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Metabolomics and network
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effects of bile acids on carotid
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underlying mechanisms
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Tingting Gao1, Lin Zheng1, Maolin Qiao1, Yaling Li1, Siqi Gao1,
Jinshan Chen1, Runze Chang1, Guoping Zheng3*

and Honglin Dong 1*

1Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China,
2Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China,
3Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium
Institute, Westmead, NSW, Australia
Background: Bile acids (BAs), products of gut microbiota metabolism, have long

been implicated in atherosclerotic disease pathogenesis. Characterizing the

serum bile acid profile and exploring its potential role in carotid atherosclerosis

(CAS) development are crucial tasks.

Methods: In this study, we recruited 73 patients with CAS as the disease group and

77 healthy individuals as the control group. We systematically measured the serum

concentrations of 15 bile acids using ultrahigh-performance liquid

chromatography-mass spectrometry (UPLC-MS/MS). Multivariate logistic

regression and least absolute shrinkage and selection operator (LASSO) regression

were applied to analyze the impact of bile acids on the disease and select the key

BAs. The possible molecular mechanism was elucidated by network pharmacology.

Results: (1) The BA profile of patients with CAS significantly differed. (2) Multifactorial

logistic regression analysis identified elevated levels of GCDCA (OR: 1.01, P < 0.001),

DCA (OR: 1.01, P = 0.005), and TDCA (OR: 1.05, P = 0.002) as independent risk

factors for CAS development. Conversely, GCA (OR: 0.99, P = 0.020), LCA (OR: 0.83,

P = 0.002), and GUDCA (OR: 0.99, P = 0.003) were associated with protective

effects against the disease. GCA, DCA, LCA, and TDCAwere identified as the four key

BAs. (3) TNF, FXR, GPBAR1, ESR1 and ACEwere predicted to be targets of BAs against

AS. These four BAs potentially impact AS progression by triggering signaling

pathways, including cAMP, PPAR, and PI3K-AKT pathways, via their targets.

Conclusion: This study offers valuable insights into potential therapeutic

strategies for atherosclerosis that target bile acids.
KEYWORDS

atherosclerosis, bile acid, network pharmacology, UPLC-MS/MS, metabolomics
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1 Introduction

Cardiovascular diseases pose a considerable global health

challenge due to their elevated rates of morbidity and mortality

(1, 2). A notable surge in the prevalence of cardiovascular diseases,

especially among low- and middle-income countries, has occurred,

largely attributed to the pervasive influence of unhealthy lifestyles

and dietary habits. Of particular concern is the trend of younger

populations being affected by these diseases. It is projected that by

2030, approximately 23.6 million individuals are expected to die of

cardiovascular disease (3), thereby imposing a substantial social

burden on individuals, families, and healthcare systems. Among

these cardiovascular diseases, atherosclerotic cerebrovascular

disease (ACVD), which is primarily characterized by carotid

atherosclerosis (CAS), is the main cause (4, 5). Carotid

atherosclerosis evolves as a consequence of endothelial damage

(6) and is characterized by the accumulation of atherosclerotic

plaques predominantly composed of low-density lipoprotein

cholesterol on the carotid artery’s inner walls (7, 8). Over time,

these plaques progressively induce arterial stenosis, with the

principal site of this process being the bifurcation of the internal

and external carotid arteries (9). On this basis, a cascade of

intraplaque hemorrhage, plaque rupture and dislodgement, wall

thrombosis, and secondary stenosis occurs, causing corresponding

hemodynamic alterations and ultimately culminating in the

occurrence of ischemic cerebrovascular events (10, 11). Therefore,

controlling plasma cholesterol levels has become an effective

strategy for the prevention and management of ACVD.

Bile acids (BAs) constitute the principal pathway for cholesterol

catabolism in vivo. Bile acid synthesis encompasses two distinct

processes: the classical pathway and the alternative pathway.

Notably, the classical pathway is predominantly catalyzed by

cytochrome P450 7A1 (CYP7A1), which acts as both the key and

rate-limiting enzyme in this metabolic route. Importantly, under

physiological conditions, the classical pathway contributes to more

than 75% of total bile acid production (11, 12). Primary BAs, which

are synthesized in the liver, are then conjugated to glycine or taurine

and subsequently stored in the gallbladder. These conjugated BAs are

released into the intestinal lumen and are stimulated by

cholecystokinin (CCK) after a meal. Within the intestinal

environment, these bile acids play multifaceted roles. They aid in

facilitating the absorption of dietary fats and fat-soluble vitamins (13)

and regulating the structure of the intestinal microbiota, thereby

impacting various metabolic processes within the body (14).

Previous clinical studies have shown a robust correlation between

the serum bile acid concentration and atherosclerosis (AS). Fasting

serum total bile acid levels are significantly elevated in patients with

coronary artery disease (CAD), exhibit a strong correlation with

disease severity, and independently predict the risk of disease (15).

Both primary and secondary bile acid levels are significantly elevated

in patients with AS (16). However, previous studies have primarily

utilized untargeted metabolomics, which encompasses a broad

spectrum of metabolites but lacks specificity for bile acids (17).

Consequently, we contend that a more precise investigation into

the alterations in serum bile acid profiles in patients with CAS is
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warranted. In this cross-sectional study, we employed targeted

metabolomics technology to achieve accurate quantification of bile

acids in vivo, encompassing a wide range of relevant bile acid species.

This study not only characterized the alterations in the serum bile

acid profiles of patients with CAS and their associations with disease

risk but also proposed potential mechanisms of action of BAs on AS

using a network pharmacology approach. These findings offer new

insights and directions for the treatment of ACVD.
2 Study population and methods

2.1 Study population

This study consecutively included 101 patients diagnosed with

CAS who underwent carotid vascular ultrasound examinations at the

Second Clinical College of Shanxi Medical University from September

2022 to June 2023. Additionally, a control group of 83 healthy

individuals (aged > 18 years) who underwent physical examinations

was included. Based on the following exclusion criteria, a total of 73

patients diagnosed with CAS were included in the disease group, and

77 healthy individuals were selected as the control group. For healthy

controls, individuals with CAS were excluded based on carotid

ultrasound findings, ensuring the absence of asymptomatic or

episodic CAS in the healthy control group.

This study protocol was approved by the Ethics Committee of

the Second Hospital of Shanxi Medical University. Written

informed consent was obtained from the study participants.
2.2 The inclusion and exclusion criteria

2.2.1 Inclusion criteria for the disease group
Patients who presented with complete clinical data and were

diagnosed with CAS through carotid vascular ultrasound,

characterized by increased carotid intima-media thickness (cIMT)

and/or the presence of carotid plaque, were included.

2.2.1.1 I Definition of increased cIMT

An increased cIMT is identified when the thickness from the

lumen-intima interface to the media-adventitia border is ≥1 mm in

either the left or right carotid artery (18, 19).

2.2.1.2 II Definition of carotid plaque

A carotid plaque is a protruding structure that extends into the

arterial lumen by at least 0.5 mm or exceeds 50% of the cIMT value in

the surrounding area or is any thickness greater than 1.5 mm from

the intima–media interface to the lumen’s interior interface (19).

2.2.2 The common exclusion criteria for the
disease and control groups were as follows
I. Participants aged <18 years

II. Clinical or biochemical evidence of hepatic diseases,

including nonalcoholic fatty liver disease (NAFLD),
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nonalcoholic steatohepatitis (NASH), viral hepatitis,

autoimmune hepatitis, drug-induced hepatitis, cystic

fibrosis, or any other condition that might impact bile

acid metabolism

III. History of gallbladder disease or cholecystectomy

IV. Presence of malignant tumors

V. Systemic infectious diseases

VI. Women who were pregnant or breastfeeding during the

study period

VII. Any other condition that could substantially affect the

subject’s compliance or ability to complete the study
The selection process of the study population is illustrated

in Figure 1.
2.3 Carotid ultrasonography

Carotid ultrasound was performed on the participants by

experienced ultrasound technologists who were not informed in

advance of their basic characteristics or laboratory results. All

procedures were conducted following the Mannheim Consensus

(20). Participants were tested in the supine position using an iU22

ultrasound system (Philips Health Care) with a 6- to 10-MHz

linear-array transducer. Moreover, the bilateral common carotid

arteries (CCAs), internal carotid arteries (ICAs), external carotid

arteries (ECAs) and subclavian arteries were assessed and recorded.

The cIMT measurements were taken in the area of interest located

in the distal wall of the proximal bifurcation of the common carotid

arteries bilaterally.
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2.4 Data collection of all participants

We collected demographic data, including sex, age, height, and

weight; BMI; systolic and diastolic blood pressure measurements;

lifestyle-related factors, including smoking and alcohol consumption;

medical history, including stroke, hypertension, diabetes mellitus,

and surgical interventions; a range of blood biochemical parameters;

and carotid ultrasound scanning findings in the electronic medical

records of both the disease and control groups (21).

The definitions and calculation methods for smoking, alcohol

consumption, BMI, and the atherogenic index of plasma (AIP), as

well as the diagnostic criteria for diabetes, can be found in the

Supplementary Material.
2.5 Serum sample preparation

All participants provided morning fasting blood samples, which

were then gently transferred into procoagulant tubes and centrifuged

at 3000 rpm for 15 min at 4°C. The upper serum samples were

separated and stored in a -80°C freezer until subsequent analysis.
2.6 Preparation of the bile acid
detection reagent

Bile acids were quantified in the collected serum samples using

multiple reaction assays with a Ying Sheng® Biotechnology Bile

Acid Kit (Yingsheng Biotechnology AG, Shandong, China).
FIGURE 1

Selection of the study inclusion population.
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Internal standards, calibrators, quality controls (QCs), and

samples were prepared according to the manufacturer ’s

instructions and placed in a 96-well plate.
2.7 UPLC-MS/MS detection and analysis

Bile acids were analyzed in serum samples collected using ultra-

performance liquid chromatography-mass spectrometry (UPLC-

MS/MS, Triple Quad™ 4500MD, AB SCIEX, USA).

The details of the BA measurements were as follows: The 96-

well plate was placed in an autosampler. Liquid chromatography

separation was conducted using a UPLC BEH C18 column (100

mm× 2.1 mm i.d.; 3 mm; Waters, America) maintained at 40°C. The

mobile phase was Super-Q containing 0.1% formic acid (A) and

HPLC-grade methanol (B). The mobile phase was delivered at a

constant flow rate of 0.3 mL/min with the following gradient

program: 0~0.5 min, 11%, B; 0.5 min~6.0 min, 11%~69%, B; 6.0

min~8.0 min, 69%~76%, B; 8.0 min~9.0 min, 76%~98%, B; 9.0

min~9.1 min, 98%~11%, B. An electrospray ionization (ESI) source

operating in negative ion mode was utilized, with an ion source

temperature set at 450°C, a spray voltage of 4500 V, 25 psi of air

curtain gas, 3 psi of collision gas, 50 psi of atomizing gas, and 50 psi

of heating assist gas. All bile acids were measured using multiple

reaction monitoring (MRM) under the conditions described in

Supplementary Table S2: specific conditions for each bile acid in

multiple reaction monitoring (MRM) mode.

The collected data were analyzed and processed using

MultiQuant software. The standard curve was initially generated

by plotting the calibrator concentration on the horizontal axis and

the ratio of the calibrator to the peak area of the internal standard

on the vertical axis, resulting in the linear equation y = bx + a.

Subsequently, the peak area ratio of the sample to the internal

standard (22) was substituted into this equation to ascertain the

concentration of the substance in the sample. Notably, before each

test, the concentration of the calibrator was plotted on the

horizontal axis, while the ratio of the peak area of the calibrator

to that of the corresponding internal standard was used to construct

the standard curve on the vertical axis (23).
2.8 BA classification

BAs (24), including unconjugated/conjugated primary bile acids

(PBAs) and unconjugated/conjugated secondary bile acids (SBAs),

are categorized into four groups based on their level of conjugation.

Detailed information about bile acid groups:
Fron
1. Un con j u g a t e d PBAs : c ho l i c a c i d (CA ) and

chenodeoxycholic acid (CDCA).

2. Con j u g a t e d PBAs : g l y c o cho l i c a c i d (GCA) ,

glycochenodeoxycholic acid (GCDCA), taurocholic acid

(TCA), and taurochenodeoxycholic acid (TCDCA).

3. Unconjugated SBAs: deoxychol ic ac id (DCA),

ursodeoxycholic acid (UDCA), and lithocholic acid (LCA).
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4. Conjugated SBAs: GDCA, taurodeoxycholic acid (TDCA),

glycolithocholic acid (GLCA), taurolithocholic acid

(TLCA), glycoursodeoxycholic acid (GUDCA), and

tauroursodeoxycholic acid (TUDCA).
2.9 Target acquisition

To elucidate BA-related targets, we utilized key BA subtypes

identified as search terms in the SwissTargetPrediction database

(25)(http://www.swisstargetprediction.ch/) to retrieve corresponding

compound targets. Subsequently, the AS-related targets were

searched by inputting the keywords ‘Atherosclerosis’ into the

GeneCards database (26), DrugBank database, TTD database

(https://db.idrblab.net/ttd/) , OMIM database (https://

www.omim.org/) and DisGeNET database (27) (https://

www.disgenet.org/), setting the species as ‘Homo sapiens’. The

intersection with the relevant targets of previously predicted

compounds resulted in the identification of overlapping targets.
2.10 Network construction

The overlapping targets were input into the STRING 11.5

database (28) (https://string-db.org/) to acquire interaction data

among the targets. Subsequently, the obtained results were

imported into Cytoscape 3.9.1 software for the construction of a

protein-protein interaction (PPI) network encompassing bile acids

and shared disease targets.
2.11 GO and KEGG enrichment analysis

To delve deeper into the gene functions associated with AS

influenced by BAs and their specific roles within related signaling

pathways, the overlapping targets were subjected to analysis using

gene ontology (GO) function and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway information via the Database for

Annotation, Visualization and Integrated Discovery (DAVID,

https://david.ncifcrf.gov/), with a significance threshold of p<0.01.

Specifically, GO function and KEGG pathway analyses were

conducted, with a p value threshold of <0.01 considered to

indicate statistical significance. The top 20 enriched GO terms

and KEGG pathways were selected and visualized using the

Microbiome online platform (http://www.bioinformatics.com.cn/).
2.12 Statistical analyses

Categorical variables are presented as counts and percentages,

with correlations assessed by either chi-square tests or Fisher’s exact

tests. Normally distributed continuous variables are expressed as

the mean ± standard deviation (mean ± SD), and nonnormally

distributed variables are represented as medians (quartiles) [M (Q1,
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Q3)]. Group comparisons for means and medians were conducted

using Student’s t test and the Mann-Whitney U test, respectively.

To compare bile acid levels between the two groups, a univariate

analysis employing the Mann-Whitney U test was conducted.

Additionally, Spearman’s correlation analysis was used instead of

Pearson’s due to the non-normal distribution of data, in order to

assess the associations between BAs and major clinical parameters.

Risk factors were analyzed using multifactorial logistic regression

analysis (29). Statistical analyses were performed using two-sided

tests with a significance level of P < 0.05 with SAS 9.3 and R

3.3.1 software.
3 Results

3.1 Patient demographics and
clinical characteristics

The study ultimately enrolled 73 patients who were diagnosed

with CAS in the disease group and 77 individuals in the control

group. The main clinical and biochemical characteristics of the

participants are reported in Table 1 and Supplementary Table S1.

No meaningful differences were observed in age, sex, BMI, smoking

status, or alcohol consumption between the disease and control

groups. The blood pressure, alanine transaminase (ALT), aspartate

transaminase (AST), glucose, triglyceride (TG), homocysteine

(HCY), and atherosclerotic index (AIP) were notably greater in

CAS patients than in healthy individuals (P<0.03). We also found

that the levels of UREA and UA were also elevated in the disease

group compared to those in the control group, with p values of 0.01

and 0.034, respectively.
3.2 Patients with CAS exhibited
characteristic changes in their serum bile
acid profile

As illustrated in Table 2, the results revealed differences between

the two groups for the 15 BA species as well as BA subgroups. The

abundances of eleven BA species differed between the two groups

(P<0.05). In the disease group, notably higher serum levels of CA,

CDCA, GCA, GCDCA, DCA, and TDCA were observed than in the

healthy individuals (p<0.005), whereas LCA exhibited a significant

decrease (p<0.03) (Table 2). Additionally, the levels of serum

TCDCA, UDCA, GDCA, and GUDCA were elevated in patients

with CAS (P<0.05). Furthermore, significant differences in the BA

subgroups between the two groups were observed. Total bile acid,

total PBA, total SBA, and glycine-conjugated bile acid levels were

significantly greater in patients with CAS (p<0.005). Figure 2A

shows the structural differences in the composition of the bile acid

pool between the two groups. We observed an elevated proportion

of primary bile acids, especially the proportions of CA and CDCA,

in patients with CAS compared to controls. In contrast, the

proportion of secondary bile acids decreased, with the most

significant decrease occurring in the proportions of LCA

and GUDCA.
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3.3 Heatmaps showing correlations
between serum bile acid levels and major
clinical parameters

Pearson’s correlation analysis showed that both individuals

and subgroups of serum bile acid levels correlated with various

biochemical measures and metabolic parameters within the CAS

group (Figure 2B). Alkaline phosphatase (ALP) was positively

correlated with GLCA, TLCA, LCA, GDCA, and total SBAs.

Additionally, GLCA and TLCA were also positively correlated

with the renal function markers Cr and UREA. AST/ALT was

positively correlated with UDCA and CDCA. GCDCA, GUDCA,

and total BAs were negatively correlated with the ESR.

Additionally, a positive correlation was observed between GCA,

TCA, and TG. Heatmaps demonstrated the high and low levels of

each bile acid in the disease and control groups, while we grouped

all participants according to sex (Figure 2C). Sex differences in bile

acid concentration were observed in both the disease and

control groups.
TABLE 1 Baseline characteristics of the case and control subjects.

Variable Control
subjects
(N=77)

Case
subjects
(N=73)

p Value

Age(years) 60.44 ± 15.30 63.37 ± 10.20 0.168

Gender
(Male/Female)

55(71.43%)/
22(28.57%)

47(64.38%)/
26(35.62%)

0.454

Current smoker 24 (31. 17%) 35 (47.95%) 0.053

Current drinker 36 (46.75%) 22 (30. 14%) 0.055

SBP (mmHg) 133.77 ± 19.96 149.73 ± 29.50 <0.001

DBP (mmHg) 77.26 ± 15.36 86.29 ± 16.55 0.001

BMI (kg/m2) 23.86 ± 2.84 24.46 ± 2.56 0.17

Glucose
(mmol/L)

5.47 ± 1.37 6.20 ± 2.45 0.027

ALT(IU/L) 17. 17 ± 6.62 22.25 ± 9.74 <0.001

AST(IU/L) 20. 12 ± 3.96 22.77 ± 6.83 0.005

UREA (mmol/L) 5.02 ± 1.30 6. 18 ± 3.53 0.01

Cr(mmol/L) 71.54 ± 12.54 91.69 ± 139.19 0.222

UA(mmol/L) 359.62 ± 94.00 324.98 ± 103.72 0.034

TC (mmol/L) 4.58 ± 0.94 4.70 ± 1.23 0.496

TG (mmol/L) 1.24(0.95-1.55) 1.42(1.11-1.90) 0.008

HCY(mmol/L) 12.62 ± 7.98 17.60 ± 12.91 0.006

HDL-C (mmol/L) 1.25 ± 0.29 1.06 ± 0.29 <0.001

LDL-C(mmol/L) 2.30 ± 0.72 2.45 ± 0.76 0.244

AIP 0.01(-0.23,0. 16) 0. 16(-0.02,0.33) <0.001
Values are n (%), mean ± SD, or median (interquartile range). BMI, body mass index; ALT,
alanine transferase; AST, aspartate transferase; Cr, creatinine; UA, uric acid; TC, total
cholesterol; TG, triglycerides; HCY, homocysteine; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; AIP, atherogenic index.
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3.4 Multifactorial logistic regression
analysis was conducted to assess the
impact of bile acids on CAS

Table 3 illustrates the impact of circulating bile acid levels on

carotid atherosclerotic disease. Multifactorial binary logistic

regression analysis was conducted with the occurrence of carotid
Frontiers in Endocrinology 06
atherosclerosis as the dependent variable (where the control group is

denoted by 0 and the CAS group by 1), while statistically significant

bile acids from the univariate analysis, including CA, CDCA, GCA,

GCDCA, TCDCA, DCA, LCA, UDCA, GDCA, GUDCA, and

TDCA, were considered independent variables. Elevated levels of

GCDCA (OR: 1.01, P<0.001), DCA (OR: 1.01, P=0.005), and TDCA

(OR: 1.05, P=0.002) were found to be independent risk factors for

carotid atherosclerosis development. Conversely, GCA (OR: 0.99,

P=0.020), LCA (OR: 0.83, P=0.002), and GUDCA (OR: 0.99,

P=0.003) were identified as protective factors against the disease

(Table 3). These results remained consistent even after adjusting for

SBP, DBP, fasting glucose, and TG.
3.5 Six characteristic bile acid metabolites
were selected using LASSO analysis

The least absolute shrinkage and selection operator (LASSO)

regression algorithm was also employed to exclude those that were

irrelevant or weakly correlated. The optimal regularization

parameter lambda (l=0.01710513) was selected through cross-

validation (Figure 3A). Based on this lambda value, the model

coefficients were extracted, and six bile acid individuals were

identified as CDCA, GCA, TCDCA, DCA, LCA, and TDCA.

These bile acids exhibited a relatively strong correlation with

the disease.
3.6 GCA, DCA, LCA, and TCA showed the
most relevance to CAS

The intersection of the six bile acids identified from the LASSO

analysis with those derived from the multifactorial logistic

regression analysis revealed four key bile acids: GCA, DCA, LCA,

and TCA (Figure 3B). Therefore, we considered these four bile acids

to exert the most substantial impact on the disease, which is

significant for future research.
3.7 Selection of the four key BA-related
targets in atherosclerosis

A search was conducted in the SwisstargetPrediction database

using ‘GCA’, ‘DCA’, ‘LCA’, and ‘TDCA’ as keywords, resulting in

119 targets. Additionally, the GeneCards, Disgenet, DrugBank,

TTD, and OMIM databases were queried using ‘Homo sapiens’

and ‘Atherosclerosis’ as keywords, yielding 5113 target proteins

associated with atherosclerosis. An intersection analysis between

these AS-related target proteins and the four BAs predicted to be

related targets revealed 88 intersecting targets (Figure 4A).
3.8 PPI network analysis

The 88 targets identified from the intersection were imported

into the STRING database (http://string-db.org/), with the
TABLE 2 Plasm bile acid concentrations between the two groups.

BAs
(nmol/L)

Control
subjects
(N=77)

Case
subjects
(N=73)

p Value

Individual BAs

CA* 55.09
(28.79-106.65)

78.83
(37.87-315.06)

0.003

CDCA 280.40
(137.76-367.54)

307.89
(140.64-666.58)

0.003

GCA 64.86
(37.52-108.71)

86.57
(42.88-195.62)

0.005

GCDCA* 284.68
(142.43-462.20)

473.97
(307.84-1195.08)

<0.001

TCA 9.83 (4.53-14.23) 5.57 (3.84-11.54) 0.592

TCDCA* 24.71
(13.57-40.54)

35.77
(17.81-97.62)

0.01

DCA 128.29
(76.47-189.79)

158.44
(71.05-342.06)

0.003

LCA* 4.76 (2.46-9.20) 2.85 (0.64-5.45) 0.018

UDCA* 49.57
(26.89-85.27)

65.80
(40.24-138.99)

0.013

GDCA 70.89
(32.47-134.60)

110.63
(39.10-283.65)

0.007

GLCA 2.25 (1.14-5.09) 3.09 (0.90-7.22) 0.607

GUDCA* 45.46
(31.92-94.78)

73.25
(42.21-140.78)

0.037

TDCA 7.38 (3.11-14.10) 11.87
(3.52-35.73)

0.004

TLCA 0.49 (0.09-1.24) 0.40 (0.11-1.32) 0.321

TUDCA 2.40 (0.78-4.06) 2.36 (1.13-5.67) 0.105

BA subgroups

Total.BA* 1172.86
(821.17-1758.67)

2068.13
(1156.50-
4006.49)

<0.001

Total.PBA* 734.60
(510.33-1094.67)

1383.14
(797.23-2708.40)

<0.001

Total.SBA* 98.25
(254.92-559.80)

617.24
(318.17-1262.93)

<0.001

Taurine-
conjugated BAs*

46.31
(22.78-82.94)

71.26
(35.34-128.93)

0.009

Glycine-
conjugated BAs*

527.77
(279.58-853.41)

783.48
(474.69-1599.49)

<0.001
*Represents statistical significance. BA, bile acid; PBA, primary bile acid; SBA, secondary
bile acid.
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confidence score set to greater than 0.4 to generate an

interrelationship optimized using Cytoscape 3.9.1 software

(Figure 4B). The result depicts a network consisting of 83 nodes

and 414 edges. Subsequently, a topology analysis was conducted,

where a redder color of the target point indicates a higher position

of the gene in this network. Using the Cytohubba plugin in

Cytoscape, the core genes in the intersection network were

identified through the MCC algorithm, revealing the top 10 core

genes that constitute the target proteins, as presented in Table 4.

The results indicate that TNF (tumor necrosis factor), PPAR

(peroxisome proliferator-activated receptor), AKT1 (protein

kinase B), ESR1 (estrogen receptor 1), ACE (angiotensin-

converting enzyme), NR1H4 (bile acid receptor FXR), and

GPBAR1 (G-protein-coupled bile acid receptor 1) are at the core

of the PPI network and may be of interest in the treatment of

atherosclerotic disease.
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3.9 GO and KEGG enrichment analysis

Enrichment analysis was conducted based on 88 intersecting

target genes, identifying the top 10 significantly enriched GO

functions and the top 20 KEGG metabolic pathways for

visualization (Figure 5). A total of 184 GO terms were obtained

(P<0.01), with 113, 38, and 33 terms related to biological process

(BP), cellular component (CC), and molecular function

(MF), respectively.

The top 10 enriched terms are shown in Figure 5A, where the

biological process terms included the regulation of RNA polymerase

II promoter transcription, inflammatory response, cell

differentiation, etc. Molecular function (MF) terms included zinc

ion binding, RNA polymerase II activity, etc. Among the KEGG

pathways, 52 signaling pathways were identified (P<0.01), and the

top 20 pathways according to gene number were selected for
B

C

A

FIGURE 2

Bile acid distribution in the study population and its correlation with clinical parameters. (A) Differences in bile acid composition between the disease
and control groups. ***P<0.001, **P<0.01, *P<0.05. (B) Pearson’s correlation analysis of the associations of BAs with the main clinical parameters in
the case group. (C) Unsupervised hierarchical clustering heatmap showing bile acid expression in all study participants. The type, sex, and BA
composition were used as participant annotations. Red represents a high expression of BA individuals or BA compositions, and blue represents a low
expression. Total. BA, the sum of all measured serum BAs; Total. PBA, the sum of PBAs, including conjugated and unconjugated PBAs; Total. SBA,
the sum of SBAs, including conjugated and unconjugated SBAs.
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visualization (Figure 5B). These pathways are associated with

diabetic cardiomyopathy, platelet activation, insulin resistance,

thyroxine release, and signaling pathways such as the PI3K-AKT,

cAMP, and peroxisome proliferator-activated receptor

(PPAR) pathways.

The PI3K-AKT signaling pathway contributes significantly to

macrophage proliferation and migration (30, 31). In vivo, cAMP

functions to suppress inflammation and contribute to vascular

remodeling (4, 32). PPAR serves as a key regulator of lipid

metabolism, functioning as a sensor for fatty acids. PPAR can

interact with the bile acid receptors CAR and LXR to regulate lipid

metabolism for the treatment of atherosclerosis and obesity (33).

These four bile acids may regulate these pathways to achieve a

therapeutic effect on AS. However, the specific details require

further experimental verification.
4 Discussion

In this cross-sectional study, we performed a comprehensive

assessment of the circulating BA profiles of study participants by

employing advanced UPLC-MS/MS techniques and explored the

impact of bile acids on carotid atherosclerosis risk. Subsequently,

the potential targets and pathways of action of bile acids were

analyzed using network pharmacology.
Frontiers in Endocrinology 08
The outcomes of our investigation revealed substantial

alterations in the serum bile acid profile among patients

diagnosed with CAS. Compared to control individuals, patients

with CAS exhibited significantly elevated levels of both primary and

secondary bile acids. Specifically, the concentrations of CA, CDCA,

GCA, GCDCA, DCA, TCDCA, UDCA, GDCA, GUDCA, and

TDCA were markedly greater, while LCA levels were notably

lower in CAS patients (P<0.05). These findings align with a study

employing untargeted metabolomics in atherosclerotic rats, where

elevated plasma levels of UDCA and CDCA were observed in

atherosclerotic rats compared to their control counterparts (20).

Similar results were observed in another study involving 462

diabetic patients using untargeted metabolomics (34). In this

study, diabetic patients with subclinical atherosclerosis exhibited

higher DCA and TDCA levels and lower TCA levels than diabetic

patients. Furthermore, there was a notable alteration in the bile acid

pool composition within the disease group, characterized by a

heightened presence of primary bile acids, notably CA and

CDCA, as well as a reduction in secondary bile acids. This result

may be due to an increase in the activity of enzymes synthesizing

bile acids or a decrease in intestinal flora functioning to metabolize

bile acids. Furthermore, binary logistic regression analysis of bile

acid in this study revealed that GCA (OR: 0.99, P = 0.020), LCA

(OR: 0.83, P = 0.002), and GUDCA (OR: 0.99, P = 0.003) were

protective against carotid atherosclerosis, whereas TDCA (OR: 1.05,
TABLE 3 Logistic regression analysis of risk factors for carotid artery atherosclerosis (CAS).

BA

Unadjusted Adjusted for SBP, DBP, Glucose, and TG

b SE Z P
OR
(95%CI)

b SE Z P
OR
(95%CI)

CA 0 0 0.24 0.807
1.00
(1.00~1.00)

0.00 0.00 0.12 0.91
1.00
(1.00~1.01)

CDCA 0 0 -0.99 0.32
1.00
(1.00~1.00)

0.00 0.00 -0.99 0.32
1.00
(1.00~1.00)

GCA -0.01 0 -2.33 0.02
0.99
(0.98~0.99)

-0.01 0.01 -2.21 0.03
0.99
(0.98~1.00)

GCDCA 0.01 0 3.93 <0.001
1.01
(1.01~1.01)

0.01 0.00 3.61 <0.001
1.01
(1.00~1.01)

TCDCA -0.01 0.01 -1.2 0.229
0.99
(0.98~1.00)

0.00 0.01 -0.50 0.62
1.00
(0.98~1.01)

DCA 0.01 0 2.82 0.005
1.01
(1.01~1.01)

0.01 0.00 2.54 0.01
1.01
(1.00~1.01)

LCA -0.19 0.06 -3.04 0.002
0.83
(0.74~0.94)

-0.17 0.07 -2.47 0.01
0.84
(0.72~0.95)

UDCA 0 0 1.25 0.211
1.00
(1.00~1.01)

0.01 0.00 1.55 0.12
1.01
(1.00~1.01)

GDCA 0 0 -1.45 0.146
1.00
(0.99~1.00)

0.00 0.00 -1.03 0.30
1.00
(0.99~1.00)

GUDCA -0.01 0 -2.98 0.003
0.99
(0.98~0.99)

-0.01 0.00 -2.75 0.01
0.99
(0.98~1.00)

TDCA 0.05 0.02 3.04 0.002
1.05
(1.02~1.09)

0.05 0.02 2.76 0.01
1.05
(1.02~1.10)
Data in bold are statistically significant (P < 0.05).
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P = 0.002), GCDCA (OR: 1.01, P < 0.001), and DCA (OR: 1.01, P =

0.005) were independent risk factors for CAS. In summary, our

study not only confirms but also extends previous observational

findings from untargeted metabolomics by incorporating targeted
Frontiers in Endocrinology 09
metabolomics analyses of serum bile acid profiles in individuals

diagnosed with CAS.

Binary multifactorial logistic regression analysis and LASSO

regression analysis were employed to identify four bile acids—GCA,
BA

FIGURE 4

The screening of bile acid anti-atherosclerosis-related targets and the network diagram depicting the interactions between these targets. (A)
Screening of targets of BAs against atherosclerosis. BA represents targets related to GCA, DCA, LCA, and TDCA; AS represents targets related to AS
disease. (B) The protein-protein interaction network diagram of the four bile acids that act on AS-related targets.
BA

FIGURE 3

LASSO regression analysis and Venn diagram. (A) The least absolute shrinkage and selection operator (LASSO) regression algorithm: Log (Lambda)
values of the 15 BA individuals in the LASSO model and 6 BA species were eventually identified by LASSO regression analysis. (B) Venn diagram of
overlapping BAs (each color represents a group). M represents the bile acids that were significantly different according to the multifactorial logistic
regression model; L represents the bile acids identified by LASSO regression analysis. These two groups were intersected to obtain four bile acid
subtypes: GCA, DCA, LCA, and TDCA.
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DCA, LCA, and TDCA—that have a significant effect on CAS. It has

been demonstrated that DCA and TDCA induce the expression of

the proinflammatory cytokine IL-8 (33, 35, 36) and promote

vascular smooth muscle cell (VSMC) proliferation and migration,

which are implicated in the pathogenesis of AS (37). TDCA

primarily enhances its effects on the vasculature through

activation of the IL-6/JAK1/STAT3 signaling pathway (38–40).

However, Markus et al. (41) showed that TDCA exerts anti-

inflammatory effects by inhibiting the polarization of M1

macrophages through its action on TGR5 while suppressing the

activation of macrophage-derived T cells (42). Thus, further animal

studies are needed to explore the multiple mechanisms of TDCA in

vivo and its role in disease progression. Additionally, Prof. Ge et al.

(42) reported that GCA effectively suppressed macrophage

recruitment and the release of proinflammatory cytokines and

chemokines induced by lipopolysaccharide in a mouse
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macrophage model. Several animal experiments have suggested

that GCA may exert anti-inflammatory effects by promoting the

expression of the Fxr gene (43). LCA is a natural agonist of the

TGR5 receptor (44), and activation of TGR5 can reduce lipid uptake

by macrophages and inhibit the secretion of proinflammatory

cytokines, thus exerting anti-inflammatory effects (45).

Additionally, the anti-AS effect of LCA can be achieved by

reducing the expression of angiogenic regulators such as

metallopeptidase (MMP9) and vascular endothelial growth factor

receptor 1/2 (VEGFR1/2) and inhibiting angiogenesis (46).

However, it should be noted that both LCA and DCA are

hydrophobic bile acids that can easily penetrate cell membranes

and are toxic, with LCA being more toxic than DCA. A

concentration that is too high can cause cell death. Furthermore,

network pharmacology analysis was utilized to predict the targets of

BAs in AS treatment. Notably, the bile acid receptor FXR and the G
BA

FIGURE 5

Functional and pathway analysis of intersecting target genes. (A) GO enrichment analysis. (B) KEGG enrichment analysis.
TABLE 4 The key targets of DCA, LCA, DCA, and TDCA involved in regulating AS.

Bile Acid Source Targets Gene Degree
Closeness
Centrality

GCA, DCA Tumor Necrosis Factor TNF 50 0.7

GCA AKT Serine/Threonine Kinase 1 AKT1 39 0.64

DCA, LCA Estrogen Receptor 1 ESR1 30 0.58

DCA, LCA Peroxisome Proliferator Activated Receptor Alpha PPARA 28 0.59

GCA Angiotensin I Converting Enzyme ACE 22 0.54

DCA, LCA Bile acid receptor FXR NR1H4 22 0.55

TDCA, DCA, LCA G Protein-Coupled Bile Acid Receptor 1 GPBAR1 20 0.54

DCA, LCA Protein Tyrosine Phosphatase Receptor Type C PTPRC 19 0.52

DCA, LCA Peroxisome Proliferator Activated Receptor Delta PPARD 17 0.53

DCA, LCA
Cytochrome P450 Family 19 Subfamily A

Member 1
CYP19A1 17 0.51
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protein-coupled bile acid receptor TGR5 have been extensively

studied in recent years. For example, the activation of FXR in the

liver induces SHP to inhibit the expression of Sterol Regulatory

Element-Binding Protein-1c (SREBP-1c), thereby lowering lipid

levels in blood and preventing the development of AS (47, 48).

However, activation of FXR in the intestine may have a pro-

atherosclerotic effect. Further animal studies are required to delve

deeper into the pathological processes of AS progression potentially

involved with the multiple BA targets identified in our research,

providing potential therapeutic directions for disease treatment.

Although our study revealed a significant correlation between bile

acid levels and AS, robust experimental validation of this correlation

has not been performed. To improve our understanding,

comprehensive investigations utilizing murine models of AS are

imperative to elucidate the underlying mechanisms involved.

Performing network pharmacology to analyze these bile acid

targets and pathways offers promising avenues for future

mechanistic studies.
4.1 The significance of this study

We believe our findings are highly significant. Previous studies

have demonstrated a correlation between fasting serum total bile

acid levels and atherosclerotic disease (15, 49) but have been

inconclusive concerning alterations in circulating bile acid

profiles. Our current observational study revealed distinctions in

the serum bile acid profiles and alterations in the compositional

structure of the bile acid pool between CAS patients and healthy

controls. Simultaneously, binary logistic regression analysis was

used to examine the impact of bile acids on the occurrence of CAS.

Importantly, these correlations persisted even after meticulous

adjustment for traditional risk factors associated with AS.

Network pharmacological analysis predicted the bile acid targets

and associated pathways, offering novel insights and avenues for AS

treatment. For instance, considering DCA and TDCA as risk factors

for AS, pharmacological inhibition of their synthetic enzymes or

modulation of associated intestinal flora to lower their circulating

concentrations in the body or their proportion in the bile acid pool

may be effective in AS management. Furthermore, in terms of

experimental design, we excluded patients with known hepatic and

biliary diseases, pregnant women, and patients with malignant

tumors, the inclusion of which we believe could have confounded

the interpretation of the data.
4.2 Limitations of this study

However, it is imperative to acknowledge certain limitations

within our study. First, prospective studies should be devised to

dynamically observe changes in bile acid profiles throughout CAS

development. Second, this study was a single-center investigation

with a relatively small sample size, which may raise concerns

regarding the statistical power and generalizability of the results.

A larger sample size would enhance the credibility and applicability
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of the research findings. Third, given that bile acids may be

influenced by dietary choices, lifestyle, metabolic processes, and

genetic predispositions, biases stemming from these factors should

be meticulously addressed in future investigations.
5 Conclusions

The characterization of bile acid profiles can serve as a significant

indicator of AS risk. Bile acids have been implicated in platelet

activation and insulin resistance by activating their receptors, which

in turn initiate signaling pathways such as cAMP, PPAR, and

PL3K-AKT, potentially influencing the development of AS.
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