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The thyroid gland regulates most of the physiological processes. Environmental

factors, including climate change, pollution, nutritional changes, and exposure to

chemicals, have been recognized to impact thyroid function and health. Thyroid

disorders and cancer have increased in the last decade, the latter increasing by 1.1%

annually, suggesting that environmental contaminantsmust play a role. This narrative

review explores current knowledge on the relationships among environmental

factors and thyroid gland anatomy and function, reporting recent data,

mechanisms, and gaps through which environmental factors act. Global warming

changes thyroid function, and living in both iodine-poor areas and volcanic regions

can represent a threat to thyroid function and can favor cancers because of low

iodine intake and exposure to heavy metals and radon. Areas with high nitrate and

nitrite concentrations in water and soil also negatively affect thyroid function. Air

pollution, particularly particulate matter in outdoor air, can worsen thyroid function

and can be carcinogenic. Environmental exposure to endocrine-disrupting

chemicals can alter thyroid function in many ways, as some chemicals can mimic

and/or disrupt thyroid hormone synthesis, release, and action on target tissues, such

as bisphenols, phthalates, perchlorate, and per- and poly-fluoroalkyl substances.

When discussing diet and nutrition, there is recent evidence of microbiome-

associated changes, and an elevated consumption of animal fat would be

associated with an increased production of thyroid autoantibodies. There is some

evidence of negative effects of microplastics. Finally, infectious diseases can

significantly affect thyroid function; recently, lessons have been learned from the

SARS-CoV-2 pandemic. Understanding how environmental factors and

contaminants influence thyroid function is crucial for developing preventive
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strategies and policies to guarantee appropriate development and healthy

metabolism in the new generations and for preventing thyroid disease and cancer

in adults and the elderly. However, there are many gaps in understanding that

warrant further research.
KEYWORDS

thyroid, thyroid hormones, environmental pollution, food pollution, endocrine
disruptors, COVID-19
1 Introduction

The main function of the thyroid gland is to produce

triiodothyronine (T3) and thyroxine (T4). Thyroid hormones are

key regulators of basal energy expenditure and metabolism, regular

development and differentiation of cells, neurodevelopmental

processes in the first years of life, linear growth, body

composition and weight.

Normal thyroid function is regulated by the hypothalamic

thyrotropin-releasing hormone (TRH) that stimulates the release

of the thyroid-stimulating hormone (TSH) from the pituitary gland,

which in turn drives synthesis and secretion of the thyroid

hormones from the thyroid gland (1). The development of the

thyroid gland begins around the third week of gestation, originating

from an evagination of the pharyngeal floor in correspondence with

the second branchial arch. At the end of the 7th week of gestation,

the embryonic thyroid is in its final position in front of the trachea.

The production and secretion of thyroid hormones into the blood

starts as early as the 10th- 12th week of gestation (2). Since prenatal

life, normal thyroid hormone production plays a key role in several

physiological functions, such as the growth and development of the

organism, including neurological and cognitive functions (3). In

newborns, changes and defects in thyroid anatomy and function are

related with pathological conditions, the most common being

congenital hypothyroidism (CH), affecting 1 in 3,000 newborns

(4); thyroid dysgenesis (agenesis, hypoplasia, and ectopy), thyroid

dyshormonogenesis, hypothalamic-pituitary axis alterations and

thyroid hormone resistance are all observed in this condition.

Neonatal hyperthyroidism instead is associated mainly with

Graves’ disease in mothers because of the transplacental passage

of Thyrotropin-Receptor antibodies (TRAb) (5).

In children, acquired hypothyroidism is caused primarily by

autoimmune thyroiditis with a current prevalence of 1–2% among

children and adolescents (6), whereas the most frequent cause of

hyperthyroidism is represented by Graves’ disease, more common

in girls than in boys, with an incidence of 0.1 in 100,000 children

and 3 in 100,000 adolescents (7). Low iodine availability can cause

acquired hypothyroidism (8).

Thyroid cancers are less common in children than in adults, but

it has been estimated that 1.8% of thyroid malignancies diagnosed
02
in the US are in people aged less than 20 years. In recent years, a

significant increase in pediatric thyroid cancers has been reported,

in particular papillary thyroid carcinoma (PTC) and follicular

thyroid carcinoma (FTC), whereas anaplastic (ATC), medullary

(MTC), and poorly differentiated (PDTC) thyroid carcinomas are

rarer (9).

In adults, thyroid diseases represent the most frequent

endocrine disorders. The global prevalence of autoimmune

diseases in pediatric age is about 5%. Among these, the most

frequent autoimmune diseases are represented by autoimmune

thyroid diseases, which include both Graves’ disease (GD) and

Hashimoto’s thyroiditis (HT) (10). The epidemiological data of

hypothyroidism ranges from 0.2% to 5.3% in Europe and from 0.3%

to 3.7% in the USA, and is frequently associated with iodine

deficiency and autoimmune thyroiditis. The prevalence of

hyperthyroidism instead is similar in Europe (0.7%) and in the

USA (0.5%). Graves’ disease is the major cause of hyperthyroidism

in adults as in children, followed by toxic multinodular goiter and

thyroid adenoma (11). Several studies have identified the

importance genetic predisposition. Despite this, 20–25% of the

phenotypic variation in autoimmune thyroiditis is due to

environmental and/or epigenetic factors that also may be

influenced by the environment (12).

All the different thyroid conditions mentioned so far have

shown changes in their prevalence over time; this has suggested

an important effect on the environment, including pollution and

contaminants. Climate change, air and water pollution, nutrition

and infectious agents can play an important role both in prenatal

and postnatal life, influencing endocrine functions. Several studies

have been conducted with the aim to investigate the role of

environmental factors on thyroid function.

The synthesis, transportation and metabolism of thyroid

hormones can be modified by toxic agents, that can interfere with

hormone receptors and allow the beginning of autoimmune processes.

Also, air pollution exposure can cause thyroid diseases, and

studies have considered the effects of carbon monoxide (CO),

nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and

particulate matter <2,5 mm (PM2.5), <10 mm (PM10) (13).

There is, in addition, a growing interest in endocrine-disrupting

chemicals (EDCs) due to their wide use and pervasive presence in
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nature. All EDCs can change endocrine functions, as they can

mimic or interfere with the normal functioning of the endocrine

system and play a crucial role in regulating various physiological

processes in the human body, including thyroid function (14, 15).

EDCs include industrial agents (dioxins, polychlorinated biphenyls

(PCBs) and alkylphenols), agricultural agents (herbicides,

pesticides, fungicides, and insecticides), bisphenols (BPA, BPS,

BPF), phthalates, drugs (ketoconazole, mitotane, cardiac

glycosides, carbamazepine and nitrofurans) and heavy metals

(cadmium, arsenic, nickel, beryllium and chromium) (16), and

they are related to potential interference with normal thyroid

function, and exposure is associated with a higher prevalence of

thyroid diseases (17, 18).

The aim of this narrative review is to explore and consider

comprehensively how environmental factors, such as the above-

mentioned environmental pollution, climate change, EDCs, diet

and micro-nutrients, and infectious agents influence thyroid

function and disease. At variance with previous studies, we have

focused also on the available evidence in relationship with the

different ages of life, in particular, the prenatal, perinatal, infancy,

adolescence, and adult periods of life were considered.
2 Materials and methods

2.1 Literature search strategy and
selection criteria

The research of the literature was done using specific research

strings in Pubmed, Scopus, and Mendeley, via MeSH using specific

keywords. The Cochrane Library database and all bibliographic

sources available on scientific databases, such as the WHO and the

European international official sites, were considered in addition.

Original articles, including animal and in vitro studio, reviews, and

epidemiological studies were selected, focusing initially on those

published in the last 10 years. Initially, the identified records were

imported into Mendeley. After removing duplicates, reviewers

separately screened the included papers found through the

literature search by title and abstract, using the eligibility criteria.

For specific topics when literature was scarce, we included even

older publications. The following keywords were used for the

search: thyroid hormones, TSH, fT3, fT4, T3, and T4, thyroid,

thyroid gland, thyroid dysfunction, thyroid function, endocrine

disrupting chemicals, EDCs, BPA, BPS, BPF, phthalates,

pesticides, pollutants, air pollution, water pollution, Particulate

matter (PM)2,5, PM10, heavy metals, climate changes, nutrients,

diet, covid19, infections, pregnancy, prenatal, perinatal period,

infancy, adolescence, adult life, that were differently matched for

all required strings (e.g., Figure 1).
2.2 Data extraction

Following title and abstract screening, relevant papers were

further evaluated. To collect data from the selected papers, a
Frontiers in Endocrinology 03
predefined data extraction strategy was used. The extracted data

included information such as authors, year of publication, title,

abstract, contaminants analyzed, research domain, and study type.

Finally, the remaining articles were evaluated after reading the

complete content. Furthermore, one author conducted additional

screening and data extraction for the most recent publications.
2.3 Narrative synthesis

A narrative synthesis was conducted to organize the search

findings. To identify the most recent problematic points, the

synthesis focused on specific environmental factors and

contaminants that influence thyroid development and function.
3 Effects of environmental pollutants
on thyroid function and disease

Climate change, driven by human activities such as

deforestation and burning fossil fuels, has far-reaching

consequences for health. Rising temperatures, air pollution,

extreme weather events, and changes in disease patterns represent

current direct and indirect threats to child health, particularly to the

thyroid gland.

The US Environmental Protection Agency (EPA) defines

pollution as “any substances in water, soil, or air that degrades

the natural quality of the environment; offends [the senses]; causes a

health hazard; or [impairs] the usefulness of natural resources” (19).

The WHO considers air pollution as a major environmental health

issue that affects everyone in low-, middle-, and high-income

countries (13). Also, European paediatric scientific societies are

highly concerned about the influence of environmental pollution on

child health (20). Both the European Society for Paediatric

Endocrinology (ESPE) and the European Society for

Endocrinology (ESE) are collaborating on a common project, the

EndoCompass project (https://www.ese-hormones.org/what-we-

do/research/endocompass-european-research-roadmap/), that

among many other aspects considers the effect of environmental

contaminants, pollution, and climate change.

Air pollutants mainly include particulate matter (PM), ozone

pollution (O3), carbon monoxide (CO), nitrogen oxides (NO2 and

NOx), and sulfur dioxide (SO2). PM is a mixture of suspended

particles with different chemical compositions, classified by size

(PM10 and PM2.5) (12); in particular, PM2.5 particles differ from

other PM particles having a higher penetration capacity and

reactivity, so that PM2.5 has become the most relevant air

pollutant causing the greatest threat to global public health (13).

Nitrate is a common contaminant of drinking water,

particularly in agricultural areas, due to the usage of nitrogen-

containing fertilizers. High amounts of nitrate might also be present

in some fruits and vegetables (21).

Heavy metals are naturally present in the environment,

although their concentrations vary a lot in different geographic

areas. They include both essential metals, required micro-nutrients
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for biological processes (Fe: Iron, Cu: Copper, Zn: Zinc, Se:

Selenium, etc.), and toxic chemicals that may damage cell biology

and promote malignant transformation (As: Arsenic, Cd:

Cadmium, Hg: Mercury, Ni: nickel, etc.). In recent decades, metal

pollution of the environment has increased worldwide (22). Water,

soil, and atmosphere are vehicles that may be enriched with heavy

metals due to their proximity to sources, including natural

emissions (non-anthropogenic) and pollution secondary to

human activities (anthropogenic). Industry, agriculture, and

technology are activities related to higher heavy metal

exposure (23).

There are strong links between environmental pollution and

adverse health effects in humans; children, in particular, are

vulnerable at every level of development (24). Studies have

focused mainly on allergic diseases related to increased allergen
Frontiers in Endocrinology 04
production, infectious diseases, respiratory diseases, diabetes, and

cardiovascular diseases (25).

The following paragraphs focus on the possible associations of

environmental pollution on thyroid function in the different ages

of life.
3.1 Climate and thyroid function

Climate change is a global issue that affects environment, from

increased temperatures, floods, droughts, and wildfires to sea level

changes and loss of biodiversity. Heatwaves can lead to

dehydration, heat exhaustion, endocrine imbalance, and even

heatstroke. Rising temperatures can disrupt the thyroid’s ability to

maintain hormonal balance. Researchers have observed an
FIGURE 1

Literature map of key papers created with researchrabbitapp.com.
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association between outdoor temperature and thyroid hormone

levels, with increasing TSH and fT3 during autumn-winter periods

and decreasing of these during spring-summer periods (26).

Climate change contributes to the release of pollutants and

chemicals into the environment, as nitrates. Several studies have

shown that the climate significantly impacts the process of nitrate

accumulation in plant tissue, with nitrate concentration being lower

in years with high rainfall. Seasonal heavy rains wash away soil

minerals, while temperature spikes contribute to elevated nitrate

and nitrite concentrations; moreover, high temperatures induce

moisture loss in fruits and vegetables, all of these amplifying nitrate

and nitrite levels in agricultural products, especially vegetables (27),

which have a negative impact on the thyroid gland. Also, increased

volcanic activity in recent years is associated with a higher risk of

thyroid cancer, which will be further described below (23, 28).

Global warming also causes the evaporation of iodide from

seawater, and in regions distant from the coast, it results in a

depletion of iodide in plant foods and drinking water and iodine

deficiency (29). Furthermore, using data-mining techniques, it has

been shown that nowadays, climate variables in the aridity index

and precipitation, soil leaching, and pH decrease, all predict soil

selenium losses that could increase the prevalence of selenium

deficiency (30), increasing in turn serum TSH levels.
3.2 Effects of particulate matter exposure
on thyroid function

Only a few studies have investigated, to date, associations

between PM exposure and thyroid function during childhood.

In the newborn, data is not only scarce but also conflicting. The

ENVIRONAGE birth cohort study (N:499 newborns) focused on

PM2.5 exposure during the third trimester of pregnancy, reporting

an inverse association between exposure and cord blood TSH levels

and FT4/FT3 ratio (31). At variance, other studies reported that

prenatal exposure to PM2.5 and PM10 air pollution was associated

with higher newborn total T4 concentrations (32, 33). Howe et al.

identified months 3 to 7 for PM2.5 exposure and 1 to 8 for PM10

exposure of pregnancy as critical windows of exposure, which have

been associated with higher thyroxine levels (32). Irizar et al. also

suggested that exposure to PM2.5 during pregnancy was positively

associated with TT4 levels in newborns: TT4 levels collected 3 days

after birth increased by 0.206 mg/dl for each 1 mg/m3 of increase in

exposure to PM2.5 during pregnancy. This study analyzed but found

no association between NO2 exposure levels and TT4 levels at birth

(33). The apparent difference between the results of these studies is

unclear, and probably due to differences in assay methods as most of

T4 is bound to serum transport proteins, such as thyroxin-binding

globulin (TBG), and free T4 makes up only for a small fraction

(0.03%) of TT4 (34).

The findings in newborns/infants are, however, in agreement

with the data collected in adults, as shown in the Di@bet.es study

(35), where a significant negative association between exposures to

PM2.5 and thyroid hormone levels was described, moreover, with

relatively low PM2.5 concentration ranges, well below the existing

European Ambient Air Quality Directive target values (PM2.5<25
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µg/m3) (20). To date, the WHO guidelines recommend a maximum

annual PM2.5 exposure < 5 µg/m3 (16).

There are no published data on the effects of other pollutants on

thyroid function in the pediatric age (36).
3.3 Effects of exposure to nitrates and
nitrites on thyroid function

There are limited studies that have investigated NO2 pollution

and thyroid hormone levels at birth, without observing any

significant association (32, 33). However, one study from China

found that higher maternal NO2 exposure was linked to the risk of

congenital hypothyroidism in newborns (37), but further research

is needed.

According to WHO, drinking water is the most likely primary

source of nitrate exposure. Another source can be vegetables and

fruits when nitrate concentrations are > 10 mg/L (38). Studies from

Bulgaria, Slovakia, Germany and the USA have reported

associations between nitrate exposure and thyroid function in

different age periods: some of these have reported that school

children and pregnant women exposed to high nitrate levels in

drinking water (75 mg/L) had a higher risk of developing goiter and

thyroid disorders than school children and pregnant women

exposed to low nitrate levels (8 mg/L) (39–42). Another study

conducted in Slovakia school children described a significantly

greater thyroid volume in children from high-exposure nitrate

areas (> 200 mg/L) compared with children of comparable age

from low-exposure nitrate areas (< 2 mg/L). No differences in the

levels of T3 or T4 were found, but a higher prevalence of TSH levels

in the range > 4.0 mIU/L was observed, in addition to increased

anti-thyroid peroxidase antibodies in the children living in high-

exposure nitrate areas. These studies confirmed excessive nitrate

levels in drinking water might be a risk factor for thyroid

dysfunction in vulnerable population groups (40, 41).
3.4 Relationships between environmental
pollution and thyroid cancer

The global incidence of thyroid cancer has increased rapidly,

with a rate of +1.1% per year in the last decades (43–45). In fact,

according to the Surveillance, Epidemiology, and End Results

(SEER) program, new cases of thyroid cancer in people under the

age of 20 years account for 1.8% of all thyroid malignancies

diagnosed. Among the pediatric population, adolescents seem to

have a 10-fold greater incidence than younger children, with a

female-to-male proportion (5:1). In particular, in 15- to 19-year-old

adolescents, thyroid cancer represents the eighth most frequently

diagnosed cancer, and the second most common cancer among girls

(45). However, a large geographical heterogeneity in incidence rates

has been evidenced. Epidemiology and country-specific trends in

children and adolescents seem similar to those highlighted in adults.

Although some authors suggest that this might account for

overdiagnosis in the pediatric population (43), the hypothesis of

environmental factors being of importance for thyroid cancer must
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https://doi.org/10.3389/fendo.2024.1429884
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Street et al. 10.3389/fendo.2024.1429884
be taken into serious consideration. Currently, it is well known that

exposure to some environmental pollutants, such as radioiodine,

plays a role in carcinogenesis. Following the Chornobyl disaster, in

fact, areas next to the nuclear power plant registered an increase in

thyroid cancers; the Belarus pediatric population, in particular, was

screened and presented a rapid increase in thyroid cancer incidence

in children after 1986, especially in the most radionuclide

contaminated areas (44, 45).

The International Agency for Research on Cancer (IARC) has

classified outdoor air pollution and particulate matter (PM) in

outdoor air pollution as carcinogenic to humans, and in

accordance with the WHO, in 2013, particulate matter air

pollution was declared as carcinogenic (30). Air pollution

contains several chemicals capable of producing genomic

instability, which is an underlying feature of cancer development

(46, 47). The mechanism by which PM2.5 might cause thyroid

cancer is unclear; probably, it is related to volatile organic

compounds that are bound to particulate matter that might

penetrate the bloodstream through the alveolar barrier.

Both a study conducted in the US (48) and one conducted in

Brazil (49) showed an association between particulate matter and

the development of thyroid cancer; a 10 mg/m3 increase in PM2.5

concentration over 12, 24, and 36 months was associated with a

greater likelihood of being diagnosed with Papillary thyroid

carcinoma (PTC), with this likelihood increasing with increasing

duration of exposure to PM2.5. Additionally, a study of 550,000

patients in China found that emissions from industrial waste gas

(consisting mainly of particulate matter, sulfur dioxide, and

nitrogen dioxide) were associated with increased thyroid cancer

(50). At variance with these findings, Park et al. found that exposure

to particulate matter was negatively associated with the incidence of

thyroid cancer (51). These conflicting findings could be due to the

fact that this study did not discuss the methods used to measure the

levels of particulate matter, and it was not clear how these levels

were linked to each patient, limiting the generalizability of

these findings.

A further study demonstrated that the probability of developing

papillary thyroid cancer increased with a longer duration of PM2.5

exposure: a 5 mg/m3 increase of PM2.5 concentrations over 12

months of exposure was not associated with the incidence of

PTC, but the odds of developing PTC after a 5-mg/m3 increase in

PM2.5 exposure was increased by 18% in 24-month and by 23% after

36-months of exposure (52).

Heavy metals are considered among known carcinogenic

environmental pollutants. The carcinogenic effect of metals on

target cells can occur through several mechanisms, such as

causing changes in bioavailability and intracellular distribution of

peptides by interacting with intracellular proteins, enzymes, and

other cell components. The possible carcinogenic mechanisms

involve an increase in oxidative stress, that may cause oxidative

DNA damage, interfere with DNA repair systems, deregulate

growth control mechanisms, and modify DNA methylation

patterns (30).

Living in volcanic areas represents a further risk factor as some

of the highest incidences of thyroid cancer are registered in volcanic
Frontiers in Endocrinology 06
regions (53, 54), and these areas have higher concentrations of

heavy metals. However, the causative role of heavy metals is far

from being properly understood. To date, in fact, the dose and

duration of exposure to heavy metals that might be harmful are not

well defined. For some heavy metals (Cd, Hg), for which

carcinogenic role is known, there are no specific exposure levels

that indicate toxicity, as toxicity is not related only to environmental

concentrations, but depends on other mechanisms also that have

not yet been taken into consideration (30, 55). Furthermore,

exposure to a combination of heavy metals rather than a single

could account for the toxicity (56, 57). This concept is generally

valid for environmental exposure to pollutants as each individual is

exposed to multiple pollutants that react with the human body

chemical environment, and the final effect is currently

largely unknown.

Many heavy metals (As, Cd, Cr, Hg, and Pb) have never been

tested yet as potential human thyroid carcinogens. Studies have

highlighted negative associations between thyroid volume and Cr,

Se, and Zn contents in the hair samples of children. In the

meantime, a link between thyroid volume and Pb and Mn

concentrations has been proposed, presuming that these metals

may interfere with the thyroid gland either directly or indirectly by

influencing iodine intake or thyroid hormone and TSH levels

(58, 59).

Volcanic activity is also related to an increase in environmental

Radon concentrations, although a specific association of thyroid

cancer with Radon levels has never been put forward (60).

Belonging to the same ethnic group was also demystified as a

cause of the increased incidence. In fact, people from volcanic

islands residing in non-volcanic areas were unaffected (61).

Thus, studies to date regarding the role of environmental

pollution with respect to thyroid function are still scarce,

especially in childhood. Therefore, further studies are needed,

investigating both the correlation in different age groups and

studies to identify the pathogenetic mechanisms by which

pollutants affect the thyroid gland.
4 The effects of endocrine-disrupting
chemicals on thyroid function

EDCs can enter the environment through manufacturing

processes , agricultural pract ices , waste disposal , etc .

Contamination can occur through skin contact, food digestion,

inhalation of contaminated products, or by vertical transmission via

the placenta. EDCs exert their effects through multiple mechanisms.

Some chemicals can bind to hormone receptors in the body, either

activating or inhibiting their function. Others can interfere with

hormone production, transport, metabolism, or clearance. In

addition, they may have other modes of action, as causing

oxidative stress, genetic susceptibility, and epigenetic

modifications (e.g., DNA methylation, miRNA) (17, 62, 63),

ultimately resulting in gene expression changes (62, 64, 65) in

particular when exposure occurs during prenatal and early

postnatal life.
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Specifically, some studies have demonstrated that EDCs such as

bisphenol A (BPA), di-2-ethylhexyl phthalate (DEHP), dibutyl

phthalate (DBP), and pesticides exert some of their endocrine-

disrupting activity by influencing methylation patterns.

Furthermore, polychlorinated biphenyls (PCBs), BPA, and

phthalates have been found to induce or inhibit the expression of

other epigenetic regulating systems, as the miRNA network.

Tributyltin and polycyclic aromatic hydrocarbons (PAHs) bind to

Peroxisome proliferator-activated receptors (PPARs), modifying

both its methylation status and the expression of its target genes,

ultimately affecting insulin sensitivity. Furthermore, exposure to all

of these EDCs can impact the expression and enzymatic activity of

DNA methyltransferases, potentially interfering with enzymes like

aromatase (65), ultimately modifying estrogen and androgen

content. Importantly, changes to the epigenome induced by

exposure to EDCs may have transgenerational effects, influencing

health and disease across multiple generations even after the initial

exposure has occurred (63–65).

The potential impact of EDCs on thyroid hormone regulation

in children is of particular concern as thyroid hormones play a

crucial role in the growth and central nervous system development,

and control the overall physiological homeostasis (64). The fetal

thyroid gland is underdeveloped during the first half of pregnancy,

relying exclusively on maternal thyroid hormones, particularly T4,

which crosses the placenta, thus, normal brain development

requires a perfect thyroid hormone balance. Moreover, congenital

hypothyroidism, or changes in thyroid hormone levels during

pregnancy and at birth, can cause permanent neurodevelopmental

disorders in infants (64, 66, 67).
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In recent years, there has been increasing evidence of the effects

of EDCs exposure on thyroid hormone levels from animal

experiments and epidemiological studies. Structural similarities

have been shown between some EDCs and thyroid hormones

(THs) (64, 68, 69), and it has been proven that they can disrupt

the THs synthesis, release, action on target tissues, and

transportation by displacing the hormones from their binding

proteins or by changing the content/activity of transporters.

These EDCs include bisphenol A (BPA), phthalates, perchlorate,

dioxin, polychlorinated biphenyls (PCBs), polybrominated

diphenyl ethers (PBDEs), organophosphate pesticides (OPs), per-

and polyfluoroalkyl substances (PFAS), and triclosan (20, 68). They

can dysregulate the HPT axis, potentially leading to the

development of thyroid gland hypertrophy and hyperplasia,

hypothyroidism or hyperthyroidism, and even thyroid cancer (20,

64, 69, 70). The known effects of single EDCs on thyroid function

are reported in Figure 2.
4.1 The effects of bisphenols and phthalate
metabolites on thyroid function

Bisphenol A and phthalates that are prevalent in plastics and

personal care products have been correlated with fluctuations in

thyroid hormone levels, disturbances in thyroid-stimulating

hormone (TSH) regulation, and with hindered development of

the thyroid gland (20, 64, 66, 71). BPA, phthalates, perchlorate,

and thiocyanate decrease thyroidal iodine uptake by competitively

inhibiting the sodium-iodide symporter (NIS) (64, 72, 73).
FIGURE 2

Known effects and mechanisms of action of single EDCs on thyroid function. Created with BioRender.com.
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Moreover, bisphenols can modify thyroid hormone action by

antagonizing thyroid receptor action, altering gene expression,

and mimicking thyroid transport proteins (17, 74).

Chao Xiong et al. reported that maternal BPA exposure during

the first trimester of pregnancy was associated with higher neonatal

TSH levels and that BPS exposure throughout pregnancy was also

associated with TSH levels in newborns. In addition, co-exposure to

both bisphenols during the first trimester of pregnancy was

significantly associated with neonatal TSH levels, and females

might be more susceptible (75). A further prospective cohort

study defined the impact of maternal exposure to bisphenols

(BPs) on offspring’s thyroid hormone levels in cord blood; BPA

exposure was associated with lower total thyroxine (TT4) and free

triiodothyronine (fT3) concentrations, BPS exposure with lower

TSH in boys, and BPAF exposure with higher TT3 and fT3,

particularly in girls. The exposure to a mixture of BPs was

associated with higher TT3 levels and fT3 in both sexes. The

mechanisms involved and affected by these bisphenols are

represented by transcriptional changes in thyroid hormone

synthesis genes and changes in related gene transcription, and

impaired iodine uptake, affecting overall thyroid function (76).

The most affected genes were thyroid hormone synthesis genes

such as SLC5A5 and Thyroid Peroxidase (TPO) genes, and

transcription genes PAX8, FOXE1, and NKX2–1 (77).

Thyroid volume was described to be increased with age after

BPA exposure in 718 Chinese, 9–11 year-old children, and the

incidence of multiple thyroid nodules also increased with age (78).

The longitudinal SMBCS study found that higher maternal urinary

BPA levels during pregnancy were associated with increased fT4

levels in cord serum and predicted a high risk of behavioral

difficulties in children at 10 years of age, particularly in boys (79).

When considering phthalates, exposure to di-(2-ethylhexyl)

phthalate (DEHP) metabolites in rats was mainly associated with

altered pituitary TSH secretion and disrupted thyroid hormone

homeostasis with changes in receptor expression levels (80).

Furthermore, in vivo studies have shown that the complex effects of

DEHP and BPA mixtures may lead to reduced thyroid weight, which

ultimately would affect the development of the thyroid gland (81). In

humans, instead, some studies suggest that individual maternal

urinary phthalate metabolite concentrations would have no effect on

cord serum TSH levels (72, 82), but the data are controversial. Huang

et al. reported that maternal phthalate levels in the second trimester of

pregnancy, were positively associated with T3 and fT4 levels in cord

serum (83). Moreover, phthalates antagonize the binding of T3 to

thyroid receptor-b, limiting T3 cell uptake, and disrupting sodium-

iodine transporter transcription, lowering thyroxine (T4) and T3 levels

in pregnant women and children (84, 85).

The Columbia Center study showed that maternal urinary

mono-(2-ethylhexyl) phthalate (MEHP) levels were positively

linked with fT4 in children at age 3 years (24). Moreover, there is

a link between early childhood phthalate exposure and thyroid

function from 6 to 12 years of age. Two further recent studies have

shown, that phthalate exposure was associated with decreased TSH

and increased T3 in children (85, 86). Researchers have also

described an overall positive association of phthalate mixtures

with TT3 serum levels in adolescents (85, 87, 88).
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A large US study in 356 adolescents aged 12–19 years showed a

positive correlation between TT3 and TSH with mono‐

(carboxyisoctyl) phthalate (MCOP) and a negative correlation of

TSH with MCNP. Moreover, elevated levels of phthalates in

pubertal boys and girls were associated with higher DNA

methylation levels at the thyroid hormone receptor interactor 6

(TRIP6) promoter region, a gene associated with pubertal onset (87,

88). A further recent longitudinal study of 166 children described a

positive relationship between mono (2-ethyl-5-hydroxyhexyl)

phthalate (MEHHP) and fT4, and a negative relationship between

mono-methyl phthalate (MMP) and T3, T4, and fT4 serum levels

(89). Besides, DEHP metabolites have been reported to be positively

associated with TT3, andMCPP to be negatively associated with fT4

and TT4 in teenagers aged 12 to 19 years of age (88).
4.2 Effects of perchlorate, dioxin and
persistent organic pollutants on
thyroid function

Perchlorate, commonly present in both drinking water and

specific food items, competitively hinders the absorption of iodine

by the thyroid gland, subsequently reducing the synthesis of thyroid

hormones, and has been related with decreased cognitive function

in offspring (89).

Prenatal exposure to dioxin (TCDD exposure) has been

reported to be associated with changes in thyroid function in 2-

year-old children born to women living in Seveso where an

explosion that occurred 40 years ago has yet health implications,

and lower fT3 and fT4 levels are observed in the children born to

these mothers compared with the general Italian population (90). In

2 to 5-year-old children, prenatal dioxin exposure can increase TSH

and fT4 levels, which were found especially in males (91).

Persistent organic pollutants such as PBDEs and PCBs showed

associations with reduced serum thyroid hormone levels, altered

expression of TH-responsive genes, modifications in thyroid

hormone-binding proteins, and an elevated likelihood of

hypothyroidism (20, 64, 66, 71).

In the neonatal period, prenatal exposure to dioxin-like

contaminants has been described to be associated with higher

neonatal free thyroxine (fT4), especially in boys. Researchers

didn’t find any significant relationship between total PCBs or

non-dioxin-like PCBs exposure and any maternal or neonatal

thyroid hormone, implying that non-accidental PCB exposure

caused thyroid damage primarily through dioxin-like action (89).
4.3 Effects of exposure to
organophosphate pesticides, per- and
poly-fluoroalkyl substances, on
thyroid function

Organophosphate pesticides decrease thyroid hormone levels

and modify thyroid hormone metabolism. Experimental in vivo

studies have shown that the changes in TH levels cause decreased

circulating transthyretin, affecting the hepatic metabolism of T4,
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inducing histological changes in the thyroid gland, and reducing

brain weight in the offspring (20, 66, 71, 92).

Per- and poly-fluoroalkyl substances (PFAS) have been shown

to reduce circulating thyroid hormone levels by interfering with

intracellular signaling cascades, like mitogen-activated protein

kinase (MAPK) pathway, which can alter thyroid hormone

production, secretion, and cellular responses (93). Thyroid

hormone levels can be modified by PFAS exposure both

prenatally and postnatally, and higher PFAS mixture

concentrations in babies have been found to be associated with

lower total thyroxine levels (74, 94), but not with TSH levels in

neonates (95). The flame retardant DE-71 (a mixture of

polybrominated diphenyl ethers) has been reported to inhibit

human differentiated thyroid cell function in vitro, to inhibit

Thyroid globulin (Tg)-release from TSH-stimulated thyrocytes,

and to inhibit the expression of mRNA encoding for Tg, TPO,

and TSHr (96). A comprehensive meta-analysis from thirty-two

cohort studies has investigated the relations between prenatal

exposure to organochlorine, PFAS, and other EDCs, levels of

maternal thyroid hormones during pregnancy, and neonatal

thyroid hormone levels describing negative associations of

organochlorine and PFAS exposure and neonatal TT4 levels,

suggesting potential adverse effects (66, 97); the authors

hypothesized a change in the balance between thyroid hormone

biosynthesis and elimination (97) an induction of microsomal

enzymes as uridine diphosphate glucuronosyltransferase, and an

increased T4 to T3 conversion by inducing deiodinase (98, 99).
4.4 Effect of exposure to other EDCs on
thyroid function

Thyroid peroxidase (TPO) activity can be inhibited by

thiocyanates and phenols as they affect the conversion of iodide

to iodine and subsequently coupling processes inhibiting the

production of thyroid hormones and causing altered thyroid

homeostasis (70, 73). Phenols, especially in baby girls, are

associated with TSH levels, but not with total TT3 and fT4

during the pregnancy and at birth. This leads to the hypothesis

that genetic variants in the Iodothyronine Deiodinase 1 (DIO1) and

Iodothyronine Deiodinase 2 (DIO2) genes can modulate these

associations (100). Prenatal triclosan exposure was found to affect

Thyroid Peroxidase Antibodies (TPOAb) levels in three-year-old

children, resulting in 328% TPOAb higher levels (101). Notably,

populations with high thyroid antibody status appear to exhibit

increased susceptibility to the effects of in-utero exposure to

thyroid-disrupting chemicals, emphasizing the potential long-

term impact of such exposures on thyroid health (90).

Interestingly, phytoestrogens, which also act as EDCs, have an

influence on thyroid hormones in adolescents as well. Yun Fan et al.

reported that elevated levels of the urinary phytoestrogen

enterolactone (ENT) were positively associated with TSH levels in

12–19-year-old girls and with TSH and TT3 in this age category in

boys. Moreover, equol (EQU) levels were negatively associated with

TT4 in both sexes. So, we need to monitor phytoestrogen intake via

meals as well (102).
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Finally, some effects are sex-specific, as previously described for

bisphenols, phthalates, and PCBs in boys (76, 79, 89), and as for

triclosan, parabens, and OH-MPHP, negatively associated with T4,

in girls (103).

It should also be mentioned that in the near future machine

learning will be of great help to identify chemicals that interfere

with the endocrine system. A recent study has highlighted using

these techniques a few new chemicals predicted to interfere with the

TSH receptor (104).

The currently known effects of single EDCs on thyroid function

are reported in Table 1.
5 Effects of diet, nutrition, food
pollution and microplastics on
thyroid function

The relationship between diet and thyroid health plays a crucial

role in maintaining hormonal balance and preventing thyroid

dysfunctions. A nutrient-rich dietary style, including essential

elements such as iodine, selenium, iron and vitamin D, can

promote the proper synthesis of thyroid hormones and regulate

their activity. Moreover, there are currently no dedicated nutritional

recommendations for patients with thyroid diseases. Existing

guidance relies solely on the opinions and advice of individual

specialists, often providing incomplete and sometimes

contradictory information. Recent studies have demonstrated that

high consumption of animal fats can induce an increase in the

production of thyroid autoantibodies (105). The saturated fatty

acids found in animal fats can indeed trigger a pro-inflammatory

response through the activation of cytokine transcription. Studies in

rats have confirmed that excessive consumption of animal fats

determines thyroid dysfunction and may contribute to the

pathogenesis of hypothyroidism (106). A study conducted by

Ruggeri et al. on euthyroid patients with Hashimoto’s disease

showed that markers of oxidative stress (evaluated through

advanced glycation end-products - AGEs) were significantly higher

in patients compared to controls, and the activity of the enzymes

glutathione peroxidase and thioredoxin reductase, as well as plasma

antioxidant activity, was reduced in the patients compared to

controls. When evaluating the dietary habits of the enrolled cohort,

it emerged that patients consumed animal-derived foods (meat, fish,

and dairy) more frequently compared to the control group, which

preferred a diet richer in plant-based foods (legumes, fruits,

vegetables) (107). This suggests the positive influence of a low

intake of animal foods on the oxidative-antioxidant balance. An

anti-inflammatory diet, rich in vitamins, minerals, polyphenols, and

phytosterols, seemed to be able to reduce the circulating levels of

thyroid autoantibodies (108). Natural antioxidants as vitamins A, C

and E are found mostly in plant-based products, including a wide

variety of fruits and vegetables. These studies highlighted the

importance of recommending a Mediterranean diet as an adjuvant

in the treatment and prevention of thyroid autoimmunity, thanks to

its antioxidant properties (107, 108).

Diet can also influence the composition of the microbiota.

Several studies have illustrated the change in microbiota
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composition following dietary modifications. The intestinal

bacterial flora plays a crucial role in maintaining metabolic,

nutritional, and even immunological homeostasis (109). The

hypothesis of a thyroid-gut axis is becoming increasingly

concrete. In addition to influencing the absorption of minerals

important for thyroid function (iodine, selenium, zinc, and iron),

the microbiome is involved in endogenous and exogenous thyroid

hormone metabolism. The presence of iodothyronine deiodinase,

an enzyme that converts T4 into its active T3 form or into reverse

T3 (rT3), has been found in the intestinal wall, thus influencing

total body T3 levels (110). A review by our group reported how the

microbiota plays a role in metabolizing endocrine disruptors

introduced through diet, by means of a bidirectional interaction

that leads to dysbiosis and changes in pathways involved in the

development of various metabolic diseases (63). Dysbiosis and the

subsequent negative influence on the immune system and intestinal

permeability can promote the development of inflammatory and

autoimmune diseases, including thyroid diseases (110–112).

Food pollution may modify these factors, which will, in turn,

affect thyroid function.

As we described, food may be exposed to endocrine-disrupting

chemicals through pesticides, fertilizers, canned products, and

plastic particles that exhaust and alter thyroid function (17).

Ultra-processed food is an industrially manufactured product

taken from natural foods or synthesized from other organic

components (113). Its consumption could also change thyroid

function. A unique prospective cohort study by Zhang et al.

found that ultra-processed food consumption was associated with

higher risk of subclinical thyroid dysfunction in adults (114).

Another concern is related to the increasing global prevalence of

nitrate and nitrite accumulation in vegetables and fruits owe to

climate changes (29). As nitrates and nitrites in the human body

undergo metabolic conversion into nitric oxide, higher levels can
TABLE 1 The known effects of single EDCs on thyroid function.

EDC Window of
exposure
(age)

Findings
and effects

References

Bisphenols Prenatal
exposure and
neonatal period

↑ TSH in neonates (75)

Prenatal
exposure and
in newborns

BPA - ↓TT4 and fT3
BPS - ↓ TSH in boys
BPAF - ↑ TT3 and fT3
in girls
BPs - ↑ TT3 and fT4

(76)

9–11 year
old children

BPA - ↑ thyroid
volume
↑ incidence of
thyroid nodules

(78)

Prenatal
exposure and 10
year old children

BPA - ↑ fT4 in cord
serum
↑ risk of behavioral
difficulties at
school age

(79)

Phthalates Prenatal
exposure
and newborns

No effect on cord
serum THs levels, but
for each 10-fold ↑ in
MEP one observes
↓TT4 in neonates, and
for a 10-fold increase
in MBzP one observes
↓ TSH in 19%
of neonates

(72)

Prenatal
exposure and 3
year old children

No association with
TSH levels, but
maternal MEHP vevels
were positively
associated with fT4 in
children at age 3 yr

(82)

Prenatal
exposure
and newborns

MEP and MiBP - ↑
T4, and ↑ fT4
↓ T3 and MiBP and
MEOHP — ↓ TSH

(83)

Adolescents 12–
19 year olds

MCOP - ↑TT3 and
MCNP - ↓ TSH

(85)

Prenatal
exposure and 6
year olds

MnBP - ↓ TSH and ↓
fT4 × TSH

(86)

Adolescents 12–
19 year olds

Positive association of
phthalates with T3
serum levels, MCOP
with TT3 and TSH,
and negative
correlation of TSH
with MCNP.
DEHP positively
associated with TT3,
and MCPP was
negatively associated
with fT4 and TT4

(88)

Dioxin-like
contaminants
and PCBs

Prenatal
exposure and
neonatal period

↑ fT4 in neonates (89)

(Continued)
TABLE 1 Continued

EDC Window of
exposure
(age)

Findings
and effects

References

Dioxin Prenatal
exposure and 2
year olds

↓ fT3 and fT4 (90)

Prenatal
exposure and up
to 6 year olds

↑ TSH and fT4,
especially in boys

(91)

PFAS Prenatal
exposure
and newborns

↓ fT4 (95)

Phenols Prenatal
exposure and
neonatal period

↓ TSH levels (100)

Triclosan Prenatal
exposure and up
to 3 year of age

↓ TT4 cord levels, but
disappear later
↑ TPOAb levels in 3yr
old children

(101)
↓, decrease; ↑, increase.
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disrupt thyroid function. Nitrate can competitively interfere with

iodine uptake by the thyroid gland and influence hormonal

synthesis. Moreover, meat consumption with higher levels of

nitrates/nitrites can stimulate the synthesis of endogenous N-

nitroso compounds. Both nitrosamines and N-nitroso compounds

have carcinogenic effects (42, 115). A meta-analysis concluded that

a dietary high nitrate intake was connected with an increased risk of

thyroid cancer (odds ratio [OR] = 1.40, 95% confidence intervals

[CI]: 1.02, 1.77) (116).

Finally, the accumulation of nano- and microplastics in meat

and fish can lead to chronic exposure and accumulation of these in

tissues. It is hypothesized that microplastics may disrupt the

epithelial barrier and alter immunological responses (63). Animal

studies have described that chronic exposure to polystyrene

nanoplastics inhibits serum T3 and circulating levels of thyroid

hormones, which significantly elevates TSH (117).

Additionally, contaminated seafood and seafood products can

contain heavy metals like mercury, which are bioaccumulated in the

thyroid cells and can contribute to the development of autoimmune

thyroiditis, hypothyroidism, and thyroid cancer (118).
6 The effect of infectious agents on
thyroid function: lessons from the
COVID-19 pandemic

The risk of infections and their effects represents one of the

biggest environmental threats and planetary emergencies to date, as

shown by the COVID-19 pandemic.

Since December 2019, the Coronavirus Disease 2019 (COVID-

19), caused by the etiologic agent Severe Acute Respiratory

Syndrome Coronavirus-2 (SARS-CoV-2), has been the cause of

high mortality and morbidity all over the world. At the end of May

2023, over 767 million human infections and over 6.9 million

deaths have been reported worldwide (119).

The pediatric population, instead, since the beginning of the

pandemic, has been less affected than adults, with a global milder

clinical presentation and low rates of hospitalization and death.

However, rare and severe complications may also develop in

children, with a systemic involvement due to a multisystem

inflammatory syndrome (MIS-C) (120).

SARS-CoV-2 is an enveloped RNA virus that belongs to the

Coronaviridae family (Nidovirales order). Its genome is a single-

stranded positive-sense RNA that contains four structural proteins:

spike protein (S), membrane protein (M), nucleocapsid protein (N)

and envelope protein (E) (121). The spike protein is a viral surface

protein and consists of two subunits (S1 and S2). It is involved in

the viral attachment and in the host cell entry: the S1 subunit is able

to bind the angiotensin-converting enzyme 2 (ACE2) receptor

while, in a second step, the S2 subunit allows the virus to enter

the cell by membrane fusion (122).

ACE2 is widespread in different organs, including the respiratory

and gastrointestinal tract, the brain, the kidneys, the heart, and

vessels, and this is the reason why, although the main viral target

still remains the respiratory epithelium, SARS-CoV-2 can potentially

infect multiple tissues (123). Moreover, ACE2 is also expressed in
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several endocrine tissues, such as the ovaries, the testis but also the

hypothalamus, the pituitary, and the thyroid gland, with a consequent

possible impact of the infection on endocrine function (124). SARS-

CoV-2 can attack, in fact, thyroid follicular cells via ACE2 with

possible consequences on thyroid function (125). In addition, besides

the direct invasion of the thyroid tissue, indirect mechanisms can also

alter thyroid function. First, both the hypothalamus and the pituitary

gland, which regulate the thyroid axis, express ACE2 receptors, being

additional targets of the viral infection. Second, it is worth noticing

that thyroid hormones are strongly linked to the regulation of the

immune system (126). Patients with severe forms of COVID-19

infection characterized by a hyperinflammatory state due to the

cytokine storm may develop an acute hypothalamus/pituitary/

thyroid axis dysfunction that may cause both acute hypothyroidism

and immune-mediated damage (127).

In critical patients, euthyroid sick syndrome or non-thyroidal

illness syndrome, characterized by decreased fT3 but normal TSH

levels, has been described as probably due to the abnormal

hyperinflammatory state: in fact, in most cases, this condition was

transient and resolved over time (128, 129).

Moreover, a certain increase in incidence of hypo- and

hyperthyroidism as de-novo diagnosis or exacerbations of pre-

existing disorders were described, thus, the indication of routine

evaluation of thyroid function in infected patients, in particular in

those presenting severe forms of COVID-19 disease was

recommended (130, 131).

Considering specifically the paediatric population, it is

important to remark that there is still a considerable lack of

information on the impact of COVID-19 disease on thyroid

function, and all the evidence described above derives from

studies conducted on adult patients. In fact, since the beginning

of the pandemic, only about 17.9% of the total registered cases

concerned children, partially explaining this current lack of data;

moreover, children rarely develop severe disease with the

hyperinflammatory response, thus protecting them from thyroid

acute dysfunctions (132).

Later in the course of the pandemic, after the beginning of the

vaccination program, an increasing number of cases of possible

alterations in thyroid function after the administration of COVID-

19 vaccines were reported, in parallel with reassuring data on global

safety and efficacy.

The most common suspected adverse event reported was

subacute thyroiditis, followed by Graves disease with other

incidental reports of painful thyroiditis, silent thyroiditis,

concurrent Graves disease and subacute thyroiditis, thyroid

eye disease , overt hypothyroidism, atypical subacute

thyroiditis, and painless thyroiditis with thyrotoxic periodic

paralysis (133).

Recently, new data on the possible correlation between COVID-

19 vaccines and thyroid inflammatory disease have been reported

with the confirmation that subacute thyroiditis may be considered

an uncommon complication that may follow COVID-19

vaccination. Interestingly, as described by Şendur et al., this

adverse effect tends to affect young and middle-aged adult women

with a certain genetic background. Conversely, to date, no cases

involving children or adolescents have yet been reported (134).
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It is worth noticing that the types of COVID-19 vaccinations

that most frequently cause adverse effects on thyroid function are

mRNA-based vaccines, followed by adenovirus-vectored SARS-

CoV-2 vaccines and inactivated vaccines (134). Considering that

most of the reported post-vaccine thyroid complications had a

favorable outcome with resolution after treatment, the benefits of

COVID-19 vaccinations clearly still prevail over the possible

development of any thyroid disease.
7 Conclusions and future directions

Many environmental factors can influence the development of

the thyroid gland and its function throughout life, and there is a

need for monitoring and further understanding.

Air and water pollutants, climate change, endocrine-disrupting

chemicals, nutrients and food pollutants, and infectious agents can

all have a significant effect on thyroid cancer, but current data are

still scarce. In particular, we lack information on determinants

during childhood and have limited knowledge and understanding

of many pollutant mechanisms of action.

The effects of Endocrine Disruptors and thyroid function are

currently the most studied among the factors described above, and

both epidemiological data and studies of mechanisms of action are

available but are yet insufficient and have not covered all ages and

critical windows of exposure.

There is a lack of studies, in particular, in the prenatal and

perinatal periods, notwithstanding the global attention on the first

1,000 days of life, as in-utero exposure to contaminants is known to

determine epigenetic changes with transgenerational effects, and to

be associated with an increase in non-communicable diseases in

later life.

The collective evidence from various studies underscores the

intricate relationship between endocrine-disrupting chemicals and

thyroid function in children. The complex interplay between EDCs

and thyroid function involves many mechanisms. Even minor

changes in thyroid hormone functions, especially during critical

developmental periods, may have lasting health effects, particularly

on neurocognitive development. Therefore, understanding the

association between EDCs and thyroid disease in childhood is

crucial for developing preventive strategies, promoting regulatory

measures, and minimizing exposure to these chemicals, ultimately

safeguarding thyroid health.

Infectious diseases currently represent a planetary emergency

among others, and many can affect thyroid function; in particular, it

has been demonstrated that the SARS-CoV-2 infection is a possible

cause of thyroid inflammation and can trigger autoimmune

processes in adults. COVID-19 vaccination has been supposed to

be able to induce autoimmune thyroiditis in a few young and
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middle-aged adult women, although the overall advantages of the

vaccination still override these possible risks. Data in children and

newborns are still lacking.

Future studies should focus on the role of all environmental

factors on thyroid function starting from pregnancy, as these will

have effects throughout life.
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