about the

systemic impact of metabolic disturbances on respiratory function

(13, 91–93). These studies have highlighted the direct effects of

hyperglycemia and metabolic dysfunction on pulmonary
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endothelial cells and alveolar epithelial cells, contributing to

endothelial dysfunction, pulmonary inflammation, oxidative

stress, and lung fibrotic remodeling (91–93).

NO plays a crucial role in vascular health by regulating blood

flow, tone, and endothelial function (90, 94). Research indicates that

prediabetic conditions, such as insulin resistance and impaired

glucose metabolism, disturb the delicate balance of NO production

and bioavailability (90, 92). Insulin resistance can impair endothelial

eNOS activity, reducing NO production (92, 93). The elevated blood

glucose concentration associated with prediabetes can also promote

oxidative stress and inflammation, which further deplete NO levels

and impair NO-mediated signaling pathways (95). Consequently,

decreased NO availability in prediabetes contributes to endothelial

dysfunction, vasoconstriction, and impaired vascular relaxation,

predisposing individuals to cardiovascular complications like

hypertension, atherosclerosis, and endothelial dysfunction (92, 96).

In prediabetes, the THBS1 pathway could significantly

aggravate these complications (97). Insulin resistance might
Frontiers in Endocrinology 07
disrupt insulin signaling, which would increase the concentration

of THBS1 and worsen endothelial dysfunction and inflammation

(23, 75, 97). Elevated blood glucose in prediabetes could lead to the

formation of AGEs, which might bind to the RAGE and upregulate

THBS1 expression, further impairing endothelial function (51).

THBS1 might inhibit eNOS, reducing NO production, resulting

in vasoconstriction, and increased vascular resistance (69). Chronic

low-grade inflammation, driven by cytokines like TNF-a and IL-6,

could induce THBS1 expression through NF-kB activation,

enhancing macrophage recruitment and perpetuating vascular

inflammation (69, 72). Oxidative stress might activate signaling

pathways like MAPKs that increase THBS1 levels, contributing to

endothelial cell injury (9). Additionally, THBS1 could promote a

pro-thrombotic environment by enhancing platelet aggregation and

adhesion, increasing the risk of vascular occlusions and

cardiovascular events (98).

The elevated blood glucose concentration in prediabetes can

extensively affect PGI2, a vital molecule involved in vascular
FIGURE 2

This flow diagram illustrates the mechanisms linking T2DM to the development and progression of pulmonary fibrosis. Enhanced oxidative stress,
dysregulated fibrotic signaling, chronic inflammation, and abnormal vascular remodeling contribute to the pathogenesis of lung fibrosis in
T2DM patients.
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function (99, 100). As prediabetes progresses, hyperglycemia

promotes a series of events leading to increased oxidative stress and

inflammation, resulting in endothelial dysfunction, which impairs the

production and release of PGI2 (101). Furthermore, AGEs can be

formed due to hyperglycemia, further impairing PGI2 production

and function. As a result, the reduction in PGI2 concentration

contributes to endothelial dysfunction, vasoconstriction, platelet

aggregation, and ultimately, an increased risk of cardiovascular

complications associated with prediabetes (93, 101). Furthermore,

this PGI2 dysregulation may serve as a crucial link between

prediabetes and the development of overt T2DM and its

complications, emphasizing the importance of early intervention

and management strategies targeting both glycemic control and

vascular health.

In a prediabetic state, increased insulin resistance and

hyperglycemia lead to endothelial dysfunction, which manifests

through elevated ET-1 levels (102). The increased ET-1

concentration is primarily mediated by the upregulation of

endothelin-converting enzyme activity and increased production

from endothelial cells (103, 104). Additionally, prediabetes

promotes an imbalance in the prostaglandin-thromboxane axis,

which promotes the production of TxA2 over PGI2, primarily due

to modified platelet activation and arachidonic acid metabolism

(105, 106). Increased TxA2 enhances inflammation, platelet

aggregation, and vasoconstriction, which makes surrounding

tissue more prone to atherosclerosis and thrombosis (107).

Therefore, if left unchecked, the dysregulation of ET-1 and TxA2

in prediabetes promotes endothelial dysfunction, thrombosis, and

vascular complications together, developing the conditions for the

onset of overt T2DM and cardiovascular illnesses (102, 107).

The transition from prediabetes to overt T2DM may further

intensify these pulmonary complications, highlighting the

importance of early intervention and preventive measures (89).

However, the precise mechanisms linking prediabetes to

pulmonary pathology remain incompletely understood. Hence,

more research is needed to look at the relationship between

prediabetes and pulmonary dysfunction, including reduced

pulmonary function, an elevated risk of respiratory infections, and

maybe the onset of pulmonary fibrosis.
5 Conclusion

The complex relationship among prediabetes, T2DM and

pulmonary disorders highlights the critical need for extensive

research into prediabetes and its underlying mechanisms to mitigate

the progression to overt T2DM. Complications such as pulmonary

vascular dysfunction and fibrotic lung disease significantly increase

morbidity, mortality and diminish the quality of life in individuals with

T2DM. Addressing pulmonary disorders in prediabetic individuals can

potentially prevent the progression to overt T2DM. Early identification

andmanagement of prediabetes, with a focus on preventing pulmonary

complications, may help reduce the risk of developing T2DM.

Additionally, understanding and treating pulmonary disorders in

prediabetic patients can improve patient outcomes and reduce the

burden of metabolic disorders. Therefore, studies targeting both
Frontiers in Endocrinology 08
prediabetes and pulmonary health are essential for mitigating the

progression to T2DM and improving overall patient health.
6 Future studies

Additional research into the pulmonary problems linked to T2DM

and prediabetes will take many different forms to improve clinical

outcomes, identify novel targets for treatment, and understand the

underlying processes. Methods that include data from clinical trials,

patient samples, and preclinical models, especially those

including prediabetes, must be used. Understanding the early

pathophysiological modifications and pathways that result in

pulmonary vascular dysfunction in people with T2DM requires

using such an approach. These initiatives are essential to reducing

the burden that prediabetes-related pulmonary problems place on

impacted people and healthcare systems across the world.
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