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Yishu Wang4, Honglan Zhou1* and Faping Li1*

1Department of Urology, The First Hospital of Jilin University, Changchun, China, 2Department of
Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University,
Changchun, Jilin, China, 3Department of Endocrinology, The Second Affiliated Hospital of Zhengzhou
University, Zhengzhou, China, 4Key Laboratory of Pathobiology, Ministry of Education, Jilin University,
Changchun, China
Background: Despite the potential demonstrated by targeted plasma metabolite

modulators in halting the progression of chronic kidney disease (CKD), a lingering

uncertainty persists concerning the causal relationship between distinct plasma

metabolites and the onset and progression of CKD.

Methods: A genome-wide association study was conducted on 1,091

metabolites and 309 metabolite ratios derived from a cohort of 8,299

unrelated individuals of European descent. Employing a bidirectional two-

sample Mendelian randomization (MR) analysis in conjunction with

colocalization analysis, we systematically investigated the associations between

these metabolites and three phenotypes: CKD, creatinine-estimated glomerular

filtration rate (creatinine-eGFR), and urine albumin creatinine ratio (UACR). In the

MR analysis, the primary analytical approach employed was inverse variance

weighting (IVW), and sensitivity analysis was executed utilizing the MR-Egger

method and MR-pleiotropy residual sum and outlier (MR-PRESSO).

Heterogeneity was carefully evaluated through Cochrane’s Q test. To ensure

the robustness of our MR results, the leave-one-out method was implemented,

and the strength of causal relationships was subjected to scrutiny via

Bonferroni correction.

Results:Our thorough MR analysis involving 1,400 plasma metabolites and three

clinical phenotypes yielded a discerning identification of 21 plasma metabolites

significantly associated with diverse outcomes. Specifically, in the forward MR

analysis, 6 plasma metabolites were determined to be causally associated with

CKD, 16 with creatinine-eGFR, and 7 with UACR. Substantiated by robust

evidence from colocalization analysis, 6 plasma metabolites shared causal

variants with CKD, 16 with creatinine-eGFR, and 7 with UACR. In the reverse

analysis, a diminished creatinine-eGFR was linked to elevated levels of nine

plasmametabolites. Notably, no discernible associations were observed between

other plasmametabolites and CKD, creatinine-eGFR, and UACR. Importantly, our

analysis detected no evidence of horizontal pleiotropy.
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Conclusion: This study elucidates specific plasma metabolites causally

associated with CKD and renal functions, providing potential targets for

intervention. These findings contribute to an enriched understanding of the

genetic underpinnings of CKD and renal functions, paving the way for precision

medicine applications and therapeutic strategies aimed at impeding

disease progression.
KEYWORDS
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1 Introduction

Chronic kidney disease (CKD) is distinguished by structural

and functional impairments in renal physiology. Diagnosis typically

involves an estimated glomerular filtration rate (eGFR) below 60

mL/min per 1.73 m2 or elevated indicators of kidney damage

persisting for at least three months (1). Globally, CKD affects

nearly 10% of the adult population, resulting in an annual toll of

1.2 million deaths and the loss of 28.0 million years of life (2).

Projections indicate that by 2040, CKD is poised to become the fifth

leading cause of mortality worldwide (3). Given its burgeoning

impact, elucidating the determinants of CKD assumes paramount

significance for devising targeted primary prevention strategies with

substantial public health implications.

In recent years, a burgeoning body of evidence has underscored

the close association between metabolic dysregulation and CKD

development. Both in vivo and in vitro investigations have

delineated potential links between CKD and metabolic disorders

such as hypertension, diabetes mellitus (or insulin resistance), and

dyslipidemia (4–7). Hypertension, diabetes mellitus, and

dyslipidemia are prominent contributors to CKD progression.

These conditions induce chronic inflammation, oxidative stress,

and endothelial dysfunction, which damage renal structures and

impair their function. Insulin resistance, commonly associated with

obesity and diabetes, exacerbates renal damage by promoting

glomerular hypertension and hyperfiltration (8). Dyslipidemia leads

to lipid accumulation in renal tissues, contributing to

tubulointerstitial fibrosis and glomerulosclerosis (9). Furthermore,

there are indications in some studies that these disorders may share

common pathological pathways (10). The contemporary deployment

of OMIC technologies, encompassing genomics and metabolomics,

has facilitated the exploration of underlying pathophysiological

mechanisms and potential therapeutic avenues for human diseases.

Recent metabolomic studies in both human and animal models have

identified various circulating biomarkers, including amino acids,

phosphates, and lipids (11–13). Emerging evidence suggests that

altered gut microbiota and metabolite profiles, such as increased

levels of trimethylamine N-oxide (TMAO), may play a role in CKD
02
development by promoting inflammation and vascular dysfunction

(14). However, challenges stemming from sample size limitations and

confounding factors underscore the uncertainty surrounding the

causal effect of plasma metabolites on CKD.

Mendelian randomization (MR), leveraging genetic variants to

establish causal relationships, serves as a methodological approach

circumventing biases, reminiscent of a large-scale randomized

controlled trial (RCT) mirroring natural processes (15). This

technique is particularly useful in chronic diseases due to several

reasons. Firstly, chronic diseases often develop over a long period,

making it difficult to establish causal links through traditional

observational studies. MR uses genetic variants, which are fixed at

conception and thus precede disease onset, providing a time-

anchored method to infer causality (16). Secondly, MR can help

identify modifiable risk factors for chronic diseases, aiding in the

development of preventive and therapeutic strategies. For instance,

MR has been used to demonstrate the causal role of elevated body

mass index (BMI) in the development of type 2 diabetes and

cardiovascular diseases (17), highlighting the importance of weight

management in chronic disease prevention. Thirdly, MR is useful in

exploring the biological mechanisms underlying chronic diseases. By

linking genetic variants associated with specific biological pathways to

disease outcomes, MR can uncover potential therapeutic targets. A

recent MR analysis has yielded novel insights into the potential

therapeutic implications of plasma metabolites in CKD, specifically

revealing a causal link between elevated homocysteine levels and IgA

(18). Bidirectional MR analysis, an extension of conventional MR,

assumes a pivotal role in unraveling intricate interconnections within

biological systems, including feedback loops between exposure and

outcome variables (19).

To thoroughly scrutinize the causal nexus between plasma

metabolites and CKD, a bidirectional MR investigation was

undertaken. Recognizing the protracted nature of CKD progression,

our analysis encompassed multiple endpoints, including eGFR and

urine albumin creatinine ratio (UACR). The application of

bidirectional MR aimed to furnish a more comprehensive

understanding of the intricate connections between plasma

metabolites and the evolving dynamics of renal function.
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2 Materials and methods

2.1 Study design

The comprehensive study design is delineated in Figure 1. A 2-

sample MR approach was deployed, leveraging aggregated genetic

associations from diverse genome-wide association studies (GWAS),

to elucidate the intricate relationship between 1,400 plasma

metabolites and key renal function indices, namely CKD,

creatinine-eGFR, and UACR. The investigative strategy

commenced with a forward MR analysis probing the connections

between genetically determined plasma metabolome and renal

function. Subsequently, acknowledging the potential impact of

abnormal renal function on plasma metabolome levels, a reverse

MR analysis was conducted to scrutinize the associations between

genetically determined renal function and plasma metabolome levels.

Upon establishing MR evidence of a causal effect, a colocalization

analysis was executed to validate the concordance of the exposure and

outcome, confirming the shared influence of the same causal variant.
2.2 Data source of plasma metabolites

GWAS data pertaining to 1,091 metabolites and 309 metabolite

ratios were procured from 8,299 unrelated individuals of European

descent participating in the Canadian Longitudinal Study on Aging
Frontiers in Endocrinology 03
(CLSA). These individuals underwent genome-wide genotyping,

and their circulating plasma metabolites were carefully measured

(20). Utilizing the state-of-the-art Ultrahigh Performance Liquid

Chromatography-Tandem Mass Spectrometry platform,

specifically the Metabolon HD4 platform by Metabolon, Inc.

(Durham, NC, USA), 1,458 distinct metabolites were assayed in

plasma samples. The dataset was refined by exclusively selecting

metabolites with missing measurements in less than 50% of the

samples, resulting in a curated set of 1,091 metabolites.

Furthermore, leveraging batch-normalized metabolite levels

generated by Metabolon, the dataset was further tailored to

encompass metabolites with minimal missing measurements. To

elucidate interrelations between metabolites, 309 pairs exhibiting

shared enzymatic or transporter elements were identified via the

Human Metabolome Database. Metabolite ratios within each pair

were computed by dividing the batch-normalized measurement

value of one metabolite by that of the other in the same individual.

Subsequently, these metabolite ratios underwent careful curation,

retaining only those within 3 standard deviations, followed by an

inverse-rank normal transformation.
2.3 Data source of CKD and renal function

For instrumental variables associated with CKD and creatinine-

eGFR, data were sourced from the CKDGen Consortium,
FIGURE 1

Study design. CKD, Chronic kidney disease; creatinine-eGFR, creatinine-estimated glomerular filtration rate, UACR, urine albumin creatinine ratio;
FDR, false discovery rate; MR, Mendelian Randomization.
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constituting the primary outcomes of interest. CKD, defined as

eGFR < 60 ml/min/1.73m², was discerned through GWAS data

acquired from a meta-analysis involving 23 cohorts of European

origin, encompassing 41,395 patients and 439,303 controls (21).

Values of creatinine-eGFR were calculated from serum creatinine,

using the equation for the Modification of Diet in Renal Disease

(MDRD) Study and applied to define CKD (eGFRcrea <60 mL/min/

1.73 m2) (22). Creatinine-eGFR was age and sex adjusted using

residuals, and then natural log transformed (22). Creatinine-eGFR

GWAS data emanated from meta-analyses conducted in the UK

Biobank (n = 436,581, European origin) and the CKDGen

consortium (n = 765,348, predominantly European origin) (23).

In the UK Biobank, serum creatinine measurements were

ascertained using a Beckman Coulter AU5800 analysis and were

incorporated into the CKD Epidemiology Collaboration formula

for eGFR calculation (24, 25). For individuals aged less than 18

years, the Schwartz formula was used instead (26). UACR was

calculated as urinary albumin/urinary creatinine (mg/g) to account

for differences in urine concentration (27). The data of UACR were

derived from the CKDGen Consortium, which recorded the

summary data of European-ancestry (n = 547,361) (28).
2.4 Filtering of single
nucleotide polymorphisms

The judicious selection of appropriate single nucleotide

polymorphisms (SNPs) is paramount for the effective execution of

MR analysis. The foundational assumption of MR necessitates that all

SNPs independently and significantly predict exposure at the

genome-wide level of significance. In the forward MR analysis, we
Frontiers in Endocrinology 04
employed 22,043 SNPs associated with plasma metabolomes as

instrumental variables for exposure. However, adherence to a

stringent threshold of 5×10-8 would have resulted in the exclusion

of a substantial proportion of SNPs. Consequently, we adopted a

relatively permissive yet statistically significant threshold of 5×10-6,

informed by previous research (29), to encompass the majority of

SNPs associated with plasma metabolomes, imposing constraints of

r2 < 0.001 and kb = 10,000 to mitigate potential linkage

disequilibrium (LD) In the reverse MR analysis, concerning CKD

and phenotypes associated with renal function, a threshold of 5×10-8

was applied to all instrumental variables, maintaining r2 < 0.001 and

kb = 10,000 to address linkage disequilibrium concerns. Palindromic

SNPs were scrutinized for definitive effect allele alignment, with

ambiguous cases being excluded. Furthermore, SNPs weakly

validated with F values (F = r2 × (N − 2)/(1 − r2) below 10 were

removed to ensure the robustness of the association between

instrumental variables and exposure. These rigorous screening

criteria safeguard the validity of the findings in our study.
2.5 Two-sample MR

A detailed two-sample MR analysis was executed to assess the

causal associations between plasma metabolites and both CKD and

renal function (Figure 2). Instrumental estimates for individual

SNPs were obtained using instrumental variable ratios. Assuming

the validity of instruments without pleiotropy, we conducted a suite

of analyses including Inverse variance weighted (IVW), MR-Egger,

weighted median, weighted mode, and simple mode to scrutinize

the causal relationship between exposure factors and outcomes

(30, 31). Additionally, an exhaustive sensitivity analysis was
FIGURE 2

Assumptions of a mendelian randomization analysis for plasma metabolites and risk of CKD, Creatinine-eGFR and UACR. Dashed lines depict
possible pleiotropic or direct causal effects between variables that would violate the assumptions of Mendelian randomization.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1429159
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhao et al. 10.3389/fendo.2024.1429159
performed employing diverse methodologies to ensure result

reliability. This encompassed the examination of heterogeneity,

assessment of horizontal pleiotropy, analysis of funnel plots, and

implementation of a leave-one-out analysis. The primary MR

analysis, IVW, was selected for those with two or more SNPs to

evaluate the potential causative effect of plasma metabolites on the

risk of CKD, creatinine-eGFR, and UACR. For plasma metabolites

with only one SNP, the Wald ratio was chosen as the primary MR

analysis, facilitating the evaluation of the efficacy and credibility of

each instrument employed in our instrumental variable analysis.

Heterogeneity in individual causal effects was assessed through Q-

statistics, where p-values below 0.05 indicated the presence of

heterogeneity (32). To address horizontal pleiotropy, MR Egger

regression and MR pleiotropy residual sum and outlier (MR-

PRESSO) test were employed for corrective purposes. Given the

inherent risk of false positive outcomes arising from the

simultaneous processing and comparison of multiple datasets,

the Bonferroni correction test was employed to evaluate the

robustness of the causal relationship between exposure and

outcome variables. A two-sided P value below 3.57 × 10-5 (0.05/

1,400) was considered significant, with estimates falling between

0.05 and 3.57 × 10-5 interpreted as suggestive evidence of an

association in this study, considering the conservative nature of

the Bonferroni correction method.
2.6 Colocalization

Colocalization analysis, a critical component of our

investigation, was executed using the coloc R package (33) to

ascertain the influence of linkage disequilibrium on the identified

associations between plasma metabolites and CKD, along with renal

function. Employing a Bayesian approach, the analysis

contemplated five mutually exclusive hypotheses for each locus

(1): no association with either trait (2); association solely with trait 1

(3); association solely with trait 2 (4); both traits being associated

with distinct causal variants; and (5) both traits sharing the same

causal variant. Posterior probabilities were assigned to each

hypothesis test (H0, H1, H2, H3, and H4). Notably, prior

probabilities for the SNP’s association with trait 1 only (p1) and

trait 2 only (p2) were set at 1 × 10-4 each, with the probability of the

SNP being associated with both traits (p3) set at 1 × 10-5. The

robustness of colocalization evidence was delineated by posterior
Frontiers in Endocrinology 05
probabilities, with a value of PP.H4 ≥ 0.8 indicative of strong

colocalization evidence, and medium colocalization indication

denoted by 0.5 < PP.H4 < 0.8.

Plasma metabolites-outcome associations with FDR-corrected

P value < 0.05 in MR were subsequently classified into three groups.

Plasma metabolites demonstrating high-support evidence of

colocalization (PP.H4 ≥ 0.8) were designated as tier 1 targets.

Those with medium-support evidence of colocalization (0.5 <

PP.H4 < 0.8) were classified as tier 2 targets. The remaining

proteins, lacking substantial colocalization evidence, were

designated as tier 3 targets. This careful classification facilitates a

nuanced understanding of the colocalization strength and

guides subsequent prioritization of plasma metabolites for

further investigation.
3 Results

3.1 The selection of instrumental variables

A total of 1,400 plasma metabolites were included in subsequent

MR analyses. We performed the quality control of SNPs. SNPs

associated with plasma metabolites passed the locus-wide

significance threshold of P < 5×10−6 was screened. Subsequently,

harmonization and clumping procedures were applied, leading to

the removal of palindrome SNPs and a reduction in the impact of

LD. Consequently, the number of IVs pertaining to the 1,400

plasma metabolites for CKD was determined to be 7,661.

Similarly, the number of IVs for the 1,400 plasma metabolites

associated with creatinine-eGFR was 7,260, while for UACR, it was

7,122. Notably, all F-statistics of IVs surpassed the threshold of 10,

signifying the absence of weak instrument bias (Supplementary

Tables S1-S3).
3.2 Causal link between plasma
metabolites and CKD

The investigation substantiates a causative link between 6

plasma metabolites and an elevated susceptibility to CKD

(Figure 3, Supplementary Table S4). Employing the IVW method

for genetic prediction, higher levels of Beta-alanine, Gamma-

glutamylglycine, Glycine to alanine ratio, Glycine to phosphate
FIGURE 3

Forest of plasma metabolites with risk of chronic kidney disease. nSNPs, number of single nucleotide polymorphisms; Pval, P-value; OR, odds ratio;
CI, confidence interval; PP.H4, posterior probability of hypothesis 4.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1429159
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhao et al. 10.3389/fendo.2024.1429159
ratio, and N-delta-acetylornithine were associated with an

augmented risk of CKD, as evidenced by odds ratios (OR) and

95% confidence intervals (CI). Specifically, Beta-alanine levels

(OR = 1.176, 95% CI 1.092-1.267, P = 1.98×10-5), Gamma-

glutamylglycine levels (OR = 1.103, 95% CI 1.055-1.152,

P = 1.28×10-5), Glycine to alanine ratio (OR = 1.131, 95% CI

1.083-1.180, P = 1.97×10-8), Glycine to phosphate ratio

(OR = 1.107, 95% CI 1.062-1.152, P = 1.04×10-6), and N-delta-

acetylornithine levels (OR = 1.068, 95% CI 1.042-1.095,

P = 1.48×10-7) exhibited a consistent association with an

increased CKD risk, as corroborated by MR-Egger and weighted

median analyses.

Contrastingly, Wald analysis demonstrated that an increase in

the Glucose to mannose ratio was associated with a decreased risk of

CKD (OR = 0.863, 95% CI 0.805-0.925, P = 3.05×10-5). Further

assessments, including MR-Egger regression, MR-PRESSO and

Cochrane’s Q test, substantiated the absence of horizontal

pleiotropy, outliers, or notable heterogeneity in the selected SNPs

(P > 0.05). Comprehensive presentations of individual SNP effects

and the cumulative effects of each analytical method are provided in

Supplementary Figures S1, S2. Additionally, the robustness of the

estimated causal effect was reaffirmed through a “leave-one-out”

analysis, demonstrating no significant alteration when each SNP

was individually excluded (Supplementary Figure S3).
3.3 Causal link between plasma
metabolites and creatinine-eGFR

The research discovered evidence of a cause-and-effect

relationship between 16 plasma metabolites and altered levels of

creatinine-eGFR. (Figure 4, Supplementary Table S5). The IVW

method for genetic prediction revealed that elevated levels of Alpha-

ketoglutarate to proline ratio (b = 0.006, 95% CI (0.004, 0.008),

P = 2.07×10-7), N-acetyl-2-aminoadipate levels (b = 0.015, 95% CI
Frontiers in Endocrinology 06
(0.007, 0.009), P = 8.79×10-7), N-acetylcitrulline levels (b = 0.006,

95% CI (0.004, 0.007), P = 1.21×10-15), N-acetylleucine levels

(b = 0.009, 95% CI (0.006, 0.0013), P = 2.03×10-7),

N-acetyltyrosine levels (b = 0.007, 95% CI (0.005, 0.010),

P = 2.61×10-9) were associated with increased creatinine-eGFR,

and the results were similar with the MR-Egger and weighted

median analyses. The Wald analysis revealed that higher levels of

3-Hydroxybutyrate levels (b = 0.014, 95% CI (0.008, 0.020),

P = 3.06×10-6) were associated with increased creatinine-eGFR.

However, the IVW analysis revealed that higher levels of Cis-

3,4-methyleneheptanoylglycine levels (b = -0.015, 95% CI (-0.021,

-0.008), P = 8.91×10-6), Gamma-glutamylglycine levels (b = -0.012,

95% CI (-0.016, -0.009), P = 4.19×10-13), Glycine levels (b = -0.012,

95% CI (-0.015, -0.009), P = 3.10×10-14), Glycine to alanine ratio

(b = -0.014, 95% CI (-0.018, -0.011), P = 1.09×10-14), Glycine to

phosphate ratio (b = -0.013, 95% CI (-0.016, -0.010), P = 7.21×10-

19), Glycine to pyridoxal ratio (b = -0.019, 95% CI (-0.028, -0.011),

P = 1.45×10-5), Glycine to serine ratio (b = -0.013, 95% CI (-0.018-

-0.007), P = 2.19×10-6), N-delta-acetylornithine levels (b = -0.006,

95% CI (-0.007, -0.006), P = 1.71×10-76), Propionylglycine levels

(b = -0.018, 95% CI (-0.024, -0.012), P = 7.20×10-9) were associated

with decreased creatinine-eGFR. The Wald analysis revealed that

that lower levels of Homostachydrine levels (b = -0.013, 95% CI

(-0.019, -0.007), P = 2.33×10-5) were associated with increased

creatinine-eGFR.

Notably, MR-Egger regression and MR-PRESSO demonstrated

the absence of horizontal pleiotropy or outliers (P > 0.05), and

Cochrane’s Q test results indicated no apparent heterogeneity in the

selected SNPs (P > 0.05). Supplementary Figures S4, S5 illustrates

the effects of each SNP locus on creatinine-eGFR, emphasizing the

consistency of findings across various analytical methods.

Furthermore, a “leave-one-out” analysis demonstrated no

significant alteration in the estimated causal effect when

individual SNPs were systematically excluded, confirming the

robustness of the study’s findings (Supplementary Figure S6).
FIGURE 4

Forest of plasma metabolites with risk of estimated glomerular filtration rate. nSNPs, number of single nucleotide polymorphisms; Pval, P-value;
CI, confidence interval; PP.H4, posterior probability of hypothesis 4.
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3.4 Causal link between plasma
metabolites and UACR

The study found evidence of a causal link between 7 plasma

metabolites and an increased risk of declined UACR (Figure 5,

Supplementary Table S6). The IVW method for genetic prediction

revealed that higher levels of 2-oxoarginine levels (b = -0.054, 95% CI

(-0.075, -0.033), P = 2.78×10-7), Gamma-glutamylglycine levels (b =

-0.031, 95% CI (-0.043, -0.020), P = 6.63×10-8), Glycine levels (b =

-0.031, 95% CI (-0.040, -0.021), P = 3.06×10-10), Glycine to alanine

ratio (b = -0.038, 95% CI (-0.051, -0.025), P = 1.76×10-8), Glycine to

phosphate ratio (b = -0.032, 95% CI (-0.044, -0.021), P = 6.65×10-8),

N-acetylglycine levels (b = -0.039, 95% CI (-0.054, -0.024), P =

4.76×10-7), Serine to threonine ratio (b = -0.044, 95% CI (-0.063,

-0.026), P = 2.52×10-6) were associated with decreased UACR.

Notably, the MR-Egger regression and MR-PRESSO

demonstrated an absence of horizontal pleiotropy or outliers (P >

0.05). While Q-statistics indicated some evidence of heterogeneity

in the analysis of Gamma-glutamylglycine levels, Glycine to

phosphate ratio, N-acetylglycine levels, Serine to threonine ratio,

and Creatine levels, no such evidence was found in the analysis of

other plasma metabolites. Supplementary Figures S7, S8 displays

the individual effects of each SNP and the combined effects of each

analytical method, emphasizing the robustness of the findings

across various approaches. Moreover, a “leave-one-out” analysis

demonstrated no significant alteration in the estimated causal effect

when individual SNPs were systematically excluded, reaffirming the

study’s findings (Supplementary Figure S9).
3.5 Colocalization

We conducted rigorous colocalization analyses investigating the

potential shared causal variants between plasma metabolites and

CKD as well as renal function. This investigation aimed to

determine whether the identified associations of plasma

metabolites with CKD and renal function emanated from the

same underlying genetic factors (Supplementary Figures S10-S12).

The results revealed robust evidence of high-support colocalization

between 5 plasma metabolites, namely Beta-alanine levels, Gamma-

glutamylglycine levels, Glycine to alanine ratio, Glycine to
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phosphate ratio, and N-delta-acetylornithine levels, and CKD,

designating them as tier 1 targets (Figure 3). Additionally, a

noteworthy medium level of evidence for co-localization was

established between Glucose-to-mannose ratio and CKD,

categorizing it as tier 2 (Figure 3).

Furthermore, colocalization analysis uncovered high-support

evidence for the association of 13 plasma metabolites, including Cis-

3,4-methyleneheptanoylglycine levels, Gamma-glutamylglycine levels,

Glycine levels, Glycine to alanine ratio, Glycine to phosphate ratio,

Glycine to pyridoxal ratio, Glycine to serine ratio, N-acetyl-2-

aminoadipate levels, N-acetylcitrulline levels, N-acetylleucine

levels, N-acetyltyrosine levels, N-delta-acetylornithine levels,

Propionylglycine levels, and with renal function (creatinine-eGFR).

These metabolites were identified as tier 1 targets, indicating a robust

and well-supported relationship (Figure 4). Moreover, a similar high

level of colocalization evidence was observed between 6 plasma

metabolites, namely Gamma-glutamylglycine levels, Glycine levels,

Glycine to alanine ratio, Glycine to phosphate ratio, N-acetylglycine

levels, Serine to threonine ratio and UACR, designating them as tier 1

targets (Figure 5). Those plasmametabolite-outcome pairs with limited

evidence of colocalization were appropriately classified as tier 3 targets.
3.6 Reverse analysis

This investigation revealed compelling causal associations

between 21 plasma metabolites and diverse CKD outcomes

through forward MR analyses. In a complementary reverse MR

analysis, we explored the genetic relationship between CKD and

these 21 plasma metabolites. The IVW analysis unveiled that higher

levels of Cis-3,4-methyleneheptanoylglycine levels (b = -1.512, 95%

CI (-2.172, -0.852), P < 0.001), Gamma-glutamylglycine levels

(b = -2.444, 95% CI (-3.118, -1.771), P < 0.001), Glycine levels (b =

-1.518, 95% CI (-2.183, -0.852), P < 0.001), Glycine to alanine ratio (b
= -0.865, 95% CI (-1.521, -0.209), P = 0.010), Glycine to phosphate

ratio (b = -1.514, 95% CI (-2.190, -0.838), P < 0.001), Glycine to

serine ratio (b = -2.552, 95% CI (-3.224, -1.880), P < 0.001), N-

acetylleucine levels (b = -1.144, 95% CI (-1.827, -0.461), P = 0.001),

N-delta-acetylornithine levels (b = -3.354, 95% CI (-4.043, -2.666), P

< 0.001), Propionylglycine levels (b = -1.454 95% CI (-2.173, -0.736),

P < 0.001) might contribute to lower eGFR (Figure 6).
FIGURE 5

Forest of plasma metabolites with risk of urine albumin creatinine ratio. nSNPs, number of single nucleotide polymorphisms; Pval, P-value;
CI, confidence interval; PP.H4, posterior probability of hypothesis 4.
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However, reverse MR analysis showed that eGFR did not affect

the levels of other plasma metabolites. Similarly, CKD and UACR

did not affect the levels of corresponding metabolites (Figures 7, 8).

Importantly, throughout the analysis, no evidence of horizontal

pleiotropy was identified (P > 0.05), suggesting the robustness and

reliability of our findings (Supplementary Tables S10-S12).
4 Discussion

Our investigation is firmly grounded in innovative and

expansive GWAS data, employing a gene prediction methodology

to elucidate the intricate link between plasma metabolites and the

initiation and progression of CKD. As a result, our obtained

findings not only carry heightened credibility but also bear a

reliable interpretive impact causally, thereby potentially guiding

future CKD treatments by targeting specific plasma metabolites.

In the Two-sample MR results, various plasma metabolites have

been subject to extensive scrutiny in the realm of CKD. The work of

Yu et al. (34), employing a combination of high-throughput

metabolomic and genomic technologies, illuminated that a

mutation in NAT8 is associated with N-acetylornithine, N-acetyl-1-

methylhistidine, and eGFR, consequently influencing the risk of

incident CKD. These findings substantiate the role of N-acetylation

in CKD progression (35). Our current investigation underscores the

critical and actively researched aspect of exploring the functional

repercussions of the underlying causal variants. Our research echoes

similar conclusions, particularly in associating elevated N-delta-

acetylornithine levels with lower eGFR. Notably, both

Propionylglycine and Cis-3,4-methyleneheptanoylglycine belong to

acylglycines, compounds formed by the amalgamation of a fatty acid

and glycine. The interaction between glycine and tyrosine to form bile
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salts aligns with the study by Lin et al. (36), discerning global serum

profiles in CKD patients and healthy controls, emphasizing the

pivotal role of the broader distribution of free fatty acids in driving

CKD progression. This consistency in findings provides not only

enhanced insights into CKD pathophysiological changes but also

hints at potential therapeutic avenues.

Furthermore, 3-Hydroxybutyrate, an endogenously produced

ketone body molecule in the liver, adds a crucial dimension to our

understanding. A mounting body of evidence underscores the

potential positive impact of ketone bodies in diverse diseases,

including those with implications for renal health. The study

involving mice subjected to 5/6 nephrectomy revealed that

treatment with 1,3-butanediol effectively mitigated the progression

of proteinuria, glomerular, and tubulointerstitial injury (37). This

discovery holds profound clinical implications, signifying a potential

avenue for intervention-supplementing exogenous ketone bodies to

enhance renal function and protract the progression of CKD.

Examining serum disparities between CKD patients and healthy

individuals, Chen et al. (38) elucidated that pyridoxal may elevate

homocysteine levels and oxidative stress. Conversely, alanine and

serine, known for their antioxidant properties (39, 40), could

mitigate oxidative stress and protect the kidneys from damage.

Another study highlighted phosphate’s role in regulating the

synthesis and release of various hormones in the kidneys,

including parathyroid hormone, vitamin D, and the renin-

angiotensin-aldosterone system (41). These hormones

significantly influence renal function and electrolyte balance, and

phosphate aids in protecting renal function by regulating their

secretion. Our research aligns with these findings, indicating that

increased glycine to pyridoxal ratio, glycine to alanine ratio, glycine

to phosphate ratio, or glycine to serine ratio, along with a decline in

Serine to threonine ratio, impairs renal function.
FIGURE 6

Forest for association of genetically predicted estimated glomerular filtration rate with plasma metabolites. nSNPs, number of single nucleotide
polymorphisms; Pval, P-value; CI, confidence interval.
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Notably, N-acetylcitrulline and 2-oxoarginine, participants in the

arginine synthesis pathway as metabolites of citrulline (42), have been

relatively unexplored in their regulatory pathways impacting renal

function. Drawing from existing research, we speculate that the

conversion of arginine back to ornithine through nitric oxide

synthase in the arginine-guanidino pathway, releasing nitric oxide

(NO) (43), might help maintain a certain renal blood flow and

filtration rate, thereby protecting renal function. This discovery paves

the way for a novel research direction aimed at enhancing or delaying

CKD through a targeted exploration of plasma metabolites. Our

findings indicate that certain metabolites, such as 2-oxoarginine

levels, Gamma-glutamylglycine levels, Glycine levels, and their

respective ratios (e.g., Glycine to alanine ratio), are negatively

correlated with UACR. This suggests that higher levels of these

metabolites are associated with lower UACR, which is protective

since a high UACR indicates albuminuria, a pathological condition.

This protective association highlights the potential of these metabolites

as biomarkers or therapeutic targets in CKD management.

In the Two-sample MR analyses, our findings revealed divergent

roles of certain metabolites in CKD, contrary to established studies.

Ikeda’s investigation into the impact of renal insufficiency on plasma

amino acid levels contradicted previous assumptions, indicating no

significant difference in glycine levels between the control and renal

insufficiency groups (44). Our results propose a novel perspective,
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indicating an inverse correlation-increased plasma glycine associates

with a progressive decline in eGFR. As indicated by previous research,

glycine functions as a major osmolyte in the renal medulla (45). The

observed abnormal changes in organic osmolyte levels, as noted in

individuals with renal cell carcinoma (RCC) (36, 46), suggest a

potential disruption in kidney cell osmolar function among CKD

patients. Additionally, despite the documented antioxidative effects of

b-Hydroxybutyrate (b-HB) via Nrf2 signaling, which mitigates

kidney hypertrophy in diabetic mice, our study implicates beta-

alanine in CKD occurrence, albeit without elucidating specific

mechanisms—a recognized limitation (47). Nonetheless, this

finding aligns with the typical circulating amino acid profile

observed in individuals with kidney disease (48, 49). Finally, our

research challenges conventional wisdom by asserting that an

increased glucose-to-mannose ratio protects renal function, thereby

delaying CKD progression. This intriguing conclusion may be linked

to mannose’s established predictive ability for CKD development

(50). Despite the uncertainties and limitations inherent in our study,

this novel insight contributes to the evolving understanding of the

intricate relationships between metabolites and CKD, paving the way

for future investigations into disease mechanisms and potential

therapeutic interventions.

In our extended colocalization analysis, robust evidence of

colocalization emerged for 16 plasma metabolites with CKD and
FIGURE 8

Forest for association of genetically predicted urine albumin creatinine ratio with plasma metabolites. nSNPs, number of single nucleotide
polymorphisms; Pval, P-value; CI, confidence interval.
FIGURE 7

Forest for association of genetically predicted chronic kidney disease with plasma metabolites. nSNPs, number of single nucleotide polymorphisms;
Pval, P-value; CI, confidence interval.
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renal function, designating them as tier 1. Of particular emphasis is

a potential causal variant, rs1047891, identified proximal to CPS1,

encoding the mitochondrial enzyme carbamoyl-phosphate synthase

1. This enzyme governs the synthesis of carbamoyl phosphate from

ammonia, playing a pivotal role in the urea cycle. Noteworthy

clinical manifestations, including hyperammonemia, are evident in

individuals with CPS1 deficiency (51, 52). Thus, rs1047891 may

potentially influence CKD development by modulating CPS1 gene

expression. This discovery bolsters the outcomes of MR analyses

and holds crucial implications for gene editing interventions to

control CKD occurrence in the future.

Our research significantly advances the understanding of the

bidirectional relationship between plasma metabolites and CKD. The

response of plasma metabolites acts not only as a trigger for CKD but

also as a consequence of renal dysfunction. While prior studies

predominantly focused on factors leading to CKD development,

neglecting the reciprocal impact of renal disease on plasma

metabolites (53–55), our findings illuminate that renal impairment

induces alterations in serum metabolites through diverse pathways. A

primary pathway involves the kidneys’ compromised ability to filter

metabolites, leading to their accumulation in the bloodstream (56).

Changes in renal metabolic pathways affect the generation and

clearance of metabolites, exacerbating the endocrine metabolic

regulation imbalance prompted by renal impairment and influencing

serum metabolite levels (5, 57). Our research also found that n-delta-

acetylornithine levels, cis-3,4-methyleneheptanoylglycine levels,

gamma-glutamylglycine levels and glycine to serine ratio could be

changed with the development of CKD. This finding contributes to our

better understanding of the relationship between renal function and

plasma metabolites, providing new directions for future research on

inhibiting the progression of CKD.

Our findings reveal complex associations between plasma

metabolites, UACR, CKD, and eGFR. It is important to clarify that

while a decrease in UACR is generally considered protective because

high UACR is indicative of kidney damage, the metabolites that are

negatively correlated with UACR (e.g., Glycine to alanine ratio) might

also be associated with increased CKD risk and decreased eGFR. This

apparent contradiction can be attributed to the multifaceted role of

these metabolites in kidney function and disease progression. For

example, while lower UACR might suggest reduced albuminuria and

potential protection, other metabolic changes could be influencing the

overall risk of CKD and eGFR decline.

This MR study, leveraging recent pooled data, marks the

inaugural exploration into the causal interplay between CKD and

plasma metabolites. Departing from conventional observational

studies susceptible to reverse causality bias involving non-renal

metabolic pathways, our MR analysis mitigates confounding

factors, offering a dependable estimate of causality. Notably, our

study not only incorporates a dedicated GWAS cohort for CKD

events but also integrates diverse dynamic indicators of renal function

and phenotypes, rendering the association between renal disease and

plasma metabolites more clinically relevant and informative. The

accessibility of serum, a readily obtainable biological specimen in

clinical practice, underscores the substantial implications of our

findings for future clinical research in relevant domains.
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Nevertheless, several limitations warrant acknowledgment.

Firstly, the genetic data predominantly stem from individuals of

European descent, necessitating caution in extending the findings to

other ethnic groups. Despite diligent efforts to exclude SNPs linked to

potential confounders and perform sensitivity analyses, there remains

a possibility of undetected complex and multidirectional effects. The

use of instrumental variables from the GWAS meta-analysis

precludes exploration of potential stratification effects and

nonlinear relationships, necessitating further investigation. While

stringent correction thresholds and pleiotropy checks were

implemented to ensure robust MR results, this approach may lead

to some false-negative results. Moreover, MR analysis, while robust

for estimating causality, should not substitute for RCTs.

Consequently, the causality inferred from this study might not

perfectly align with RCT observations, emphasizing the need for

individual-based genetic observations and potential integration of

RCTs in future research to validate identified causal relationships.

Finally, Creatinine, a byproduct of muscle metabolism, indeed has

limitations that could potentially introduce bias, particularly in

populations with varying muscle mass. As decreased muscle mass

can lead to lower serum creatinine levels, which may falsely suggest

higher eGFR values, potentially masking renal impairment. Recent

studies have shown that some SNPs and associated metabolites

correlate with decreased muscle mass. For instance, Fujimoto and

Jin found he alpha-actinin-3 rs1815739 genotype (58), RPS10,

NUDT3, and GPD1L (59) are correlated with decreased muscle

mass through their respective studies. Similarly, other researchers

also found CYP2R1 (rs10741657), GC (rs2282679), VDR

(rs10741657) (60) and Cav1 G14713A (61) could lead to a loss of

muscle mass. Furthermore, Some metabolites, such as adenine

nucleotides, NAD (62), serum let-7e-5p (63), and butyrate (64),

can also contribute to the loss of muscle mass. However, in the

conclusions derived from this study, no related literature was found

indicating that the metabolites causally associated with increased

creatinine-eGFR might lead to decreased muscle mass. This suggests

that our conclusions have a certain level of credibility and

persuasiveness. Future research should incorporate alternative

biomarkers of kidney function that are less influenced by muscle

mass, such as cystatin C, which may provide a more accurate

assessment of renal function in diverse populations.
5 Conclusion

In summary, through an extensive genome-wide association study

and bidirectional MR analyses, we unveil associations between 21

metabolites and CKD, creatinine-eGFR, and UACR. Causal links

established highlight potential therapeutic targets. They are

respectively 3-Hydroxybutyrate levels, Alpha-ketoglutarate to proline

ratio, Cis-3,4-methyleneheptanoylglycine levels, Gamma-

glutamylglycine levels, Glycine levels, Glycine to alanine ratio,

Glycine to phosphate ratio, Glycine to pyridoxal ratio, Glycine to

serine ratio, Homostachydrine levels, N-acetyl-2-aminoadipate levels,

N-acetylcitrulline levels, N-acetylleucine levels, N-acetyltyrosine levels,

N-delta-acetylornithine levels, Propionylglycine levels, Beta-alanine
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levels, Glucose to mannose ratio, 2-oxoarginine levels, N-acetylglycine

levels, Serine to threonine ratio. Colocalization analysis strengthens

these findings, demonstrating robust evidence of shared genetic

variants for 16 plasma metabolites with CKD, eGFR, and UACR, all

classified as tier 1. These outcomes deepen our comprehension of

metabolite-driven mechanisms in CKD progression, opening avenues

for targeted interventions and personalized treatment strategies to

alleviate the burden of this prevalent disease.
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