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The application and clinical
translation of the self-evolving
machine learning methods in
predicting diabetic
retinopathy and visualizing
clinical transformation
Binbin Li1*, Liqun Hu1, Siqing Zhang2, Shaojun Li1, Wei Tang1

and Guishang Chen1

1Department of Ophthalmology, Ganzhou people’s Hospital, Ganzhou, China, 2Department of
Endocrinology, Ganzhou people’s Hospital, Ganzhou, China
Objective: This study aims to analyze the application and clinical translation value

of the self-evolving machine learning methods in predicting diabetic retinopathy

and visualizing clinical outcomes.

Methods: A retrospective studywas conducted on 300 diabetic patients admitted to

our hospital between January 2022 and October 2023. The patients were divided

into a diabetic retinopathy group (n=150) and a non-diabetic retinopathy group

(n=150). The improved Beetle Antennae Search (IBAS) was used for hyperparameter

optimization inmachine learning, and a self-evolvingmachine learningmodel based

on XGBoost was developed. Value analysis was performed on the predictive features

for diabetic retinopathy selected through multifactor logistic regression analysis,

followed by the construction of a visualization system to calculate the risk of diabetic

retinopathy occurrence.

Results:Multifactor logistic regression analysis revealed that beingmale, having a

longer disease duration, higher systolic blood pressure, fasting blood glucose,

glycosylated hemoglobin, low-density lipoprotein cholesterol, and urine

albumin-to-creatinine ratio were risk factors for the development of diabetic

retinopathy, while non-pharmacological treatment was a protective factor. The

self-evolving machine learning model demonstrated significant performance

advantages in early diagnosis and prediction of diabetic retinopathy occurrence.

Conclusion: The application of the self-evolving machine learning models can

assist in identifying features associated with diabetic retinopathy in clinical

settings, enabling early prediction of disease occurrence and aiding in the

formulation of treatment plans to improve patient prognosis.
KEYWORDS

diabetic retinopathy, self-evolving machine learning, diagnostic prediction, visualizing
clinical transformation, artificial intelligence
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1 Introduction

As lifestyles evolve, the incidence of diabetes in China is

escalating rapidly. This condition is typified by compromised

insulin secretion or functionality, with elevated blood glucose

levels serving as the principal clinical indicator. Chronic

hyperglycemia can precipitate microvascular complications,

significantly deteriorating patient outcomes (1, 2). Diabetic

retinopathy, a prevalent and severe microvascular sequel of

diabetes, is most commonly observed in individuals with type 2

diabetes. This complication can impair the retinal microvascular

network, leading to capillary engorgement, disruption of the blood-

retinal barrier, exudation, macular edema, and visual impairment. If

unaddressed, these changes may progress, causing distortion of the

retinal microvasculature, retinal detachment, and potentially

culminating in blindness (3, 4). Diabetic retinopathy is associated

with factors such as vitreous or preretinal hemorrhage, macular

edema, and alterations in macular pigment. It primarily stems from

chronic hyperglycemia-induced destabilization of the retinal

vascular system, characterized by occlusive circulatory disorders

in the retinal vessels (5, 6). Research indicates that the duration of

diabetes, patient age, glycemic control, treatment modalities, and

other factors significantly influence the development of diabetic

retinopathy. Consequently, proactive early screening, identification

of pertinent risk factors, and educating patients on preventive

measures and treatment options are imperative for mitigating

disease progression and reducing the risk of vision loss (7, 8).

In recent years, numerous studies, both domestic and

international, have employed generalized linear models to develop

predictive models for diabetic retinopathy, demonstrating robust

predictive capabilities and clinical efficacy. With the swift

progression of machine learning, continuously evolving algorithms

have significantly advanced artificial intelligence technologies. Self-

evolving machine learning has been effectively applied in the

screening and diagnosis of various ophthalmic conditions,

including retinal diseases, glaucoma, cataracts, and corneal lesions.

This approach minimizes human involvement in data preprocessing,

feature engineering, model selection, and parameter tuning by

automating the modeling processes (9, 10). The distinct advantage

of the self-evolvingmachine learning resides in its ability to adapt and

enhance its predictive accuracy over time, reflecting the dynamic

progression of the diseases it aims to forecast. This transformative

capability holds the potential to revolutionize early screening and

prognosis of diabetic retinopathy, signaling a paradigm shift in the

management of this challenging condition. The importance of this

research extends beyond its technical innovation, focusing critically

on its potential to redefine clinical practices by promoting a proactive

and personalized approach to patient care. By exploring the

application and clinical translation of the self-evolving machine

learning methods, this study seeks to pave the way for more

effective, personalized interventions, thereby reshaping the

management landscape of diabetic retinopathy. Through this

investigation, we aim not only to highlight the significance of these

innovative methods but also to usher in a new era of predictive

modeling that prioritizes clinical impact and patient outcomes.
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2 Materials and methods

2.1 Subjects

A cohort of 300 diabetic patients admitted to our hospital from

January 2022 to October 2023 was selected for a retrospective study.

The flow of participant selection is detailed in Figure 1. Patients

were stratified into two groups: the Diabetic Retinopathy Group

(n=150) and the Non-Diabetic Retinopathy Group (n=150), based

on the presence or absence of diabetic retinopathy. Figure 1

provides a detailed comparison of baseline characteristics between

these groups. Informed consent was obtained from all participants

and their families, and the study was conducted with the approval of

the hospital’s ethics committee.

Inclusion criteria: 1) Diagnosis consistent with the Diabetes

Management Consensus (11) or the Clinical Practice Guidelines for

Diabetic Retinopathy (12); 2) Clear fundus examination images;

3) Complete clinical data.

Exclusion criteria: 1) Presence of other endocrine

disorders; 2) Presence of severe mental illness; 3) Presence of

malignant tumors.
2.2 Methods

2.2.1 Clinical data
Clinical data were collected for all participating patients,

encompassing 19 indicators: gender, age, duration of diabetes,

smoking history, history of alcohol consumption, non-

pharmacological treatments, serum creatinine, systolic blood

pressure, diastolic blood pressure, fasting blood glucose, 2-hour

postprandial blood glucose, body mass index, glycosylated
FIGURE 1

Flow chart of patient enrollment.
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hemoglobin, high-density lipoprotein cholesterol, low-density

lipoprotein cholesterol, total cholesterol, triglycerides, blood urea

nitrogen, and the urine albumin-to-creatinine ratio. Prior to model

construction, all indicator data underwent Z-score normalization to

mitigate the impact of dimensional disparities and ensure

uniformity in data analysis.

2.2.2 Algorithm improvement
The evolutionary strategy adopted in this study involves a novel

swarm intelligence optimization algorithm known as the Beetle

Antennae Search (BAS) algorithm. To enhance its global

optimization capabilities, three significant improvements have

been integrated into the BAS:

Piecewise Chaotic Mapping: The initialization of the swarm

intelligence algorithmwith chaoticmapping presentsmultiple advantages:

Enhanced global search capability: The initial population

generated through chaotic mapping spans the entire solution space,

enhancing the algorithm’s ability to conduct a comprehensive global

search and more effectively locate the global optimum.

Accelerated convergence speed: The uniform distribution of the

population through chaotic mapping prevents entrapment in local

optima, thereby enhancing the algorithm’s convergence rate.

Ensured solution diversity: The high randomness and

uncertainty of the population produced by chaotic mapping

ensure a diverse set of solutions, increasing the chances of

achieving the global optimum (13, 14).

Adaptive t-Distribution: The introduction of a t-distribution

mutation operator, with the degrees of freedom parameter linked to

the iteration count, perturbs the positions of solutions. This

adaptation allows the algorithm to exhibit robust global

exploration capabilities in the initial iterations and refined local

exploration in later stages, thus boosting the convergence speed.

Random Walk: The random walk strategy, a mathematical

statistical model, simulates a path generated by irregular

movements. The primary method involves randomly selecting a

neighboring point of the current solution for comparison. If this

new point is superior, it replaces the current solution as the new focal

point. If no better solution is found after N consecutive attempts, the

algorithm assumes that the optimal solution is within an N-

dimensional sphere centered around the current best solution with

the current step size. The process concludes if the step size is below a

predetermined threshold; otherwise, the step size is halved, and a new

random walk cycle commences. Throughout this iterative process,

under specific conditions, the probability distribution converges,

resulting in a stable probability distribution (15, 16).

By integrating these enhancements, the Improved Beetle

Antennae Search algorithm (IBAS) was developed, combining

adaptive t-distribution and random walk strategies to significantly

improve performance.

2.2.3 Performance simulation testing of swarm
intelligence algorithms

The optimization efficacy of the IBAS algorithm was evaluated

using a suite of standard test functions, selecting 23 widely

recognized benchmarks. These functions, designed for

minimization problems, vary in dimensions and complexity. The
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primary attributes of these 23 test functions include their search

space boundaries, dimensionalities, categories, and known optimal

solutions. The functions are categorized into two types: unimodal

(U) and multimodal (M). Unimodal functions, which possess a

single optimal value, are utilized to gauge the local exploitation

capabilities of optimization algorithms. In contrast, multimodal

functions, characterized by multiple optima, are used to assess the

global exploration abilities of the algorithms.

To ensure a fair comparison of the optimization capabilities

before and after the algorithm enhancements, the experimental

setup was standardized. The population size was maintained at 30,

the number of iterations was fixed at 200, and each configuration

was repeated 30 times. The results were analyzed by plotting the

average convergence curves from these 30 repetitions, providing a

comprehensive view of the algorithm’s performance across

different scenarios.

2.2.4 Model construction and evaluation
2.2.4.1 Basic model training

We divided the dataset into a training set (80%, 240 cases) and a

test set (20%, 60 cases), where the training dataset underwent five-

fold cross-validation. Initially, we employed standard hyperparameter

optimization methods (grid search) to run Logistic Regression (LR),

Support Vector Machine (SVM), and XGBoost. Grid search is a

common hyperparameter optimization method that systematically

tests every combination of parameters through a predefined grid. The

specific parameters and ranges for hyperparameter optimization are

refer to Table 1 for details.

2.2.4.2 The self-evolving machine learning

The self-evolving machine learning is a method that features

self-evolution and self-optimization capabilities. Traditional

machine learning algorithms typically require manual parameter
TABLE 1 Specific parameters and range table of hyperparameter
optimization for each model.

Model
category

Optimizing
hyperparameters

Optimal
range

Grid
search
step size

LR

Regularization
parameter

[0.01, 100] 10

Type of punishment
L1 regularization

or
L2 regularization

1

SVM
Parameter of penalty [0.01, 100] 10

Parameter of Gamma [0.01, 100] 10

XGBoost

Rate of learning [0.01, 1] 0.1

Maximum depth [1, 20] 0.5

Maximum number
of iterations

[1, 100] 10
LR, Logistic regression; SVM, Support vector machine; XGBoost, eXtreme Gradient Boosting;
Grid search tests each predefined combination of parameters using exhaustive methods to find
the optimal model configuration, where ‘Grid search step size’ represents the interval between
parameter values.
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adjustment and model updates during training. In contrast, the self-

evolving machine learning integrates evolutionary computing,

genetic algorithms, or other evolutionary methods, enabling the

machine learning system to automatically adapt and improve its

models and strategies. The best-performing model from the

basic models is selected for improvement to construct the

self-evolving machine learning model. The optimization

parameters are consistent with those listed above, and the specific

hyperparameter optimization is as follows: (i) Initialization: IBAS

starts with a set of initial candidate solutions, which are randomly

generated from the search space of the aforementioned

hyperparameters. (ii) Fitness Evaluation: For each candidate

solution, the base model is trained using these hyperparameters

and evaluated through cross-validation to serve as the fitness value.

(iii) Iterative Optimization: IBAS updates the candidate solutions by

simulating swarm intelligence behaviors, such as foraging behavior

and information sharing, gradually approaching the optimal

solution. In each iteration, the algorithm selects and updates

candidate solutions based on fitness values, exploring better

hyperparameter combinations. (iv) Termination Condition: The

algorithm terminates and outputs the optimal hyperparameter

combination when a preset number of iterations is reached or

when there is no significant improvement in fitness values.

2.2.4.3 Model evaluation and comparison

For performance assessment, we utilized multiple metrics,

including Precision (PRE), Sensitivity (SEN), Specificity (SPE),

Accuracy (ACC), F1 Score (F1), Area Under the Receiver

Operating Characteristic Curve (ROC-AUC), and Area Under the

Precision-Recall Curve (PR-AUC). These metrics help us evaluate

the predictive power and practicality of the models from various

perspectives. To reduce the risk of overfitting and enhance the

stability of training, we implemented five-fold cross-validation

within the training dataset.
2.3 Statistical analysis

Statistical analysis of the data was conducted using SPSS 25.0

software. A significance level of P<0.05 was used to indicate

statistical significance. Categorical data were presented as [n (%)]

and compared using the chi-square test. Continuous variables with

a normal distribution were presented as (mean ± standard

deviation) and compared using the t-test.
3 Results

3.1 Analysis of influencing factors of
diabetic retinopathy

3.1.1 Univariate analysis
In the diabetic retinopathy group and non-diabetic retinopathy

group, there were statistically significant differences (P<0.05) in

gender, age, duration of diabetes, smoking history, non-

pharmacological treatment, systolic blood pressure, fasting blood
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glucose, 2-hour postprandial blood glucose, glycosylated

hemoglobin, high-density lipoprotein cholesterol, low-density

lipoprotein cholesterol, blood urea nitrogen, and urine albumin/

creatinine ratio. Refer to Table 2 for details.

3.1.2 Multivariate analysis
A multiple logistic regression analysis was performed with the

occurrence of diabetic retinopathy (present=1, absent=0) as

the dependent variable and the significant variables from the

univariate analysis as independent variables. The analysis used

the original values for continuous data and set the reference group

for categorical variables. The results indicated that being male,

having a longer duration of diabetes, higher systolic blood

pressure, fasting blood glucose, glycosylated hemoglobin, low-

density lipoprotein cholesterol, and urine albumin/creatinine ratio

were identified as risk factors for developing diabetic retinopathy

in diabetic patients. Non-pharmacological treatment was

identified as a protective factor for the development of diabetic

retinopathy. Refer to Table 3 for further details.
3.2 Precise predictive results of the self-
evolving machine learning model

3.2.1 Performance testing of the improved
optimization algorithm

23 common test functions were used to test the BAS before and

after the improvement. The results showed a significant improvement

in the overall convergence and global optimization capability of IBAS

compared to the previous version, as shown in Figure 2.

3.2.2 Construction of the self-evolving machine
learning model

The three base models were tested according to standard

hyperparameter optimization methods, and the XGBoost with the

best results was finally selected as the base model for our study.

Based on the results of the multiple logistic regression analysis, the

selected variables were used as independent variables, and the

occurrence of diabetic retinopathy in diabetic patients was used as

the dependent variable to construct the machine learning dataset.

80% of the dataset was selected as the training set for model

construction. Refer to Table 4 and Figure 3 for details.

3.2.3 Validation of the self-evolving machine
learning model

The remaining 20% of the dataset was used as the test set to

evaluate the performance of the model. The results demonstrated the

significant advantages of the IBAS-XGB self-evolving machine

learningmodel. Please refer to Table 5 and Figure 4 for further details.
3.3 Construction of the visualization
software system

The visualization system offers a comprehensive suite of

functionalities essential for data preprocessing, high-dimensional
frontiersin.org
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data visualization analysis, machine learning model construction,

and One-Step analysis:

3.3.1 Data processing
Import Data: Users can upload their dataset by clicking the

“Import Data” button. The dataset will then be displayed in the data

workspace upon successful import.

Data Cleaning: By clicking the “Data Cleaning” button, users

can perform operations such as missing value imputation, outlier

removal, normalization, and data balancing to prepare the data

for analysis.

High-Dimensional Visualization: This feature allows users to

choose their preferred visualization style and generate

corresponding graphs by clicking on the “High-Dimensional

Visualization” button.
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3.3.2 Modeling analysis
Users can select between classification or regression tasks to

construct appropriate machine learning models. For integrated

feature selection and hyperparameter optimization, users can

access the one-step analysis interface via the “One-Step” button.

Before initiating the analysis, users must set parameters such as

population size, iteration count, test set proportion, and cross-

validation folds. Incorrect parameter settings will trigger a warning

message. After setting the initial parameters, users can choose their

preferred combination of the IBAS algorithm and the machine

learning model, then click the “Run” button. The system will verify

the successful initialization of parameters and request confirmation

to proceed with the analysis. Upon confirmation, the system

initiates model construction while simultaneously conducting

hyperparameter optimization and feature selection. The
TABLE 2 Univariate analysis of diabetic retinopathy.

Variables of interest
Diabetic retinopathy

group (n=150)
Non-diabetic retinopathy

group (n=150)
t/c2 P

Gender (n) 14.599 <0.001

male 97 (64.67) 64 (42.67)

female 53 (35.33) 86 (57.33)

Age (years) 64.18 ± 8.43 60.87 ± 9.04 3.280 0.001

Duration of diabetes (years) 10.87 ± 6.01 9.11 ± 5.19 2.715 0.007

Smoking history (n) 4.975 0.026

Yes 71 (47.33) 52 (34.67)

No 79 (52.67) 98 (65.33)

Drinking history (n) 0.298 0.585

Yes 37 (24.67) 33 (22.00)

No 113 (75.33) 117 (78.00)

Non-pharmacological treatment (n) 18.274 <0.001

No 96 (64.00) 59 (39.33)

Yes 54 (36.00) 91 (60.67)

Serum creatinine (mmol/L) 82.13 ± 33.19 77.65 ± 41.06 1.039 0.300

Systolic Blood Pressure (mmHg) 140.18 ± 19.83 135.23 ± 15.74 2.395 0.017

Diastolic Blood Pressure (mmHg) 83.12 ± 9.13 82.49 ± 9.58 0.583 0.560

Fasting blood glucose (mmol/L) 7.84 ± 2.15 7.33 ± 1.76 2.248 0.025

2-hour postprandial blood glucose (mmol/L) 12.45 ± 2.43 11.88 ± 1.81 2.304 0.022

Body mass index (kg/m2) 25.41 ± 3.41 25.56 ± 3.61 0.370 0.712

Glycosylated hemoglobin (%) 7.43 ± 1.31 6.11 ± 0.75 10.710 <0.001

High density lipoprotein cholesterol (mmol/L) 1.31 ± 0.81 1.91 ± 1.05 5.541 <0.001

Low-density lipoprotein cholesterol (mmol/L) 3.71 ± 1.13 3.43 ± 0.83 2.446 0.015

Total cholesterol (mmol/L) 5.48 ± 1.31 5.52 ± 1.04 0.293 0.770

Triglyceride (mmol/L) 2.84 ± 1.03 2.71 ± 0.99 1.114 0.266

Blood urea nitrogen (mmol/L) 5.45 ± 1.74 5.01 ± 1.66 2.241 0.026

Urinary albumin/creatinine ratio (mg/g) 21.24 ± 6.28 6.32 ± 2.76 26.638 <0.001
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FIGURE 2

Performance analysis of IBAS on 23 benchmark functions. The three-dimensional surface plots in the figure depict the two-dimensional search
space for each benchmark function. The convergence curves demonstrate the convergence trends of the first solution dimension for each
benchmark function, comparing the trends between BAS (blue) and the improved IBAS (red).
TABLE 3 Multivariate analysis of diabetic retinopathy.

Variables of interest
Reference
group

b SE Wald P OR 95%CI

Gender

male female 1.132 0.208 29.619 0.000 3.102 2.694~3.510

Yes No

Non-pharmacological treatment

Yes No -0.642 0.207 9.619 0.002 0.526 0.121~0.932

Duration of diabetes — 0.512 0.236 4.707 0.034 1.669 1.206~2.131

Systolic Blood Pressure — 0.982 0.418 5.519 0.019 2.670 1.851~3.489

Fasting blood glucose — 0.046 0.019 5.861 0.016 1.047 1.010~1.084

Glycosylated hemoglobin — 0.992 0.362 7.509 0.006 2.697 1.987~3.406

Urinary albumin/creatinine ratio — 0.072 0.027 7.111 0.008 1.075 1.022~1.128

Low-density lipoprotein cholesterol — 0.672 0.176 14.579 0.000 1.958 1.613~2.303

Constant quantity — -0.972 0.178 29.819 0.000
F
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performance of the model is evaluated using the test set, and upon

completion, the system interface displays the convergence curves,

training progress on the training set, and predictive performance on

the test set.

3.3.3 Additional features
The “Model Evolution Tips” text box provides insights into the

selected features and evaluation metrics for the test set.

For a visual representation of the software system interface,

please refer to Figure 5.
4 Discussion

Prolonged elevation of blood glucose levels can cause

endothelial dysfunction, alterations in retinal microvascular

circulation, and damage to the retinal barrier. In diabetic patients,

metabolic dysfunctions, particularly insulin resistance and

dyslipidemia, are known to contribute to the onset of diabetic

retinopathy (17, 18). Early screening for diabetic retinopathy

presents numerous challenges, with a significant focus on non-

invasive methods that utilize clinical and laboratory data for

prevention and treatment.

Machine learning, an interdisciplinary domain that merges

statistics, various scientific disciplines, and computer technology,

facilitates the processing of large datasets. By employing machine

learning algorithms, it is possible to identify and select pertinent
Frontiers in Endocrinology 07
feature variables from extensive datasets, enhancing the efficiency

of the learning process (19, 20). Presently, machine learning finds

extensive applications in healthcare, particularly in diagnosing

and managing conditions such as glaucoma, cataracts, diabetic

retinopathy, retinopathy of prematurity, and retinal vein

occlusion (21). In this research, we developed an advanced

machine learning model using XGBoost, an evolutionary

algorithm. This model streamlines the initial stages of machine

learning, including data preparation, encoding, feature selection,

extraction, and engineering, thus significantly reducing the

complexity involved. The model is capable of autonomously

performing algorithm selection, optimization, iteration, and

validation with minimal coding required (22, 23). Furthermore,

we incorporated the Improved Beetle Antennae Search (IBAS)

algorithm for hyperparameter optimization, enhancing the

accuracy by leveraging continual improvements from decision

tree algorithms. IBAS is an enhanced swarm intelligence

optimization algorithm that we have developed, building upon

traditional swarm intelligence algorithms. By incorporating new

optimization strategies and methods for tuning parameters, we

have improved the search efficiency and convergence speed of the

algorithm. The core advantage of IBAS lies in its effective

exploration and exploitation of the search space, enabling it to

identify superior solutions. We employ the IBAS algorithm to

optimize the hyperparameters of the XGBoost model. This

integration, which we refer to as IBAS-XGB, utilizes the global

search capability of IBAS to efficiently explore the hyperparameter
FIGURE 3

Performance analysis of the training set.
TABLE 4 Model construction of the training set.

Model PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.6757 0.6250 0.7000 0.6625 0.6494 0.7543 0.7599

SVM 0.7395 0.7333 0.7417 0.7375 0.7364 0.8166 0.8075

XGBoost 0.8969 0.7250 0.9167 0.8208 0.8018 0.8595 0.8396

IBAS-XGB 0.8644 0.8500 0.8667 0.8583 0.8571 0.9256 0.9068
LR, Logistic regression; SVM, Support vector machine; XGBoost, eXtreme Gradient Boosting; IBAS, Improved Bees Algorithm Search.
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space of the XGBoost model. By identifying the most effective

parameter combinations, this approach enhances the performance

of the model (24). IBAS outperforms standard hyperparameter

optimization methods such as grid search mainly because it can

more dynamically adapt to and explore the hyperparameter space.

Theoretically, if the search range of standard methods is

sufficiently broad, they could also find the same hyperparameter

combinations discovered by IBAS. However, in practical

applications, standard methods may fail to discover these

combinations for reasons including: (1) Balance between

exploration and exploitation: IBAS can dynamically balance the

relationship between exploring new areas and exploiting known

good regions. This adaptability often leads to better solutions

more quickly than the systematic exploration of space by grid

search. (2) Avoiding local optima: In complex hyperparameter

spaces, standard methods, especially grid search, are prone to

getting stuck in local optima. IBAS, by using multiple search

agents that exchange information, can avoid this problem.

This study developed a self-evolving machine learning model

based on clinical data and laboratory tests to predict the early risk of

diabetic retinopathy. To mitigate randomness and prevent

overfitting, five-fold cross-validation was employed. Additionally,

model pruning was utilized to enhance performance and accuracy

on the test set. Ultimately, eight key factors were identified as

significant predictors: male gender, non-pharmacological

treatments, prolonged disease duration, elevated systolic blood
Frontiers in Endocrinology 08
pressure, fasting blood glucose, glycated hemoglobin, low-density

lipoprotein cholesterol, and the urinary albumin-to-creatinine ratio.

These predictive factors are influenced by a combination of lifestyle

choices, dietary habits, physical inactivity, genetic predispositions,

and inadequate insulin secretion in male patients. As diabetes

progresses, it exacerbates metabolic dysfunctions such as severe

blood glucose fluctuations and dyslipidemia, which have been

independently linked to increased risk of diabetic retinopathy (25,

26). Hypertension contributes to damage in retinal microcirculation

and the nerve fiber layer, with prolonged high blood pressure

leading to endothelial cell damage in capillaries, increased

vascular permeability, and subsequent retinal edema and

neovascularization. Hyperglycemia exacerbates these effects by

thickening the capillary basement membrane, activating the

polyol pathway, impairing retinal microcirculation, and

accelerating diabetic retinopathy progression (27, 28).

Elevated levels of glycated hemoglobin are implicated in

endothelial damage, promoting leukocyte adhesion to endothelial

cells and thrombus formation. The oxidative stress and

inflammatory states induced by high glucose levels further

contribute to endothelial and tissue damage, driving the

progression of diabetic retinopathy (29, 30). Hyperlipidemia also

plays a role, leading to retinal artery sclerosis and impacting ocular

blood supply, thereby accelerating the disease’s progression (31).

The kidneys and retina share similar developmental origins,

capillary network structures, and filtration functions. Both are
TABLE 5 Test set model performance verification.

Model PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.6500 0.4333 0.7667 0.6000 0.5200 0.6522 0.6582

SVM 07308 0.6333 0.7667 0.7000 0.6786 0.7272 0.7490

XGBoost 0.8000 0.6777 0.8333 0.7500 0.7273 0.8244 0.8258

IBAS-XGB 0.8621 0.8333 0.8667 0.8500 0.8475 0.8600 0.8828
LR, Logistic regression; SVM, Support vector machine; XGBoost, eXtreme Gradient Boosting; IBAS, Improved Bees Algorithm Search.
FIGURE 4

Performance analysis of the test set.
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influenced by common factors such as genetics, hemodynamics,

and lipid metabolism, with their pathologies involving mechanisms

like advanced glycation end-product accumulation, polyol pathway

activation, oxidative stress, and inflammatory mediators (32, 33).

Non-pharmacological interventions for diabetes, such as

dietary, exercise, and psychological therapies, are crucial. Negative

emotional states can exacerbate insulin resistance, possibly through

abnormal gene expression and challenges in controlling glucose

levels, thus contributing to the development of diabetic retinopathy.

The efficacy of psychological interventions and cognitive-behavioral

therapy in managing diabetes has been well-documented (34, 35).
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Compared to traditional statistical models such as logistic

regression, the self-evolving machine learning models offer

enhanced accuracy and lower the barriers to adopting artificial

intelligence technology through automation. These models enable

healthcare professionals to dynamically assess the risk of diabetic

retinopathy in diabetic patients and tailor interventions

accordingly. For instance, by managing dietary intake to control

abnormal blood glucose and blood pressure levels, healthcare

providers can offer personalized guidance to patients. This

guidance can include recommendations on diet, exercise, blood

glucose monitoring, and education on disease prevention (36).
FIGURE 5

(A) The high probability of diabetic retinopathy. (B) The low probability of diabetic retinopathy.
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5 Conclusion

In summary, the application of the self-evolving machine learning

models canhelp in clinically identifying features of diabetic patientswith

concurrent retinopathy. This enables early prediction of disease

occurrence and assists in formulating treatment plans to improve

prognosis. In the future, the self-evolving machine learning models are

expected to become essential tools in clinical practice, thesemodelsmay

also play a significant role in the early diagnosis and prediction of other

chronic diseases, providing more objective evidence for medical

decision-making. With ongoing technological advancements and the

accumulation ofmore clinical data, these self-evolvingmachine learning

methods are poised to bring further innovation and progress to the

healthcare field.

However, this study also has certain limitations. One notable

limitation of our study is the retrospective nature of the data

collection process. As a result, we were reliant on the available

historical patient data, which may have inherent biases and missing

information. Additionally, the study was conducted at a single center,

which could limit the generalizability of our findings to broader

populations and healthcare settings. Future studies involving multi-

center collaborations and diverse patient populations could offer a

more comprehensive understanding of the predictive features and

outcomes related to diabetic retinopathy.

Furthermore, while our the self-evolving machine learning

model demonstrated promising performance in predicting diabetic

retinopathy, it is essential to acknowledge that the model’s predictive

accuracy may be influenced by the quality and completeness of the

input data. Variability in data collection methods and potential

confounding variables not included in our analysis could impact the

model’s predictive capabilities. When the Improved Swarm

Intelligence Optimization Algorithm (IBAS) is used as a

hyperparameter optimization method in XGBoost models, although

this approach can enhance model performance, it also has the

limitation of high computational costs. IBAS, as a swarm intelligence

optimization algorithm, has a relatively high algorithmic complexity,

especially on large-scale datasets. During hyperparameter

optimization, IBAS requires multiple runs of the XGBoost model to

evaluate different parameter combinations. Each run involves the

entire training process, which can lead to significant computational

costs. This is particularly true in cases where the parameter space is

large or the dataset is extensive, making the optimization process very

time-consuming. Thismay not be suitable for applications that require

rapid iteration and experimentation. This limitation suggests that

when using IBAS to optimize hyperparameters of the XGBoost

model, there is a need to balance computational costs and model

generalization capabilities to ensure the model’s practicality

and effectiveness.

Moreover, the clinical translation of our findings and the

implementation of predictive models in real-world healthcare

settings may face challenges related to data privacy, interpretability

of machine learning algorithms, and integration into existing

clinical workflows. These practical considerations represent

important limitations that should be carefully addressed in future

research and during the implementation of predictive models in

clinical practice.
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In conclusion, while our study has provided valuable insights into the

application of the self-evolving machine learning methods for predicting

diabetic retinopathy, we recognize the need for future research to address

the limitations highlighted, ensuring the robustness and applicability of

predictive models in diverse clinical settings.
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Negrıń H, Mancebo-Sevilla JJ, et al. Management of type 2 diabetes mellitus in elderly
patients with frailty and/or sarcopenia. Int J Environ Res Public Health. (2022) 19:8677.
doi: 10.3390/ijerph19148677

18. Dugani SB, Mielke MM, Vella A. Burden and management of type 2 diabetes
in rural United States. Diabetes Metab Res Rev. (2021) 37:3410. doi: 10.1002/
dmrr.3410
Frontiers in Endocrinology 11
19. Silva GFS, Fagundes TP, Teixeira BC, Chiavegatto Filho ADP. Machine learning
for hypertension prediction: a systematic review. Curr Hypertens Rep. (2022) 24:523–
33. doi: 10.1007/s11906-022-01212-6

20. Jiang T, Gradus JL, Rosellini AJ. Supervised machine learning: A brief primer.
Behav Ther. (2020) 51:675–87. doi: 10.1016/j.beth.2020.05.002

21. Sarhan MH, Nasseri MA, Zapp D, Maier M, Lohmann CP, Navab N, et al.
Machine learning techniques for ophthalmic data processing: A review. IEEE J BioMed
Health Inform. (2020) 24:3338–50. doi: 10.1109/JBHI.6221020

22. Volpato V, Mor-Avi V, Narang A, Prater D, Gonçalves A, Tamborini G, et al.
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