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Background: The oxidative balance score (OBS) is a composite indicator that

evaluates the balance between pro-oxidants and antioxidants in one’s diet and

lifestyle. However, the relationship between OBS and circadian syndrome (CircS)

has remained unexplored. This investigation aimed to determine a correlation

between OBS and CircS.

Methods: This population-based study examined 7,202 participants from the

2005 to 2018 National Health and Nutrition Examination Survey (NHANES), 1,433

of whom had CircS. We utilized weighted multivariate logistic regression, trend

tests, subgroup analysis, and interaction tests to evaluate the correlation

between OBS (total OBS, dietary OBS, and lifestyle OBS) and CircS. Restricted

cubic splines (RCS) models and threshold effect analysis were used to explore

nonlinear relationships.

Results:Multivariate logistic regression analysis indicated that the protective factor

for CircS was a high OBS level (total OBS: Odds ratio (OR) = 0.95, 95% Confidence

interval (CI): 0.93-0.97; dietary OBS: OR = 0.98, 95% CI: 0.96-1.00; lifestyle OBS:

OR = 0.65, 95% CI: 0.61-0.69). Compared to the quartile 1 group, OBS (total OBS,

dietary OBS, and lifestyle OBS) was negatively and statistically significantly

associated with the risk of developing Circs in the quartile 4 group (total OBS:

OR = 0.47, 95% CI: 0.32-0.70; dietary OBS: OR = 0.69, 95% CI: 0.48-0.99; lifestyle

OBS: OR = 0.07, 95% CI: 0.04-0.11). According to subgroup analysis and

interaction tests, there was an interaction effect between the association of

lifestyle OBS and CircS in terms of education level (p for interaction = 0.01).

Furthermore, we observed a nonlinear negative relationship between lifestyle OBS

and CircS prevalence, with inflection points at 6 (p for nonlinearity = 0.002).

Conclusion: The results showed a substantial negative connection between OBS

and CircS. Encouraging foods filled with antioxidants and antioxidant-rich

lifestyles may reduce the risk of CircS.
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Introduction

Metabolic syndrome (MetS) is a set of cardiometabolic risk

elements and comorbidities, including hypertension, abdominal

obesity, insulin resistance, and dyslipidemia (1). It represents a

substantial risk factor in the progression of atherosclerotic

cardiovascular disease (2). MetS is becoming a global epidemic,

affecting more than one in every five adults (3). Nevertheless, the

common cause of MetS is still not fully comprehended (4).

Circadian rhythm disturbance has become more prevalent in

recent years due to factors like night lighting, social jet lag, meal

timing, and shift or night shift work (5–8). An increasing amount of

evidence supports that circadian rhythm disruption is strongly

associated with MetS (9–11). In this situation, a new concept

closely related to circadian rhythms, called circadian syndrome,

has emerged (12).

The primary diagnostic criteria for CircS include elevated blood

pressure, dyslipidemia, abdominal obesity, elevated blood glucose,

short sleep, and depressive state (12). All of these symptoms are

influenced by the circadian clock, implying that circadian rhythm

disturbances could be a common cause (13–17). CircS affects

around 40.8% of individuals in the United States (18). A

comparable incidence of around 39% has been discovered among

Chinese adults (19). Furthermore, studies have found that CircS is

linked to a higher risk of stroke, kidney stones, overactive bladder

syndrome, and chronic renal disease (20–23). The increased

prevalence of CircS and its negative consequences emphasize the

importance of early prevention and evaluation.

Oxidative stress is regarded as a predominant etiological factor

in the occurrence of many diseases, and it causes an unbalanced

between oxidant and antioxidant defenses in the body through the

generation of reactive substances and redox signaling (24–26).

Moderate antioxidant consumption has been demonstrated to

modulate oxidative homeostasis and the levels of oxidative stress

in the body (27, 28). In addition, Unhealthy lifestyles (e.g., smoking,

alcohol misuse, and insufficient physical activity) have been

recognized to disrupt redox homeostasis (29–31). OBS is a

comprehensive metric that considers both pro-oxidants and

antioxidants in one’s diet and lifestyle (32). Higher OBS reflects a

lower level of oxidative stress (33). Some epidemiologic studies have

identified a link between OBS and an increased rate of developing

diabetes, cardiovascular disease, and stroke (34–36). However, no

studies have examined whether OBS has affects CircS. As a result,

We conducted a population-based study to assess the connection

between OBS and CircS.
Abbreviations: OBS, Oxidative balance score; CircS, circadian syndrome;

NHANES, National Health and Nutrition Examination Survey; MetS,

Metabolic syndrome; WC, Waist circumference; HDL-C, High-density

lipoprotein cholesterol; TG, Triglycerides; BMI, Body mass index; PIR, poverty

income ratio; MET, metabolic equivalent; SBP, Systolic blood pressure; DBP,

Diastolic blood pressure; FBG, Fasting blood glucose; UA, Uric acid; Cr,

Creatinine; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase;

GGT, Gamma-glutamyl transferase; RCS, Restricted cubic spline; OR; Odds ratio;

CI; Confidence interval; ROS, Reactive oxygen species; RNS, Reactive

nitrogen species.
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Data and participants

NHANES is a program that conducts surveys every two years to

estimate the nutritional status and health of children and adults in

the United States. All participants grant their consent after being

fully informed. Our analysis included data from seven successive

NHANES cycles from 2005 to 2018, with a total of 70,190 people.

We applied some exclusion standards: 1) Participants under the age

of 20 (n = 30441); 2) missing CircS component data: waist

circumference (WC, n = 3860), blood pressure (n = 1043), blood

glucose (n = 18615), high-density lipoprotein cholesterol (HDL-C,

n = 152), triglycerides (TG, n = 155), sleep (n = 34), and depression

(n = 1046); 3) Missing OBS component data: inconsistent or

missing dietary data (n=394), body mass index (BMI, n=35),

serum cotinine (n = 7), and physical activity (n = 5734); 4)

Covariates: serological markers (n = 47), low-density lipoprotein

cholesterol (LDL-C, n = 146), education level (n = 5), PIR (n = 640),

and marital status (n = 1); 5) Pregnancy (n = 153); 6) Unreliable

energy intake (defined as men consuming < 800 kcal per day and >

4,200 kcal per day, and women consuming < 500 kcal per day and >

3,500 kcal per day) (n = 480). Our final study population consisted

of 7,202 people (Figure 1).
OBS and CircS definitions

The OBS is composed of 20 components, including 16 dietary

and 4 lifestyle elements. The OBS was divided into tertiles according

to gender differences, using previous studies’ allocation

methodologies (37). Antioxidants were ranked from lowest to

highest tertile, with 0, 1, and 2 scores. In contrast, ratings of 2

and 0 represent the lowest and highest pro-oxidant tertiles,

respectively. Physical activity and body measures were allocated

based on the metabolic equivalent (MET) score and BMI. Serum

cotinine, a nicotine metabolite, was utilized as a biomarker to assess

smoking. In terms of alcohol consumption, no alcohol intake was

considered a nondrinker. Alcohol intake exceeds 30 g per day for

males and 15 g per day for females were considered heavy drinkers.

Alcohol consumption was categorized as nondrinkers, moderate

drinkers, or heavy drinkers, with 0, 1, and 2 scores. Table 1 shows

the scheme for assigning OBS scores.

CircS comprises elements of metabolic syndrome, short sleep,

and depressive state. The diagnosis relies on the subsequent

standards: (1) WC equal to or exceeding 102 cm in males and

88 cm in females, (2) TG equal to or exceeding 1.7 mmol/L or

previous recommendation by a physician to take lipid-lowering

medications, (3) HDL-C levels below 1.0 mmol/L in males and

below 1.3 mmol/L in females or previous recommendation by a

physician to take lipid-lowering medications, (4) Systolic blood

pressure (SBP) equal to or greater than 135 mmHg or diastolic

blood pressure (DBP) equal to or greater than 85 mmHg, or use of

antihypertensive drugs, (5) Fasting blood glucose (FBG) equal to or

exceeding 100 mg/dL or use of hypoglycemic drugs and insulin, (6)

sleeping less than 6 hours, and (7) Depression scores equal to or

greater than 9 on the Health Questionnaire. Participants diagnosed

with CircS exhibited four or more of these seven components.
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Covariates

Based on previous research (38, 39), we included a range of

covariates that may be associated with CircS. Covariates consisted

of age (20–39, 40–65, or ≥65 years), gender (male or female), race

(Mexican American, Non-Hispanic White, Non-Hispanic Black

others), marital status (married or partnered, never married,

widowed or divorced, separated), education attainment (below

high school, high school, above high school), and PIR (≤1.3, 1.3–
Frontiers in Endocrinology 03
3.5, or >3.5). Energy intake, LDL–C, serum cholesterol, uric acid

(UA), creatinine (Cr), aspartate aminotransferase (AST), alanine

aminotransferase (ALT), and gamma-glutamyl transferase (GGT).
Statistical analyses

All data were analyzed with the NHANES complex weighted

sampling design. The OBS quartile stratified the study population’s
FIGURE 1

A flow chart of participants screening in NHANES 2005–2018.
TABLE 1 Oxidative balance score assignment scheme.

OBS
components

Property
Male Female

0 1 2 0 1 2

Dietary fiber (g/d) A <13.6 13.6-21.25 ≥21.25 <11.75 11.75-17.7 ≥17.7

Carotene (RE/d) A <106.96 106.96-382.79 ≥382.79 <121.96 121.96-439.79 ≥439.79

Riboflavin (mg/d) A <1.77 1.77-2.54 ≥2.54 <1.41 1.41-2 ≥2

Niacin (mg/d) A <22.83 22.83-32.13 ≥32.13 <16.49 16.49-23.32 ≥23.32

Total folate (mcg/d) A <335.5 335.5-499 ≥499 <264 264-393 ≥393

Vitamin B6 (mg/d) A <1.75 1.75-2.55 ≥2.55 <1.32 1.32-1.92 ≥1.92

Vitamin B12 (mcg/d) A <3.6 3.6-6.13 ≥6.13 <2.63 2.63-4.57 ≥4.57

Vitamin C (mg/d) A <44.2 44.2-103.9 ≥103.9 <43.5 43.5-93.25 ≥93.25

Vitamin E (ATE) (mg/d) A <6.04 6.04-9.39 ≥9.39 <5.2 5.2-8.11 ≥8.11

Calcium (mg/d) A <756 756-1140 ≥1140 <629.5 629.5-931.5 ≥931.5

Magnesium (mg/d) A <260.5 260.5-365 ≥365 <217.5 217.5-296 ≥296

Zinc (mg/d) A <9.77 9.77-14 ≥14 <7.38 7.38-10.32 ≥10.32

Copper (mg/d) A <1.06 1.06-1.51 ≥1.51 <0.89 0.89-1.25 ≥1.25

(Continued)
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baseline characteristics (Q1: < 25th percentile; Q2: 25–50th percentile;

Q3: 50–75th percentile; Q4: ≥ 75th percentile). Weighted means and

standard deviations are utilized to calculate constant variables, whereas

weighted percentages are employed to calculate categorical variables.

We utilized chi-square and t-tests to analyze differences within the OBS

quartile classifications. The correlation between OBS and CircS was

investigated in four distinct models using multivariable logistic

regression. Model 1 was free of any covariate components. Model 2

included modifications for age, gender, and race. Model 3 included

modifications for age, gender, race, marital status, education attainment,

PIR, and energy intake. Model 4 was additionally adjusted for serum

cholesterol, LDL-C, ALT, AST, Cr, GGT, and UA based on Model 3.

Dietary OBS and lifestyle OBS were calculated according to gender

differences to examine the robustness of the correlation between OBS

and CircS. Then, stratified analyses and interaction tests were performed

based on age, gender, race, marital status, education attainment, and

PIR. In the end, RCS analysis and threshold effect analysis were applied

to investigate the non-linear relationship between OBS and the risk of

CircS. All the analyses were conducted employing R (version 4.3.2), with

a statistically significant p-value < 0.05.
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Results

General characteristics of the participants

7702 individuals were enrolled in our study, with a mean age of

46.31 ± 16.65 years. Among these, 50.12% were males, and the

prevalence of CircS was found to be 26.92%. OBS was classified into

four categories based on gender differences: Q1, Q2, Q3, and Q4. The

corresponding sample sizes were as follows: 2016, 1865, 1593, and

1728. The range of scores for the following groups: Q1 had a range of

<15 points, Q2 had a range of 15-20 points, Q3 had a range of 21-25

points, and Q4 had a range of >25 points. The proportion of people

diagnosed with CircS declined as the quartiles increased. People in

the top quartile of OBS were inclined to be 40-65 years old, female,

non-Hispanic white, have an education level above high school, have

a PIR greater than 3.5, be married or live with a partner, consume

more energy, and have lower levels of GGT, AST, ALT, and UA.

Furthermore, in the top quartile of OBS, the CircS seven diagnostic

components were the least prevalent. Table 2 depicts the population’s

baseline characteristics and variables categorized by the OBS quartile.
TABLE 1 Continued

OBS
components

Property
Male Female

0 1 2 0 1 2

Selenium (mcg/d) A <102.75 102.75-142.6 ≥142.6 <74.7 74.7-105.3 ≥105.3

Iron (mg/d) P ≥18.23 12.72-18.23 <12.72 ≥14.25 9.88-14.25 <9.88

Total fat (g/d) P ≥98.25 67.74-98.25 <67.74 ≥75.04 51.71-75.04 <51.71

Physical activity (MET-
minute/week)

A <720 720-1988 ≥1988 <540 540-1440 ≥1440

BMI(kg/m2) P ≥29.52 25.3-29.52 <25.3 ≥30.52 24.7-30.52 <24.7

Cotinine (ng/mL) P ≥0.5 0.02-0.5 <0.02 ≥0.07 0.01-0.07 <0.01

Alcohol (g/d) P ≥30 0-30 <0 ≥15 0-15 <0
OBS, oxidative balance score; A, antioxidant; P, pro-oxidant; RE, retinol equivalent; ATE, alpha-tocopherol equivalent; MET, metabolic equivalent; BMI, body mass index.
TABLE 2 Weighted demographic characteristics of all participants.

Characteristic
Overall,

N = 7202 (100%)
Q1,

N = 2016 (23%)
Q2,

N = 1865 (25%)
Q3,

N = 1593 (23%)
Q4,

N = 1728 (29%)
p-value

Age(years) 46.31 ± 16.65 46.14 ± 17.76 47.15 ± 17.30 45.48 ± 16.03 46.38 ± 15.56 0.2

years(%) 0.005

20-39 2,805(40.30%) 775(41.77%) 700(39.11%) 634(41.61%) 696(39.11%)

40-65 2,967(42.92%) 779(38.83%) 771(41.36%) 681(44.44%) 736(46.37%)

≥65 1,430(16.78%) 462(19.40%) 394(19.53%) 278(13.94%) 296(14.52%)

Gender(%) 0.7

Male 3,656(50.12%) 998(48.74%) 962(50.65%) 821(51.39%) 875(49.76%)

Female 3,546(49.88%) 1,018(51.26%) 903(49.35%) 772(48.61%) 853(50.24%)

Race(%) <0.001

Mexican American 969(6.93%) 285(8.07%) 256(7.30%) 196(6.52%) 232(6.03%)

(Continued)
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TABLE 2 Continued

Characteristic
Overall,

N = 7202 (100%)
Q1,

N = 2016 (23%)
Q2,

N = 1865 (25%)
Q3,

N = 1593 (23%)
Q4,

N = 1728 (29%)
p-value

Non-Hispanic White 3,309(70.80%) 773(62.53%) 838(69.30%) 752(72.04%) 946(77.79%)

Non-Hispanic Black 1,429(9.48%) 557(15.70%) 384(10.56%) 293(8.35%) 195(4.42%)

Others 1,495(12.79%) 401(13.70%) 387(12.84%) 352(13.10%) 355(11.77%)

Education level(%) <0.001

Below high school 1,203(10.45%) 452(15.67%) 327(10.26%) 222(9.66%) 202(7.03%)

High school 1,493(19.73%) 533(28.22%) 415(22.22%) 299(17.57%) 246(12.40%)

Above high school 4,506(69.83%) 1,031(56.12%) 1,123(67.51%) 1,072(72.76%) 1,280(80.57%)

PIR group(%) <0.001

≤1.3 1,875(17.63%) 664(25.26%) 497(18.73%) 378(15.71%) 336(12.04%)

1.3-3.5 2,619(32.49%) 819(38.84%) 707(33.96%) 551(31.87%) 542(26.57%)

>3.5 2,708(49.88%) 533(35.90%) 661(47.30%) 664(52.42%) 850(61.40%)

Marital status(%) <0.001

Married/Living
with partner

4,337(63.12%) 1,094(54.26%) 1,142(63.60%) 980(66.05%) 1,121(67.49%)

Never married 1,458(20.14%) 451(24.43%) 360(20.11%) 320(18.04%) 327(18.39%)

Widowed/
Divorced/Separated

1,407(16.74%) 471(21.31%) 363(16.28%) 293(15.91%) 280(14.12%)

Elevated BP(%) <0.001

No 4,485(66.45%) 1,135(60.37%) 1,122(63.43%) 1,037(70.10%) 1,191(71.08%)

Yes 2,717(33.55%) 881(39.63%) 743(36.57%) 556(29.90%) 537(28.92%)

Elevated FPG(%) <0.001

No 3,588(52.55%) 875(46.36%) 937(52.17%) 809(51.98%) 967(58.33%)

Yes 3,614(47.45%) 1,141(53.64%) 928(47.83%) 784(48.02%) 761(41.67%)

Elevated WC(%) <0.001

No 3,517(49.63%) 786(38.72%) 879(46.34%) 798(49.92%) 1,054(61.13%)

Yes 3,685(50.37%) 1,230(61.28%) 986(53.66%) 795(50.08%) 674(38.87%)

Low HDL-C(%) <0.001

No 5,512(78.69%) 1,424(73.76%) 1,412(74.66%) 1,251(80.12%) 1,425(85.08%)

Yes 1,690(21.31%) 592(26.24%) 453(25.34%) 342(19.88%) 303(14.92%)

Elevated TG(%) 0.001

No 2,036(46.94%) 498(41.96%) 516(43.26%) 463(47.95%) 559(53.56%)

Yes 2,623(53.06%) 816(58.04%) 724(56.74%) 548(52.05%) 535(46.44%)

Short sleep(%) <0.001

No 6,322(90.63%) 1,683(86.63%) 1,639(90.60%) 1,420(91.01%) 1,580(93.58%)

Yes 880(9.37%) 333(13.37%) 226(9.40%) 173(8.99%) 148(6.42%)

Depression symptoms(%) <0.001

No 6,776(94.88%) 1,851(91.48%) 1,749(94.43%) 1,508(95.37%) 1,668(97.61%)

Yes 426(5.12%) 165(8.52%) 116(5.57%) 85(4.63%) 60(2.39%)

Energy intake (kcal) 2,094.44 ± 757.15 1,580.51 ± 580.28 1,930.38 ± 639.34 2,248.48 ± 698.56 2,530.35 ± 729.80 <0.001

BMI (kg/m2) 28.11 ± 6.23 29.74 ± 6.60 28.52 ± 6.33 28.00 ± 5.89 26.51 ± 5.67 <0.001

(Continued)
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Relationship between total OBS and CircS

As shown in Table 3, weighted logistic regression models were

employed to investigate the correlation between total OBS and CircS.

When total OBS was measured as a continuous variable, there was a

significant correlation between higher OBS and lower prevalence of

CircS. The negative correlation between total OBS and CircS was also

present even after adjustment for covariates (model 4), implying a 5%

decrease in the prevalence of CircS for each unit increase in total OBS.

(OR = 0.95, 95% CI: 0.93-0.97, p < 0.001). We further converted OBS

into a quartile variable for sensitivity analysis. With individuals in the

Q1 group as a reference, the reduction in the risk of developing CircS

was statistically significant for those in groups Q3 and Q4 (p < 0.05).

In the fully adjusted model (model 4), the ratio of individuals in

groups Q3 and Q4 developing CircS was 0.61 (95% CI: 0.44- 0.84)

and 0.47 (95% CI: 0.32 - 0.70), respectively.
Association of dietary OBS and lifestyle
OBS with CircS

As shown in Table 4, dietary OBS and lifestyle OBS were both

negatively associated with CircS in Model 4. For each unit increase in

dietary OBS, the risk of CircS would be reduced by 2% (OR = 0.98,
Frontiers in Endocrinology 06
95%CI: 0.96-1.00, p = 0.02). Lifestyle OBS seemedmore closely related

to the risk of CircS than dietary OBS. For each unit increase in lifestyle

OBS, the risk of CircS would be reduced by 35% (OR = 0.65, 95% CI:

0.61-0.69, p < 0.001). We transformed dietary OBS and lifestyle OBS

into categorical variables. In all four models, there was a statistically

significant negative correlation between lifestyle OBS and CircS in the

other three groups, using the Q1 group as a reference (p < 0.001).

There was also a negative correlation observed between dietary OBS

and CircS. This relationship was statistically significant in the Q4

group (model 1: OR = 0.56, 95% CI: 0.42-0.74, p < 0.001; model 2: OR

= 0.57, 95% CI: 0.43-0.77, p < 0.001; model 3: OR = 0.56, 95% CI: 0.40-

0.79, p = 0.001; model 4: OR = 0.69, 95% CI: 0.48-0.99, p = 0.046).

According to interaction tests, no interaction effect was identified

between dietary OBS and lifestyle OBS (p for interaction = 0.133).
Subgroup analysis and interaction tests for
total OBS and CircS

We applied subgroup analysis and interaction tests according to

age, gender, race, education attainment, and marital status. The

outcomes of subgroup analyses revealed that the association

between total OBS and CircS varied among groups. Participants

exhibited substantial differences in subgroups divided by age,

gender, education attainment, PIR, and marital status (P < 0.05).
TABLE 2 Continued

Characteristic
Overall,

N = 7202 (100%)
Q1,

N = 2016 (23%)
Q2,

N = 1865 (25%)
Q3,

N = 1593 (23%)
Q4,

N = 1728 (29%)
p-value

WC (cm) 96.79 ± 15.64 100.52 ± 16.30 97.93 ± 15.74 96.52 ± 15.02 92.98 ± 14.62 <0.001

SBP(mmHg) 120.45 ± 16.22 122.59 ± 17.37 121.53 ± 16.85 119.33 ± 15.19 118.68 ± 15.21 <0.001

DBP(mmHg) 69.83 ± 11.58 69.56 ± 12.51 70.14 ± 12.26 69.87 ± 10.84 69.74 ± 10.72 0.8

HDL-C (mmol/L) 1.45 ± 0.42 1.38 ± 0.39 1.42 ± 0.42 1.45 ± 0.40 1.53 ± 0.44 <0.001

LDL-C (mmol/L) 2.96 ± 0.91 2.95 ± 0.95 2.97 ± 0.92 3.00 ± 0.90 2.92 ± 0.89 0.2

TG (mmol/L) 1.28 ± 0.72 1.35 ± 0.76 1.32 ± 0.72 1.26 ± 0.72 1.20 ± 0.69 <0.001

Cholesterol (mmol/L) 5.02 ± 1.06 4.96 ± 1.10 5.02 ± 1.09 5.06 ± 1.01 5.05 ± 1.03 0.2

GGT (U/L) 26.26 ± 38.22 28.07 ± 30.64 27.90 ± 57.11 25.79 ± 32.99 23.72 ± 24.11 0.002

Cr(umol/L) 78.06 ± 27.24 80.43 ± 39.97 79.13 ± 28.78 76.63 ± 18.75 76.35 ± 16.71 0.062

AST (U/L) 25.12 ± 14.13 24.43 ± 11.87 24.87 ± 13.02 25.43 ± 15.60 25.63 ± 15.44 <0.001

ALT (U/L) 25.04 ± 16.99 25.05 ± 17.09 24.70 ± 17.10 25.40 ± 18.40 25.04 ± 15.59 0.033

UA (umol/L) 323.99 ± 79.66 333.60 ± 82.62 329.22 ± 81.28 321.26 ± 77.87 313.80 ± 75.85 <0.001

Dietary OBS 16.80 ± 6.66 7.69 ± 2.49 14.22 ± 2.31 19.27 ± 2.07 24.44 ± 2.34 <0.001

Lifestyle OBS 3.68 ± 1.75 2.91 ± 1.65 3.41 ± 1.71 3.72 ± 1.63 4.49 ± 1.62 <0.001

CircS(%) <0.001

No 3,226(73.08%) 774(63.89%) 865(70.22%) 726(75.89%) 861(80.92%)

Yes 1,433(26.92%) 540(36.11%) 375(29.78%) 285(24.11%) 233(19.08%)
fro
Circs, Circadian syndrome; PIR, Proverty income ratio; FPG,Fasting plasma glucose; BMI, Body Mass Index; WC, Waist circumference; SBP, Systolic blood pressure;DBP, Diastolic blood
pressure; HDL-C, High-Density Lipoprotein cholesterol; LDL-C, Low-Density Lipoprotein cholesterol; TG, Triglycerides; GGT, Gamma-glutamyl transferase; Cr, Creatinine; AST, Aspartate
aminotransferase; ALT, Alanine aminotransferase; UA, Uric acid.
Wilcoxon rank-sum test for complex survey samples; chi-squared test with Rao & Scott’s second-order correction.
mean ± standard deviation (SD) for continuous; n (%) for categorical.
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A negative relationship was also observed among the Mexican

American population in the ethnicity stratification, but this

relationship was not statistically significant (p = 0.4). Interaction

tests found that total OBS did not correlate with age, gender, race,

education attainment, PIR, and marital status. Figure 2 displays the

association between CircS and total OBS in various subgroups in

model 4.
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Subgroup analysis and interaction tests of
dietary OBS and lifestyle OBS with CircS

Subgroup analysis exploring the connection between dietary

OBS and CircS identified differences in the following categories:

females, aged 20-39, below high school, individuals of other ethnic

backgrounds, married or cohabiting individuals, and those with a
TABLE 4 Association of dietary OBS and lifestyle OBS with CircS.

Model 1 Model 2 Model 3 Model 4

Characteristic OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value

Dietary OBS

Continuous 0.97 0.96, 0.98 <0.001 0.97 0.96, 0.98 <0.001 0.97 0.95, 0.98 <0.001 0.98 0.96, 1.00 0.020

OBS (quartile)

Q1 Ref Ref Ref Ref

Q2 0.79 0.60, 1.02 0.074 0.77 0.59, 1.01 0.055 0.78 0.60, 1.01 0.058 0.85 0.63, 1.14 0.3

Q3 0.76 0.60, 0.95 0.019 0.75 0.59, 0.96 0.025 0.75 0.57, 0.99 0.041 0.87 0.64, 1.17 0.4

Q4 0.56 0.42, 0.74 <0.001 0.57 0.43, 0.77 <0.001 0.56 0.40, 0.79 0.001 0.69 0.48, 0.99 0.046

P for trend <0.001 <0.001 0.002 0.04

Lifestyle OBS

Continuous 0.60 0.57, 0.64 <0.001 0.61 0.57, 0.64 <0.001 0.61 0.58, 0.65 <0.001 0.65 0.61, 0.69 <0.001

OBS (quartile)

Q1 Ref Ref Ref Ref

Q2 0.50 0.39, 0.63 <0.001 0.51 0.40, 0.65 <0.001 0.52 0.41, 0.66 <0.001 0.54 0.42, 0.69 <0.001

Q3 0.25 0.20, 0.30 <0.001 0.25 0.20, 0.31 <0.001 0.26 0.21, 0.32 <0.001 0.31 0.25, 0.39 <0.001

Q4 0.05 0.03, 0.08 <0.001 0.05 0.03, 0.09 <0.001 0.06 0.04, 0.09 <0.001 0.07 0.04, 0.11 <0.001

P for trend <0.001 <0.001 <0.001 <0.001
fro
OR, Odds Ratio; CI, Confidence Interval; OBS, Oxidative Balance Score.
Model 1, No covariates were adjusted.
Model 2, adjusted for sex, age, race.
Model 3, adjusted for sex, age, race, marital status, education attainment, PIR, and energy intake.
Model 4, adjusted for sex, age, race, education attainment, marital status, PIR, energy intake, LDL-C,cholesterol, UA, Cr, AST, ALT and GGT.
TABLE 3 Relationship between total OBS and CircS.

Model 1 Model 2 Model 3 Model 4

Characteristic OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value

Continuous 0.95 0.93, 0.96 <0.001 0.95 0.94, 0.96 <0.001 0.94 0.92, 0.95 <0.001 0.95 0.93, 0.97 <0.001

OBS (quartile)

Q1 Ref Ref Ref Ref

Q2 0.75 0.58, 0.97 0.027 0.74 0.57, 0.95 0.020 0.72 0.55, 0.94 0.016 0.80 0.60, 1.07 0.14

Q3 0.56 0.44, 0.72 <0.001 0.57 0.44, 0.74 <0.001 0.52 0.39, 0.69 <0.001 0.61 0.44, 0.84 0.003

Q4 0.42 0.31, 0.56 <0.001 0.43 0.32, 0.58 <0.001 0.36 0.25, 0.53 <0.001 0.47 0.32, 0.70 <0.001

P for trend <0.001 <0.001 <0.001 <0.001
OR, Odds Ratio; CI, Confidence Interval; OBS, oxidative balance score.
Model 1, No covariates were adjusted.
Model 2, adjusted for sex, age, race.
Model 3, adjusted for sex, age, race, marital status, education attainment, PIR, and energy intake.
Model 4, adjusted for sex, age, race, education attainment, marital status, PIR, energy intake, LDL-C,cholesterol, UA, Cr, AST, ALT and GGT.
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PIR of less than or equal to. Subgroup analysis exploring the

correlation between lifestyle OBS and CircS revealed that all

subgroups observed differences that are statistically significant (p

< 0.001). The interaction test proved an interaction effect between

lifestyle OBS and education attainment (p for interaction = 0.01).

Higher levels of education were associated with a more significant

correlation between lifestyle OBS and CircS (OR = 0.61, 95% CI:

0.56-0.66, p < 0.001). The subgroup analysis and interaction tests for

OBS (total OBS, dietary OBS, and lifestyle OBS) and CircS are

described in detail in Supplementary Tables 1-3.
Restricted cubic spline analysis

Adjusting for all confounders, RCS curves were utilized to

further explore the connection between OBS (total OBS, dietary

OBS, and lifestyle OBS) and CircS. We found a linear correlation

between OBS(total OBS and dietary OBS) and CircS (total OBS: p =

0.117; dietary OBS: p = 0.486). A nonlinear negative connection was

identified between lifestyle OBS and CircS (p = 0.002). Figure 3

displays the results of the analysis of RCS.

Furthermore, the inflection point for this nonlinear relationship

between lifestyle OBS and CircS was found to be at point 6.
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Following this, we conducted a threshold effect analysis centered

on this inflection point. On the left side of the turning point, the

effect size was 0.341 (95% CI: 0.148 -0.653), and on the right side of

the turning point, the effect size was 0.684 (95% CI: 0.651- 0.717).

Table 5 describes the results of the threshold effect analysis.
Discussion

As circadian rhythm disruption becomes more common with

changing lifestyles in our society, early intervention for CircS is

necessary (40). This study eventually involved 7202 patients from

the NHANES 2005-2018 cohort, with 1433 having CircS. Patients

with CircS have lower OBS (total OBS, dietary OBS, and lifestyle

OBS) than normal individuals. This negative connection persisted

even after controlling for all variables. Although the effect estimates

for the connection between OBS and CircS varied by subgroup,

their correlation remained negative across all categories. The

interaction test results revealed a pronounced connection between

lifestyle OBS and CircS in people with education attainment levels

above high school. In the RCS, we discovered that total OBS and

dietary OBS were linearly and adversely linked to CircS, while

lifestyle OBS was nonlinearly and negatively associated. In addition,
FIGURE 2

Subgroup analysis and interaction tests for the association between total OBS and CircS.
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lifestyle OBS was significantly negatively associated with CircS risk

in an overall trend both before and after the inflection point. We

identified the inflection point at 6.

To our knowledge, this study is the first to evaluate the

correlation between OBS and CircS. CircS is composed of MetS,

short sleep duration, and depressive state. Numerous studies have

revealed a substantial link between oxidative stress and these

factors. A population-based study by Zhixiao Xu et al. exploring

the correlation between OBS and MetS among adult Americans

showed that higher OBS was related to a lower incidence of MetS

and all-cause mortality (38). Another cross-sectional study found a

significant correlation between OBS and MetS along with its

components (41). In addition to cardiometabolic risk profiles,

oxidative stress was similarly associated with sleep quality and

depression. Populations with higher OBS have fewer sleep

disturbances and have longer sleep duration (42). A randomized

controlled design suggests that lowering anti-oxidative stress

improves depression scores in patients with major depressive

disorder (43). Overall, these epidemiologic studies imply that

elevated levels of oxidative stress may increase the likelihood of

developing CircS. As expected, we discovered that higher OBS was

negatively linked with the development of CircS.
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Dietary and lifestyle changes raise the risk of circadian

disturbances. Many studies have found significant correlations

between the components of OBS and CircS. A cross-sectional

study found that consuming vegetables, whole grains, oils, nuts,

and seeds helped to reduce the incidence of CircS (44). Keizo

Kaneko and his colleagues demonstrated that obesity interferes with

the circadian expression of crucial clock genes in the central

nervous system (45). Alcohol misuse disrupts circadian rhythms

(46). Grigsby, K et al. reported that chronic alcoholism affected

circadian gene expression (47). Research has demonstrated that

nicotine can induce phase alterations in circadian rhythms in rats
FIGURE 3

The RCS analysis of OBS and CircS. (A) a linear negative correlation between dietary OBS and CircS. (B) a non-linear negative correlation between
lifestyle OBS and CircS. (C) a linear negative correlation between total OBS and CircS.
TABLE 5 Threshold effect analysis of lifestyle OBS on CircS by the two-
piecewise linear regression.

Inflection point Adjusted OR (95% CI) P-value

< 6 0.341(0.148-0.653) 0.004

≥6 0.684(0.651-0.717) <0.001

Log-likelihood ratio 0.038
Adjusted for sex, age, race, education attainment, marital status, PIR, energy intake, LDL-C,
cholesterol, UA, Cr, AST, ALT and GGT. OBS, oxidative balance score; CircS, circadian
syndrome; OR, odds ratio; 95% CI, 95% confidence interval.
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(48). Fuentes-Cano, Martin A. et al. discovered that the circadian

locomotion and learning efficiency rhythms of juvenile rodents are

influenced by perinatal nicotine exposure (49). In addition,

Camerbiru et al. found that physical exercise synchronized the

circadian system and prevented the development of CircS in indoor

fat sand rats (50).

Given that excellent eating habits and lifestyle contribute to

regulating the circadian rhythm, our work suggests non-

pharmacological prophylactic treatment for the affected

population. We can help patients regulate their biological clocks

by promoting healthy eating habits and lifestyles, such as increasing

physical activity, adhering to regular schedules, limiting high-

calorie foods, and reducing sedentary time. Furthermore, our

findings alert medical professionals to the lifestyle behaviors of

patients with circadian abnormalities.

Interestingly, interaction tests indicated that the negative

correlation between lifestyle OBS and CircS was more significant

among participants with high levels of schooling. Some studies have

revealed that people with less education are more prone to lead

unhealthy lifestyles (51, 52). Individuals with higher levels of

education have higher levels of self-perceived health and a greater

ability to engage in healthier behaviors (53). Additionally, people

with higher levels of education engage in physical activity for longer

periods and have access to better sports facilities (54). These all

contribute to health-promoting behaviors.

The relationship between OBS and CircS is uncertain.

Metabolic alterations in CircS are strongly associated with

disruption of circadian rhythms, and we thus hypothesize that

oxidative stress may have an impact on the regulatory control of

circadian rhythms. Oxidative stress is triggered by the

hyperproduction of damaging reactive oxygen species (ROS) and

reactive nitrogen species (RNS) (55). Oxidative stress arises as the

balance of ROS, nitric oxide, and antioxidants is interrupted,

causing DNA, lipids, proteins, and cellular structural damage

(56). Cellular redox status regulates the biological clock, and

rhythmic ROS generates redox oscillations that give feedback to

the cellular clock machinery (57). Schmalen, Ira, et al. discovered

that maintaining adequate oxidative homeostasis governs the

complexes generated by cyclins and cryptochromes, which are

key components of circadian regulation (58). Second, melatonin,

a neurobiological hormone generated by the pineal gland, regulates

circadian rhythms (59). Melatonin deficiency can lead to prolonged

wakefulness, brain injury, and metabolic disturbance (60–64). In an

animal model, the researchers discovered that persistent stress

causes decreased levels of pineal melatonin (65). It was found

that myocardial infarction-induced oxidative stress caused an

increase in free radicals, which in turn decreased plasma

melatonin levels (66). In addition, Koh, Kyunghee, et al. found

that increased oxidative stress disrupted the sleep-wake cycle (66).

Such research is currently limited, but preliminary findings warrant

further investigation.

This study emphasizes the significance of oxidative stress levels

for the development of CircS and enriches existing studies.

However, there are certain constraints to this study. First, the

design of our research was cross-sectional, which may be subject

to other confounding factors and the inability to determine
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causality. Second, our study population was primarily from the

United States. Therefore, we were unable to generalize the results to

different populations. Finally, it has been demonstrated that shift

work, exposure to light, and noise all produce circadian disruptions

(67). We cannot rule out all of these confounding factors. Further

comprehensive studies are needed to elucidate the causal

relationship between OBS and CircS prevalence.
Conclusion

The results showed a substantial negative connection between

OBS and CircS. Encouraging foods filled with antioxidants and

antioxidant-rich lifestyles may decrease the risk of CircS.

Nevertheless, additional studies are required to investigate the

potential mechanisms between OBS and CircS.
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