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Genetic associations between
gut microbiota and type 2
diabetes mediated by plasma
metabolites: a Mendelian
randomization study
XuWen Zheng, MaoBing Chen, Yi Zhuang, Liang Zhao,
YongJun Qian, Jin Xu and JinNuo Fan*

Emergency Department, Wujin People’s Hospital Affiliated with Jiangsu University and Wujin Clinical
College of Xuzhou Medical University, Changzhou, Jiangsu, China
Background: Numerous research studies have indicated a possible association

between type 2 diabetes (T2DM) and gut microbiota. To explore specific

metabolic pathways connecting gut microbiota and T2DM, we employed

Mendelian randomization (MR) and linkage disequilibrium score regression

(LDSC) techniques.

Methods: This research utilized data from genome-wide association studies

(GWAS) that are publicly accessible. We evaluated the genetic correlation

between gut microbiota and T2DM using LDSC. Causality was primarily

determined through the inverse variance weighted (IVW) method. To verify the

robustness of our results, we conducted sensitivity analyses using several

approaches, including the weighted median, MR-Egger, and MR-PRESSO. We

integrated summary effect estimates from LDSC, along with forward and reverse

MR, into a meta-analysis for T2DM using various data sources. Additionally,

mediation analysis was performed to explore the impact of plasma metabolites

on the relationship between gut microbiota and T2DM.

Results: Our study indicated a significant genetic correlation between genus

RuminococcaceaeUCG005 (Rg = −0.26, Rg_P = 2.07×10−4) and T2DM.

Moreover, the forward MR analysis identified genus RuminococcaceaeUCG010

(OR = 0.857, 95% CI 0.795, 0.924; P = 6.33×10−5) and order Clostridiales (OR =

0.936, 95% CI 0.878, 0.997; P = 0.039) as being significantly associated with a

decreased risk of T2DM. The analysis also highlighted several plasma metabolites

as significant mediators in these relationships, with metabolites like

octadecadienedioate (C18:2-DC) and branched chain 14:0 dicarboxylic acid

being notably involved.
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Conclusion: The findings demonstrate a significant impact of gut microbiota on

T2DM via plasma metabolites, suggesting potential metabolic pathways for

therapeutic targeting. This study enhances our understanding of the

microbiota’s role in T2DM pathogenesis and supports the development of

microbiota-based interventions.
KEYWORDS
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1 Introduction

Type 2 diabetes (T2DM) affects over 400 million individuals

globally, with prevalence rates continuing to soar alongside rising

obesity levels and sedentary lifestyles. The disease disproportionately

impacts aging populations, but recent trends show increasing

incidence in younger demographics as well, attributed to lifestyle

changes and genetic predispositions (1). The clinical presentation of

T2DM can vary but commonly includes symptoms like polyuria,

polydipsia, and unexplained weight loss. Additionally, T2DM leads to

significant healthcare costs and productivity losses due to

complications such as neuropathy, nephropathy, and retinopathy

(2–4). Its pathogenesis involves a combination of genetic

predisposition and environmental factors, leading to insulin

resistance and b-cell dysfunction (3, 5, 6).

Among the most promising domains in T2DM research is the

involvement of the microbiome as a potential environmental

contributor. Recent research has highlighted the complex

relationship between gut microbiota and T2DM. Observational

studies have found significant correlations between gut

microbiota diversity and T2DM (7, 8), while mendelian

randomization (MR) studies have identified specific microbial

genera such as Bifidobacterium and Lachnoclostridium, that may

causally impact T2DM risk (9, 10).

Despite these advances, a significant research gap remains in

understanding the precise mechanisms through which gut

microbiota and plasma metabolites influence T2DM. To address

this gap, we employed a combination of Linkage Disequilibrium

Score Regression (LDSC) and mediation MR. The use of genetic

variations as instrumental variables (IVs) is central to the practice of

MR, an epidemiological method aimed at improving the reliability

of causal conclusions (11). This approach provides two main

advantages: it helps to overcome the issue of confounding

variables and reduces the possibility of reverse causation, mainly

because genetic variants are allocated randomly at the time of

conception (11). LDSC is notable for its ability to evaluate genetic

correlations using summary statistics from GWAS without being

affected by overlapping samples (12). The primary aim of this

research is to delineate the pathways by which gut microbiota
02
influence T2DM through specific plasma metabolites using an MR

framework, thereby providing a clearer picture of the disease’s

etiology and pointing towards targeted interventions.

Understanding how gut microbiota and specific metabolites

influence T2DM can lead to new therapeutic strategies and improve

prevention and treatment efforts, ultimately reducing the global

burden of the disease. By focusing on the mediating role of plasma

metabolites, this study not only seeks to bridge the gap between

genetic predispositions and microbial influences but also aims to

uncover specific metabolic pathways that could be targeted for

therapeutic intervention.
2 Methods

2.1 Study design

This study made use of publicly available GWAS data, applying

IVs that met three essential criteria necessary for conducting MR

analysis (1): The genetic variants used as instruments must

demonstrate a significant association with the exposure under

investigation; (2) These variants must not have any associations with

other potential risk factors for the outcome; and (3) The effect of the

genetic variants on the outcome must occur solely through the

exposure (11). Figure 1 illustrates the overarching design of this

investigation. In the first step, we conducted LDSC, forward, and

reverse MR analyses examining the relationship between 211 gut

microbiomes and T2DM. Additionally, we performed forward MR

analyses involving 1,400 plasmametabolites associated with the disease.

Outcome data for T2DM were sourced from three distinct databases.

Meta-analysis integrated the summary effect estimates from LDSC,

forward MR, and reverse MR to assess T2DM across various data

sources. In the second step, MR analyses were performed between the

identified gut microbiomes and the identified plasma metabolites. The

indirect effects (IE) of the identified gut microbiomes on T2DM via

plasma metabolites was assessed using the product of coefficients

method (13). All studies included in the analysis were approved by

their respective institutional review boards and ethical committees, and

consent forms were obtained from all participants.
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2.2 Instrumental variable selection

The MiBioGen consortium conducted the largest genome-wide

meta-analysis to date, identifying genetic variations that influence gut

microbiota composition (14). This analysis involved 18,340

participants across 24 cohorts, with the majority being of European

origin (n = 13,266). The MiBioGen database revealed 211 gut

microbiota taxa, which included 12 unknown genera and 3

unknown families. Despite their minor representation, these

unknown taxa were not excluded from our analysis, though results

pertaining to these unidentified bacterial taxa will not be reported.

Additionally, GWASs were performed on 1,091 metabolites and 309

metabolite ratios involving 8,299 participants from the Canadian

Longitudinal Study on Aging (CLSA) cohort (15). To align with the

first assumption of MR analysis, a significance threshold of P < 1×10−5

was employed for gut microbiota and plasma metabolites identified

through GWASs, acknowledging that this rarely meets the genome-

wide significance threshold (P < 10−8) (16). Furthermore, to adhere to

MR’s requirement of no linkage disequilibrium (LD) among IVs, IVs

were selected based on R2 < 0.001 and a clumping distance of 10,000 kb

to maintain independent single nucleotide polymorphisms (SNPs). To

mitigate the influence of weak IVs, the F-statistic (F = beta²/se²) was

calculated for each SNP, discarding IVs with an F-statistic < 10 as weak

(17, 18). Harmonization of SNPs in both the exposure and outcome

datasets was performed to match alternative and reference alleles, thus

eliminating SNPs with mismatched alleles to reduce inconsistencies.

Ambiguous palindromic SNPs with minor allele frequencies close to

0.5 were excluded from the MR analyses. For the second assumption,

MR-Egger intercept test and MR pleiotropy residual sum and outlier
Frontiers in Endocrinology 03
(MR-PRESSO) test were conducted to identify pleiotropy, excluding

MR estimates with significant pleiotropy from the meta-analysis (P for

intercept < 0.05 or P for global test < 0.05). Lastly, for the third

assumption, SNPs significantly associated with the outcome (P <

1×10−5) were omitted from the MR analysis to ensure the validity of

causal inferences. The IVs associated with all gut microbiota taxa and

plasma metabolites were comprehensively listed in Supplementary

Tables 1, 2.
2.3 T2DM data sources

Summary-level data for T2DM were derived from three major

sources: the Pan-UKB GWAS Version 0.4, released on March 16,

2023 (19); the FinnGen GWAS Release 10, released on December

18, 2023 (20); and the Genetic Epidemiology Research on Aging

(GERA) (21). The total sample size encompassed 72,194 cases and

784,605 controls of European ancestry. The Pan-UKB GWAS

utilized data from the UK Biobank, an extensive open-access

database containing genotype information for hundreds of

thousands of individuals, alongside with electronic health records

and survey responses, aimed at studying populations of diverse

ancestries (19). The FinnGen GWAS represents a comprehensive

national genetic study, integrating genetic data with electronic

health records (20). The GERA cohort, focused on age-related

diseases with an average participant age of 63, is well-equipped to

study a wide variety of clinically defined age-related conditions (21).

Detailed descriptions of sample sizes, adjustments, and diagnostic

criteria used in these studies are provided in Table 1.
FIGURE 1

Three assumptions of MR analysis and overview of the study design. MR, mendelian randomization; LDSC, Linkage Disequilibrium Score Regression;
T2DM, type 2 diabetes.
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2.4 Statistical analysis

We conducted an analysis to explore the genetic correlation

between gut microbiota and T2DM utilizing LDSC. To refine the

GWAS summary data, we used HapMap3 references, excluding non-

SNP variants like insertions and deletions (indels), as well as SNPs with

ambiguous strand orientation, duplicates, or a minor allele frequency

below 0.01. LDSC is adept at determining genetic correlations using

GWAS summary statistics. It assesses the relationship between LD and

test statistics to identify whether observed inflation is due to genuine

polygenic signals or other biases (12). This approach is unaffected by

sample overlap (22). Genetic covariance is calculated bymultiplying the

z-scores of variants associated with Trait 1 by those associated with

Trait 2, and subsequently regressing these products against the LD

score (23). After adjusting this covariance by SNP heritability, the

genetic correlation becomes clear. Estimates of genetic correlation

between gut microbiota and T2DM from three data sources were

combined through fixed-effects meta-analysis.

MR analyses were performed to examine the relationships between

gut microbiota and T2DM, plasma metabolites and T2DM, as well as

gut microbiota and plasma metabolites. The primary MR estimate was

calculated using the inverse variance weighted (IVW) method within a

random-effects framework for causal analysis. The IVWmethod is best

used when the MR assumptions are believed to hold true across all

genetic variants. It provides the most precise estimate when there is no

horizontal pleiotropy (11). To detect horizontal pleiotropy and ensure

the reliability of our data, we utilized three sensitivity analyses: the

weighted median, MR-Egger, and MR-PRESSO. The weighted median

method is particularly useful when there is concern that some genetic

variants may be invalid instruments due to pleiotropy. It provides a

robust estimate that is less sensitive to invalid instruments compared to
Frontiers in Endocrinology 04
the IVW method (24). MR-Egger is particularly useful when there is

concern about directional pleiotropy. It provides a more conservative

estimate and tests for the presence of pleiotropy through the intercept

term. If the intercept is significantly different from zero, this indicates

the presence of directional pleiotropy (25). MR-PRESSO is best used

when there is evidence or suspicion of pleiotropy. It improves the

reliability of causal estimates by removing the influence of outlier

variants that violate the exclusion restriction assumption (26). SNP

heterogeneity was evaluated using the CochranQ value. TheMR-Egger

intercept test was employed to detect horizontal pleiotropic effects.

Combined estimates from IVW and sensitivity analyses were

integrated using fixed-effects meta-analysis. Exposures represented by

fewer than four SNPs were omitted from the analysis, as MR-PRESSO

requires a minimum of four instrumental SNPs. Estimates indicating

significant pleiotropy (P for intercept test < 0.05 or P for global test <

0.05) were also excluded from the meta-analysis.

A two-stepMR analysis assessed if plasma metabolites mediated

the influence of identified taxa on T2DM (27). To streamline the

process, initial MR analyses were conducted between plasma

metabolites and T2DM, followed by analyses between identified

gut microbiomes and plasma metabolites. The IE of the gut

microbiome on T2DM via plasma metabolites was assessed using

the product of coefficients method (13). To calculate the mediated

proportion of T2DM effect by plasma metabolites, the IE was

divided by the total effect (28).

Bonferroni’s correction was applied separately to both LDSC

and MR analyses in the meta-analyses to minimize the false

discovery rate (29). LDSC correlations with p-values between

3.65×10−4 (0.05/137) and 0.05 were suggestive, while those with

p-values less than 3.65×10−4 were significant. MR associations

between gut microbiota and T2DM were suggestive if IVW p-
TABLE 1 Detailed information on used summary-level data.

Exposure
or
outcome

Database
Participants
included
in analysis

Adjustments ICD Web source

Gut
microbiota

MiBioGen
18,340 multiple-
descent
individuals

age, sex, technical covariates and genetic
principal components

https://mibiogen.gcc.rug.nl/

Plasma
metabolite

EBI database
8,299
European
individuals

age, sex, hour since last meal or drink,
genotyping batch and the first ten genetic
principal components

https://www.ebi.ac.uk/gwas/

T2DM

FinnGen

42,593 cases and
337,038 controls
of
European ancestry

sex, age, genotyping batch and ten
principal components

ICD-10: E11; ICD-9: 250.A https://r10.finngen.fi/

Pan-UKB

22,634 cases and
397,897 controls
of
European ancestry

sex, age, genotyping array, and the first 8
principal components

ICD-10: E11
https://
pan.ukbb.broadinstitute.org/
downloads/

GERA
6,967 cases and
49,670 controls of
European ancestry

seven derived principal components, sex,
and age

ICD-9: 250.00, 250.02,
250.10, 250.12, 250.20,
250.22, 250.30, 250.32,
250.40, 250.42, 250.50,
250.52, 250.60, 250.62,
250.70, 250.72, 250.80,
250.82, 250.90, 250.92

http://
cg.bsc.es/
gera_summary_stats/
frontiersin.org

https://mibiogen.gcc.rug.nl/
https://www.ebi.ac.uk/gwas/
https://r10.finngen.fi/
https://pan.ukbb.broadinstitute.org/downloads/
https://pan.ukbb.broadinstitute.org/downloads/
https://pan.ukbb.broadinstitute.org/downloads/
http://cg.bsc.es/gera_summary_stats/
http://cg.bsc.es/gera_summary_stats/
http://cg.bsc.es/gera_summary_stats/
https://doi.org/10.3389/fendo.2024.1430675
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zheng et al. 10.3389/fendo.2024.1430675
values were between 2.37×10−4 (0.05/211) and 0.05, and significant

if p-values were less than 2.37×10−4 or if both IVW and LDSC p-

values were less than 0.05. MR associations between plasma

metabolites and T2DM were suggestive if IVW p-values ranged

from 3.57×10−5 (0.05/1400) to 0.05, and were considered significant

if p-values were less than 3.57×10−5. All statistical analyses were

performed using R software (version 4.3.1), utilizing the

TwoSampleMR, GenomicSEM, and meta packages.
3 Results

3.1 LDSC analysis between gut microbiota
and T2DM

Due to constraints like low heritability and small sample sizes,

certain bacterial taxa are not suitable for the analysis mentioned

above. We performed a meta-analysis of LDSC to evaluate the genetic

correlation between 137 gut microbes and T2DM, including 7

unknown taxa (Figure 2). As shown in Table 2, LDSC showed a

significant negative correlation between genetically predicted T2DM

and genus RuminococcaceaeUCG005 (Rg = −0.26, 95% CI −0.39,

−0.12; Rg_P = 2.07×10−4). Furthermore, we identified a suggestive
Frontiers in Endocrinology 05
genetic correlation between genetically predicted T2DM and genus

RuminococcaceaeUCG010 (Rg = −0.37, 95% CI −0.59, −0.14; Rg_P =

1.19×10−3), order Clostridiales (Rg = − 0.23, 95% CI −0.41, −0.06;

Rg_P = 0.010), genus Parabacteroides (Rg = 0.21, 95% CI 0.05, 0.38;

Rg_P = 0.012), family Porphyromonadaceae (Rg = 0.15, 95% CI 0.02,

0.27; Rg_P = 0.022), genus Sutterella (Rg = 0.25, 95% CI 0.07, 0.44;

Rg_P = 0.008), genus Lachnoclostridium (Rg = 0.17, 95% CI 0.05,

0.28; Rg_P = 0.005) and other 25 taxa. No heterogeneity or mild

heterogeneity was observed across most of the results. Detailed

information regarding all genetic correlation results is listed in

Supplementary Table 3.
3.2 Forward MR analysis between gut
microbiota and T2DM

After the IVs selection procedure, one bacterial taxon (order

Lactobacillales) was excluded from the meta-analysis due to

significant pleiotropy. Then, meta-analyses of 210 gut bacteria were

conducted, including 15 unknown taxa (Supplementary Table 4).

Finally, we identified two bacterial taxa significantly associated with

T2DM, and eight bacterial taxa suggestively associated with T2DM.

The combined results of IVW method revealed that genetic
FIGURE 2

Circular heat map of meta-analysis of genetic correlation between gut microbiota and T2DM. Rg, estimate of genetic correlation; Rg_P, p-value
for Rg.
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predisposition to genus RuminococcaceaeUCG010 (OR = 0.857, 95%

CI 0.795, 0.924; P = 6.33×10−5, Rg_P = 1.19×10−3) and order

Clostridiales (OR = 0.936, 95% CI 0.878, 0.997; P = 0.039, Rg_P =

0.010) were significantly and other four bacterial taxa were suggestively

associated with a decreased risk of T2DM. Additionally, we found that

genetically predicted genera Actinomyces (OR = 1.113, 95% CI 1.046,

1.185; P = 7.89×10−4), Alistipes (OR = 1.095, 95% CI 1.007, 1.191; P =

0.033), Anaerostipes (OR = 1.091, 95% CI 1.020, 1.168; P = 0.011), and
Frontiers in Endocrinology 06
Eubacteriumnodatumgroup (OR = 1.036, 95% CI 1.003, 1.070; P =

0.030) were suggestively associated with an increased risk of T2DM

(Figure 3). All sensitivity analyses confirmed the consistency of the

reported associations. The Cochran Q test, used to assess SNP

heterogeneity, found no significant heterogeneity in most MR

estimates within the meta-analysis. Pleiotropy did not need to be

considered in this study due to the removal of the MR estimates with

significant pleiotropy. Most meta-analysis results showed no or only
TABLE 2 Meta-analysis of genetic correlation between gut microbiota and T2DM from three large databases.

Exposure Rg Rg_Se Rg_P I2 P_heterogeneity

genus RuminococcaceaeUCG005 -0.258 0.070 0.0002 0 0.570

family Christensenellaceae -0.248 0.071 0.0005 0 0.818

family Alcaligenaceae id.2875 1.018 0.296 0.0006 0 0.988

genus RuminococcaceaeUCG010 -0.366 0.113 0.0012 0.046 0.350

genus RuminococcaceaeUCG014 -0.331 0.103 0.0013 0 0.782

family Ruminococcaceae id.2050 -0.330 0.104 0.0015 0.287 0.246

genus FamilyXIIIAD3011group -0.271 0.086 0.0017 0.656 0.055

phylum Actinobacteria 0.223 0.074 0.0028 0 0.681

genus RuminococcaceaeUCG002 -0.289 0.100 0.0040 0.571 0.097

genus Lachnoclostridium 0.168 0.059 0.0047 0 0.565

family Veillonellaceae 0.267 0.095 0.0051 0 0.865

genus
ChristensenellaceaeR 7group

-0.173 0.062 0.0051 0 0.650

class Betaproteobacteria 0.814 0.293 0.0055 0 0.872

genus Sutterella 0.251 0.094 0.0077 0 0.763

genus Bifidobacterium 0.152 0.057 0.0082 0 0.892

genus Roseburia 0.260 0.099 0.0087 0 0.586

class Negativicutes 0.528 0.203 0.0094 0 0.491

order Selenomonadales 0.528 0.203 0.0094 0 0.491

class Clostridia -0.237 0.092 0.0097 0.225 0.275

class Actinobacteria 0.136 0.053 0.0102 0 0.690

order Clostridiales -0.232 0.090 0.0102 0.202 0.286

family Bifidobacteriaceae 0.140 0.056 0.0123 0 0.775

order Bifidobacteriales 0.140 0.056 0.0123 0 0.775

genus Parabacteroides 0.212 0.085 0.0124 0 0.891

genus Subdoligranulum -0.238 0.098 0.0156 0.102 0.328

genus
RuminococcaceaeNK4A214group

-0.292 0.121 0.0159 0 0.983

family Porphyromonadaceae 0.148 0.065 0.0222 0 0.803

genus Intestinibacter 0.174 0.080 0.0286 0 0.765

genus Collinsella 1.165 0.550 0.0340 0 0.715

genus Eubacteriumrectalegroup 0.377 0.185 0.0410 0 0.967

genus LachnospiraceaeUCG004 0.165 0.082 0.0443 0 0.704

genus Anaerotruncus -0.183 0.093 0.0495 0.182 0.295
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mild heterogeneity. All the combined estimates are depicted

in Figure 4.
3.3 Reverse MR analysis between gut
microbiota and T2DM

Using the same IVs selection procedure for gut microbiota, two

taxa (genus Coprococcus3 and phylum Actinobacteria) were excluded

from the meta-analysis due to the significant IV pleiotropy of T2DM.

Subsequently, 209 meta-analyses were performed, revealing a

significant association between T2DM and four bacterial taxa, with a

suggestive association for an additional 13 taxa (Supplementary

Table 5). The combined results of IVW method revealed that

genetically predicted T2DM was significantly associated with an

increased risk of genus Parabacteroides (Beta = 0.029, 95% CI 0.010,

0.048; P = 0.003, Rg_P = 0.012), family Porphyromonadaceae (Beta =

0.022, 95% CI 0.004, 0.040; P = 0.018, Rg_P = 0.022), genus Sutterella

(Beta = 0.024, 95% CI 0.003, 0.046; P = 0.025, Rg_P = 0.008), and genus
Frontiers in Endocrinology 07
Lachnoclostridium (Beta = 0.020, 95% CI 0.001, 0.038; P = 0.035, Rg_P

= 0.005) (Figure 5). The abovementioned associations were consistent

with all sensitivity analyses. The Cochran Q test revealed no

heterogeneity in the MR estimates included in the meta-analysis.

Our study design obviated the need to consider pleiotropy. Most

meta-analysis results exhibited no or only mild heterogeneity.

Figure 6 displays all combined estimates. Bilateral MR analysis

showed no bidirectional causality between gut microbiota and T2DM.
3.4 Forward MR analysis between plasma
metabolites and T2DM, and MR analysis
between identified gut microbiota and
identified plasma metabolites

The forward MR analysis identified 109 plasma metabolites

genetically predicted to be suggestively causally associated with

T2DM (Supplementary Table 6). Subsequently, 436 MR analyses

were conducted between the four previously identified bacterial taxa
FIGURE 3

Forest plot of forward MR analysis between gut microbiota and T2DM. IVs, instrumental variables; CI, confident interval; P_heterogeneity, p-value of
heterogeneity for meta-analysis; P_for_Q, p-value for Cochran Q test; P_intercept, p-value for MR-Egger intercept test; P_global, p-value for Global
test; *, excluded from the meta-analysis due to SNPs less than 4 or significant pleiotropy.
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and the 109 plasma metabolites (Supplementary Table 7). Among

these, a genetic predisposition to the genus Anaerostipes was

causally linked to lower levels of octadecadienedioate (C18:2-DC)

(Beta = −0.289, 95% CI −0.462, −0.117; P = 0.001) and another

plasma metabolite. The genus Actinomyces, as genetically predicted,

was causally associated with the phosphate to glutamate ratio (Beta

= −0.171, 95% CI −0.296, −0.045; P = 0.008), the taurine to

glutamate ratio (Beta = −0.194, 95% CI −0.321, −0.067; P =

0.003), and six other plasma metabolites. Genetically predicted

genus Alistipes was causally associated with branched chain 14:0

dicarboxylic acid levels (Beta = −0.225, 95% CI −0.395, −0.055; P =

0.010) and four other plasma metabolites. The genetically predicted

genus Eubacteriumnodatumgroup was causally linked to a

decreased risk of a specific plasma metabolite (Figure 7).
3.5 Mediation analysis

Using the product of coefficients method, we calculated the IE

of 16 identified pairs of gut microbiota and plasma metabolites
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(Supplementary Table 8). Specifically, the genus Anaerostipes

indirectly influenced T2DM through octadecadienedioate levels,

with an IE of 0.009 (95% CI 0.0003, 0.0177; P = 0.043) and a

mediated proportion of 10.29%. The genus Actinomyces indirectly

impacted T2DM through the phosphate to glutamate ratio, with an

IE of 0.0125 (95% CI 0.0007, 0.0242; P = 0.039), and the taurine to

glutamate ratio, with an IE of 0.0138 (95% CI 0.0012, 0.0264;

P = 0.037); the mediated proportions were 11.68% and 12.90%,

respectively. The genus Alistipes indirectly influenced T2DM

through branched chain 14:0 dicarboxylic acid levels, with an IE

of 0.0138 (95% CI 0.0012, 0.0264; P = 0.032) and a mediated

proportion of 21.19% (Table 3).
4 Discussion

In our study, significant negative genetic correlations were

identified between T2DM and specific gut microbiota, particularly

the genus RuminococcaceaeUCG010 and order Clostridiales. These

taxa were also causally associated with a decreased risk of T2DM,
FIGURE 4

Circular heat map of meta-analysis of forward MR analysis between gut microbiota and T2DM. IVW, Inverse-Variance Weighted; ME, MR-Egger; WM,
Weighted median; MP, MR-PRESSO. The color variations represented the size of the p-value. The scatter plots reflect OR, with OR > 1 labeled red
and OR < 1 labeled green.
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suggesting a protective effect against the disease. Additionally, the

study highlighted plasma metabolites as mediators in the

relationship between gut microbiota and T2DM. Specific

metabolites, such as octadecadienedioate and branched chain 14:0

dicarboxylic acid, were implicated in these interactions. For

instance, the genus Anaerostipes was associated with a decreased

risk of octadecadienedioate levels, indirectly affecting T2DM risk.
Frontiers in Endocrinology 09
These findings provide valuable insights into the potential pathways

through which gut microbiota influence T2DM and highlight the

role of plasma metabolites as critical mediators.

Our research findings align with emerging theories on the impact

of specific gut microbiota on metabolic diseases, particularly T2DM.

An MR analysis identified a causal relationship between

RuminococcaceaeUCG010 and a reduced risk of T2DM. These
FIGURE 5

Forest plot of reverse MR analysis between gut microbiota and T2DM. IVs, instrumental variables; CI, confident interval; P_heterogeneity, p-value of
heterogeneity for meta-analysis; P_for_Q, p-value for Cochran Q test; P_intercept, p-value for MR-Egger intercept test; P_global, p-value for Global
test; *, excluded from the meta-analysis due to SNPs less than 4 or significant pleiotropy.
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FIGURE 6

Circular heat map of meta-analysis of reverse MR analysis between gut microbiota and T2DM. IVW, Inverse-Variance Weighted; ME, MR-Egger; WM,
Weighted median; MP, MR-PRESSO. The color variations represented the size of the p-value. The scatter plots reflect Beta, with Beta > 0 labeled red
and Beta < 0 labeled green.
FIGURE 7

Forest plot of MR analysis between identified gut microbiota and identified plasma metabolites, and between identified plasma metabolites and
T2DM. CI, confident interval.
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bacteria produce short-chain fatty acids (SCFAs) like butyrate and

propionate, which enhance gut barrier function, modulate

inflammation, and improve insulin sensitivity (9). Another study

found that genera like RuminococcaceaeUCG010 significantly

influence glycemic responses to treatments in T2DM patients,

highlighting their role in metabolic health and diabetes

management (30). Additionally, species like Clostridium butyricum,

known for butyrate production, have shown in diabetic mouse

models to improve diabetes markers, supporting their beneficial

role in managing hyperglycemia and metabolic dysfunctions (31).

Previous studies have identified that Actinomyces species, such

as Streptomyces, can produce significant amounts of glutamic acid, a

key neurotransmitter and metabolic intermediate in both bacterial

and human cells (32). This aligns with our findings, which showed

that the genus Actinomyces might decrease the phosphate to

glutamate ratio and the taurine to glutamate ratio by elevating

glutamic acid levels. Anaerostipes are known for producing SCFAs

through the fermentation of dietary fibers, potentially influencing

various metabolic intermediates, including octadecadienedioate (33,

34). Similarly, the genus Alistipes has been implicated in the

metabolism of branched-chain fatty acids (BCFAs). Alistipes

species possess unique enzymatic capabilities that allow them to

interact with complex lipid molecules, potentially leading to the

observed decrease in branched-chain 14:0 dicarboxylic acid levels

(35). However, the specific mechanisms by which Anaerostipes

decrease octadecadienedioate levels and Alistipes decrease

branched-chain 14:0 dicarboxylic acid levels were not detailed in

the available literature. Although we demonstrated a positive causal

relationship, further exploration is necessary to clarify

these mechanisms.

Our study showed that decreased phosphate to glutamate and

taurine to glutamate ratios could increase T2DM risk, likely due to

elevated glutamate levels. Glutamate acts as an intracellular

messenger in pancreatic b-cells, linking glucose metabolism to

insulin exocytosis. However, excessive intracellular glutamate can

inhibit insulin secretion by disrupting calcium signaling necessary for

insulin granule release. Lehtihet et al. found that increased

L-glutamate levels inhibit protein phosphatases, promoting insulin

exocytosis in a Ca2+-independent manner. This dysregulation can

initially cause excessive insulin secretion, followed by b-cell
exhaustion and decreased insulin output (36). Excessive glutamate

can also cause excitotoxicity, leading to b-cell death or dysfunction
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by overactivating glutamate receptors and subsequent calcium

influx, triggering apoptotic pathways. Maechler et al. highlighted

that while intracellular glutamate amplifies insulin secretion,

extracellular glutamate can activate ionotropic receptors,

slowing insulin exocytosis and contributing to b-cell dysfunction
(37). Octadecadienedioate is a metabolite linked to fatty acid

metabolism. Changes in its levels can reflect disturbances in fatty

acid metabolism, common in T2DM patients (38). Decreased

octadecadienedioate levels can disrupt fatty acid metabolism,

leading to lipid accumulation, inflammation, mitochondrial

dysfunction, altered lipid signaling, and genetic/epigenetic changes,

collectively impairing insulin sensitivity and increasing T2DM risk.

For example, decreased octadecadienedioate levels can lead to lipid

accumulation in non-adipose tissues like liver and muscle, where

excess lipids activate serine/threonine kinases like PKC, which

phosphorylate insulin receptor substrate-1 (IRS-1) on serine

residues, impairing IRS-1’s ability to activate downstream insulin

signaling, reducing glucose uptake by cells (39). Additionally,

decreased octadecadienedioate levels can disrupt mitochondrial

function, impairing mitochondrial fatty acid oxidation and

resulting in diacylglycerol (DAG) and ceramide accumulation,

which activate PKC and other kinases that impair insulin signaling

(40). Branched-chain 14:0 dicarboxylic acid, a BCFA with 14 carbon

atoms and two carboxyl groups, is of interest due to its unique

metabolic pathways and potential health implications. BCFAs are

implicated in enhancing insulin sensitivity. Studies show that higher

levels of BCFAs, like odd-chain fatty acids (C15:0 and C17:0), are

associated with better insulin sensitivity and lower T2DM risk. These

fatty acids improve insulin signaling pathways, facilitating better

glucose uptake by cells and reducing blood glucose levels (41).

Additionally, BCFAs regulate glucose and lipid metabolism,

enhancing mitochondrial function and fatty acid oxidation,

maintaining energy balance, and preventing lipid accumulation in

tissues, a common issue in T2DM. Enhanced lipid metabolism

through BCFAs reduces lipotoxicity and improves insulin action

(42). This aligns with our observations that reduced levels of

branched-chain 14:0 dicarboxylic acid are associated with increased

T2DM risk. Understanding how these metabolites interact with

metabolic and cellular processes can help elucidate T2DM

pathophysiology and identify new therapeutic targets.

To elaborate on the impact of metabolic disturbances on overall

health, maintaining gut eubiosis is crucial for managing T2DM and
TABLE 3 Mediation analysis between gut microbiota, plasma metabolites, and T2DM.

Gut
microbiota

Metabolite
Total effect EO
(95% CI)

Effect EM
(95% CI)

Effect MO
(95% CI)

Indirect effect
(95% CI)

Mediated
proportion

genus
Anaerostipes

Octadecadienedioate (C18:2-
DC) levels

0.0875 (0.02, 0.155)
-0.2894
(-0.4619, -0.1169)

-0.031
(-0.0547, -0.0074)

0.009 (0.0003,
0.0177) P=0.043

10.29%

genus
Actinomyces

Phosphate to glutamate ratio 0.107 (0.0445, 0.1694)
-0.1706
(-0.2962, -0.045)

-0.0731
(-0.1158, -0.0304)

0.0125 (0.0007,
0.0242) P=0.039

11.68%

genus Alistipes
Branched chain 14:0
dicarboxylic acid levels

0.0911 (0.0073, 0.1749)
-0.2252
(-0.3955, -0.0548)

-0.0859
(-0.1338, -0.038)

0.0193 (0.0012,
0.0375) P=0.037

21.19%

genus
Actinomyces

Taurine to glutamate ratio 0.107 (0.0445, 0.1694)
-0.1939
(-0.3205, -0.0673)

-0.0712
(-0.1167, -0.0257)

0.0138 (0.0012,
0.0264) P=0.032

12.90%
EO, exposure to outcome; EM, exposure to mediator; MO, mediator to outcome.
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enhancing overall well-being. A diet rich in fiber, prebiotics, and

probiotics supports the growth of beneficial gut bacteria. Foods such

as fruits, vegetables, whole grains, and fermented products like

yogurt and kefir are particularly beneficial (43). Reducing the intake

of processed foods, sugars, and artificial additives helps maintain a

balanced gut microbiota (44). Regular physical activity, adequate

hydration, and stress management are important lifestyle factors

that contribute to gut health (45). Taking probiotic supplements can

provide additional support, especially after antibiotic treatments

that disrupt gut microbiota balance (46). These interventions

promote a healthy and diverse gut microbiota, essential for

overall health and well-being.

This study robustly applies MR and LDSC to elucidate the

complex interplay between gut microbiota, plasma metabolites, and

T2DM. A primary strength of this approach is the significant

reduction in confounding factors, enhancing the reliability of

causal inferences. The comprehensive use of multiple outcome

sources and sensitivity analyses further substantiates the

robustness of our findings, mitigating potential biases such as

pleiotropy and population stratification. However, the study’s

strength lies not only in its current findings but also in setting a

foundation for future research. Future studies should include a

broader range of ethnic groups, as our data primarily comes from

individuals of European descent. Expanding to other populations

would help determine if these genetic associations hold universally.

While our study identifies significant associations and potential

pathways, it does not fully unravel the biological mechanisms at

play. Employing cutting-edge technologies like single-cell RNA

sequencing and advanced computational models could uncover

the microbial species and their roles in T2DM.

Assessing the results of our study requires an understanding of

its limitations. Firstly, the GWAS data related to gut microbiota

were collected from 18,340 participants across various ethnic

backgrounds. However, the T2DM GWAS summary statistics

were derived exclusively from individuals of European descent.

This discrepancy could limit the generalizability of our findings

across different ethnicities and demographic groups. Though nearly

80% of the gut microbiota data from these GWAS were from

European populations, further research involving diverse

populations is necessary to validate our results and ensure

broader applicability. Secondly, although MR methods help

reduce confounding and reverse causation, potential biases still

exist. For instance, pleiotropy, where genetic variants influence

multiple traits, could bias the causal estimates. We used MR-

Egger and MR-PRESSO to detect and adjust for pleiotropy, but

these methods have limitations and may not entirely eliminate

pleiotropic effects. Thirdly, there are slight discrepancies between

different datasets. However, the overall heterogeneity remains

minimal, confirming the stability and reliability of our results.

Lastly, the lack of detailed data precluded stratified analyses by

age and gender, inhibiting our ability to explore potential

differences across various demographics.

Our findings contribute to the growing research on the gut

microbiota’s role in metabolic diseases, particularly T2DM. They

support theories suggesting that specific gut microbiota influence
Frontiers in Endocrinology 12
metabolic health through various mechanisms. For instance, the

protective role of RuminococcaceaeUCG010 and Clostridiales in

reducing T2DM risk supports studies indicating their involvement

in enhancing gut barrier function and improving insulin sensitivity.

Our study also highlights new metabolic pathways, such as those

involving octadecadienedioate and branched-chain 14:0 dicarboxylic

acid, through which gut microbiota may influence T2DM. This

expands our understanding of the interplay between microbial

metabolites and host metabolism, suggesting potential targets for

therapeutic interventions. Modulating specific gut bacteria to alter

metabolite levels could improve metabolic outcomes. These findings

both align with and challenge current theories. They corroborate the

role of gut microbiota in metabolic regulation while emphasizing the

importance of considering specific microbial taxa and their metabolic

products in T2DM pathogenesis. This nuanced perspective can guide

future research and clinical strategies aimed at preventing and

managing T2DM through microbiota-based interventions.
5 Conclusion

Our study highlights significant genetic correlations between

gut microbiota and T2DM, mediated through plasma metabolites.

The identification of specific microbial taxa, such as genus

RuminococcaceaeUCG010 and order Clostridiales, as protective

factors against T2DM, underscores their potential as therapeutic

targets. This research advances the field by elucidating the

metabolic pathways linking gut microbiota to T2DM, paving the

way for microbiota-based interventions. Future research should

validate these findings across diverse populations and employ

advanced techniques like single-cell RNA sequencing to further

explore the biological mechanisms involved. Our results advocate

for the development of therapeutic strategies targeting gut microbiota

to improve metabolic health and manage T2DM, offering new

avenues for personalized medicine and dietary interventions.
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