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Objective:Diabetic neuropathy (DN), a common and debilitating complication of

diabetes, significantly impairs the quality of life of affected individuals. While

multiple studies have indicated changes in the expression of specific matrix

metalloproteinases (MMPs) in patients with DN, and basic research has reported

the impact of MMPs on DN, there is a lack of systematic research and the causal

relationship remains unclear. The objective of this research is to investigate the

casual relationship between MMPs and DN through two-sample Mendelian

randomization (MR).

Methods: Data for this investigation were derived from genome-wide

association studies (GWAS) of MMPs and DN. For the analysis using two-

sample MR, methods such as inverse variance weighted (IVW), weighted

median, weighted mode, and MR-Egger were utilized, with IVW serving as the

primary measure for determining causative impacts. To evaluate the analysis’

heterogeneity and potential pleiotropy, sensitivity examinations including MR-

PRESSO analysis, Cochran’s Q test, and the leave-one-out test were conducted.

Results: IVW analysis revealed that genetically decreased serum MMP-2 level

were causally associated with a high risk of DN (OR = 0.88, 95% CI: 0.79-0.99, P =

0.026). Genetically elevated serum MMP-16 level were causally associated with a

high risk of DN (OR = 1.15, 95% CI: 1.01-1.32, P = 0.038). Genetic prediction

results showed no causal association between other MMPs (MMP14/17/9/12/7/3)

and DN. Sensitivity analyses showed no significant heterogeneity or pleiotropy.
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Conclusion: In summary, this research uncovered a genetic causal relationship

between heightened MMP-16 levels and reduced MMP-2 concentrations, and

DN risk. These discoveries offer new perspectives on the role of MMPs in DN

etiology and establish a foundational premise for further investigations into

MMP-targeted therapeutic interventions.
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1 Introduction

With the growing prevalence of obesity and an aging

population, diabetes has seen a steady increase over the past two

decades. By 2019, the global age-standardized prevalence rate

reached approximately 5,282.9 per 100,000 people, with a

corresponding mortality rate of about 18.5 per 100,000 (1).

Diabetic neuropathy (DN) stands as the most widespread and

clinically demanding complication associated with diabetes,

affecting half of those diagnosed. This condition notably

heightens disability rates, profoundly impacts the quality of life

and treatment options for patients, substantially increases the

disease burden, and escalates healthcare costs. While DN might

be linked to factors such as insulin signaling, genetic

predispositions, environmental influences, and obesity, specific

treatments targeting its pathogenesis are still lacking. Matrix

metalloproteinases (MMPs) are a group of enzymes capable of

degrading extracellular matrix proteins, playing key roles in

extracellular matrix remodeling, inflammatory responses, and cell

signaling (2). These enzymes play pivotal roles in numerous

physiological processes and pathological conditions, including

diabetes and its associated neuropathic complications. Recent

research highlights the significant influence of MMPs on the

development and progression of DN (3). MMPs are particularly

noteworthy for their ability to degrade the extracellular matrix of

the peripheral nervous system, positioning them as potential

molecular links between diabetes and neuropathy.

Clinical findings underscore the importance of MMPs in

diabetes, revealing that MMP-14 is notably overexpressed in

diabetic patients and is intricately linked to the onset of diabetic

complications (4). In the context of DN, MMP-9 has been identified

as a promising biomarker for type 1 DN (5), while elevated MMP-1

levels in type 2 diabetes have been linked to increased collagenase

activity in Schwann cells—a key factor contributing to the

development of DN (6). Despite the growing body of evidence

connecting MMPs with DN, the conclusions of these studies remain

tentative. The primary limitations stem from generally small sample

sizes, the presence of confounding factors, and the potential for

reverse causality in observational studies. This underscores the need

for more robust, large-scale research to establish a definitive causal
02
relationship between MMPs and DN, further exploring their role as

therapeutic targets in mitigating diabetic complications.

Mendelian Randomization (MR) is a method that uses genetic

variants as IVs to assess the causal relationship between exposures and

diseases (7). The advantage of this method is that it can reduce the

problems of confounding factors and reverse causality that cannot be

overcome in traditional observational studies, providing more reliable

evidence for causal inference. Two-sample MR analysis, using exposure

and outcome data from different studies, further increases the statistical

power of the analysis and reduces the impact of measurement errors.

Therefore, this study aims to explore the causal relationship between

MMP levels and the risk of DN using the two-sample MR method,

aiming to providemore effective prevention and treatmentmethods for

DN patients, thereby improving patients’ prognosis and quality of life.
2 Methods

2.1 Study design

Figure 1 concisely delineates the MR framework linking MMPs

with DN. Single nucleotide polymorphisms (SNPs) derived from

GWAS summary statistics served as instrumental variables (IVs) in

our two-sample MR evaluation. The MR assessment adheres to three

cardinal principles (8): ① Genetic variants must exhibit a strong

correlation with the exposure; ② Genetic variants should not correlate

with any confounders affecting the exposure-outcome relationship; ③

The impact of genetic variants on the outcome should be mediated

solely through the exposure, excluding alternate biological routes. The

acquisition of GWAS summary statistics from publicly accessible

repositories eliminated the necessity for additional ethical approval.
2.2 Data source

GWAS summary data related to DN were obtained from the

FINNGEN database (https://www.finngen.fi/en/access_results), which

encompassing 2,444 cases and 249,480 controls; GWAS data

concerning MMPs were sourced from the GWAS Catalog

database (https://www.ebi.ac.uk/gwas/downloads/summary-
frontiersin.org
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statistics). The cohort sizes for MMP-14/16/17/9 were 3,301 (9), for

MMP-12/7 were 1,301 (10), and for MMP-2/3 were 1,323 (9, 10).

These data were specifically collected from European descent.

Comprehensive details, including GWAS ID, is available in

Supplementary Table 1.
2.3 Instrumental variable selection

Within this research, the chosen IVs need to adhere to specific

criteria: ①Firstly, SNPs related to the genome-wide significance of

MMPs were identified by screening for a threshold where the P-value

was less than 5×10-8. In cases where there were insufficient SNPs

meeting this stringent criterion for further analysis, the threshold was

relaxed to a P-value of less than 5×10-6, allowing for the selection of

additional SNPs (11).② Select SNPs exhibiting aminor allele frequency

(MAF) above 0.01; ③ Exclude any linkage disequilibrium (LD) among

SNPs, applying a threshold of R2 below 0.001 and a window size set to

10,000 kb (12); ④ Substitute any IV lacking in the outcome data with

another SNP that demonstrates a high degree of linkage disequilibrium

(R2 exceeding 0.8) with the original IV; ⑤ Determine the F value for

each SNP within the IV to evaluate the IV’s robustness, aiming to

mitigate the influence of potential weak instrument variable bias. This

determination utilizes the formula: F = R2*(N-2)/(1-R2), where R2

denotes the fraction of variance in exposure elucidated by the SNP in

the IV, and an F value exceeding 10 is deemed satisfactory (13).
2.4 MR analysis

The primary analytic approach utilized in this study was the

Inverse Variance Weighted (IVW) method, focusing on the
Frontiers in Endocrinology 03
exploration of the causal association between exposure and

the risk of outcomes by deriving Odds Ratios (OR) and 95%

Confidence Intervals (CI) (14). Moreover, to verify the integrity

of the findings, methods such as MR-Egger (15), weighted median

(16), and weighted mode (17) were also applied. The MR-Egger

method, integrating an intercept term, facilitates the precise

estimation of causative impacts, even when pleiotropic bias is

present. Predicated on the premise that a majority of the IVs

maintain validity, the weighted median approach examines

the causal dynamics between exposure and outcome. The

“TwoSampleMR” package was employed for all statistical

evaluations (18). Outcome visualization was achieved via scatter

diagrams and charts illustrating sensitivity analysis. Considering the

investigation addressed four outcome variables, the False Discovery

Rate (FDR) correction strategy was adopted for adjusting P-values

associated with multiple tests, treating pFDR values below 0.05 as

evidentially significant.
2.5 Sensitivity analysis

The aim of sensitivity analysis within MR studies is to unearth

potential issues of pleiotropy. This investigation assessed the

heterogeneity among chosen IVs via Cochran’s Q test, noting that

a P-value exceeding 0.05 denotes minimal heterogeneity, which

implies that variations among estimates of IVs are stochastic and

exert negligible influence on the outcomes of IVW analysis (19).

Additionally, due to the possibility that pleiotropy among genetic

variations could distort the accuracy of effect association estimates,

MR-Egger regression was employed to scrutinize for horizontal

pleiotropy. An intercept term in MR-Egger regression that is near

zero or not statistically significant signifies an absence of pleiotropy
FIGURE 1

Study design and workflow.
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TABLE 1 The causal relationship between MMPs exposures and DN as outcomes using Mendelian randomization.

Outcome Exposure Significant of SNP N.SNPs Methods OR (95% CI) P

Diabetic
neuropathy

Matrix metalloproteinase-17 levels 5*10-6

5 IVW 1.00 (0.88 - 1.15) 0.955

5 MR-Egger 1.29 (0.93 - 1.79) 0.162

5 Weighted Median 1.02 (0.85 - 1.23) 0.796

5 Weighted Mode 1.03 (0.77 - 1.38) 0.859

5 Multiplicative random effects 1.00 (0.90 - 1.12) 0.945

Matrix metalloproteinase-9 levels 5*10-6

6 IVW 0.90 (0.81 - 1.00) 0.061

6 MR-Egger 0.95 (0.77 - 1.17) 0.616

6 Weighted Median 0.91 (0.78 - 1.06) 0.236

6 Weighted Mode 0.92 (0.77 - 1.10) 0.362

6 Multiplicative random effects 0.90 (0.82 - 0.99) 0.029

Matrix metalloproteinase-3 levels 5*10-6

6 IVW 0.99 (0.87 - 1.13) 0.920

6 MR-Egger 0.88 (0.60 - 1.28) 0.535

6 Weighted Median 0.97 (0.87 - 1.09) 0.655

6 Weighted Mode 0.96 (0.85 - 1.09) 0.593

6 Multiplicative random effects 0.99 (0.87 - 1.13) 0.920

Matrix metalloproteinase-2 levels 5*10-6

6 IVW 0.88 (0.79 - 0.99) 0.026

6 MR-Egger 0.79 (0.57 - 1.10) 0.220

6 Weighted Median 0.93 (0.82 - 1.05) 0.220

6 Weighted Mode 0.94 (0.81 - 1.09) 0.427

6 Multiplicative random effects 0.88 (0.79 - 0.99) 0.026

Matrix metalloproteinase-12 levels 5*10-6
4 IVW 1.09 (0.98 - 1.21) 0.109

4 Multiplicative random effects 1.09 (0.99 - 1.20) 0.079

Matrix metalloproteinase-14 levels 5*10-6

3 IVW 0.91 (0.75 - 1.10) 0.317

3 MR-Egger 0.82 (0.45 - 1.49) 0.530

3 Weighted Median 1.01 (0.81 - 1.26) 0.918

3 Weighted Mode 1.00 (0.76 - 1.31) 0.999

3 Multiplicative random effects 0.91 (0.75 - 1.10) 0.317

Matrix metalloproteinase-16 levels 5*10-6

6 IVW 1.15 (1.01 - 1.32) 0.038

6 MR-Egger 1.15 (0.82 - 1.62) 0.439

6 Weighted Median 1.19 (1.00 - 1.42) 0.047

6 Weighted Mode 1.31 (0.95 - 1.81) 0.124

6 Multiplicative random effects 1.15 (1.03 - 1.29) 0.014

Matrix metalloproteinase-7 levels 5*10-6

7 IVW 1.02 (0.88 - 1.19) 0.764

7 MR-Egger 0.88 (0.59 - 1.32) 0.606

7 Weighted Median 1.00 (0.83 - 1.20) 0.962

7 Weighted Mode 0.97 (0.76 - 1.23) 0.796

7 Multiplicative random effects 1.02 (0.89 - 1.18) 0.749
F
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MMP, matrix metalloproteinases; DN, diabetic neuropathy. (The same meaning as the following tables)
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concerns (15). Moreover, this research incorporated the MR

Pleiotropy Residual Sum and Outlier (MR-PRESSO) strategy,

designed to detect and exclude potential outliers (SNPs with a P-

value below 0.05), and subsequently reassess the causal connection,

thereby amending for horizontal pleiotropy (20).
3 Results

3.1 Inclusion of IVs

In our research, we identified 88 IVs pertinent to MMPs (Table 1).

The MR evaluation targeted MMP-12, MMP-14, MMP-16, MMP-17,

MMP-2, MMP-3, MMP-7, and MMP-9 as the exposures,

incorporating 3, 15, 13, 14, 14, 7, 6, and 16 SNPs correspondingly.

Subsequent tomatching the SNPs with the outcome of DN, unmatched

SNPs in the summary data for the indicated MMPs were shown as

follows: 1, 3, 1, 4, 7, 1, 2 and 1. All selected IVs demonstrated robust

validity with a minimum F-statistic exceeding 10, which indicates a

strong instrument and reduces the risk of weak instrument bias.
3.2 MR analysis results

The IVW method revealed that genetically decreased levels of

serum MMP-2 were causally associated with an increased risk of

DN (OR = 0.88, 95% CI: 0.79-0.99, P = 0.026). Conversely, elevated
Frontiers in Endocrinology 05
levels of serum MMP-16 were associated with an higher risk of DN

(OR = 1.15, 95% CI: 1.01-1.32, P = 0.038), as detailed in Table 1.

The outcomes from the weighted median, weighted mode, and MR-

Egger methods are also elaborated in Table 1. To visualize the

relationship between MMP-2/16 and DN, forest plots and scatter

plots were utilized (Figures 2A, B, 3A, B). Genetic predictions

results showed no causal association between other MMPs and

DN, with corresponding forest plots and scatter diagram outcomes

presented in Supplementary Figures 1, 2.
3.3 Sensitivity analysis

A suite of sensitivity assessments was conducted on the MR

analysis outcomes linking MMPs with DN, including Cochran’s Q

test, MR-Egger regression and MR-PRESSO test, and leave-one-out

analysis, to confirm the robustness of the results and identifying any

potential heterogeneity and pleiotropy. The Cochran’s Q statistic

revealed no significant heterogeneity within the MR evaluation (P >

0.05). Additionally, the MR-Egger regression showed that the

analysis was not affected by horizontal pleiotropy (P > 0.05)

(Table 2). The MR-PRESSO analysis did not detect any

significant pleiotropy or outliers (P > 0.05), as shown in Table 3.

Additionally, funnel plots and “leave-one-out” analyses uncovered

no significant outliers (Figures 2C, D, 3C, D; Supplementary

Figures 3, 4), further substantiating the consistency and

dependability of our findings.
FIGURE 2

Scatter plot (A), forest plot (B), funnel plot (C) and leave-one-out analysis (D) of MMP-2 on DN. MMP, matrix metalloproteinases; DN, diabetic
neuropathy. (The same meaning as the following figures).
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4 Discussion

This study explored the causal relationship between MMPs and

DN through two-sample MR analysis. IVW results indicated a
Frontiers in Endocrinology 06
negative genetic causal relationship between MMP-2 levels and the

risk of DN, while MMP-16 levels showed a positive genetic

correlation with the risk of DN. No significant causal associations

were observed between other MMPs, including MMP-12, MMP-14,
FIGURE 3

Scatter plot (A), forest plot (B), funnel plot (C) and leave-one-out analysis (D) of MMP-16 on DN.
TABLE 2 Heterogeneity and Pleiotropy between MMPs and DN.

Outcome Exposure

Heterogeneity Pleiotropy

Q statistic
(IVW)

P value
FDR adjusted
P value

MR-Egger
Intercept

P value
FDR adjusted
P value

Diabetic neuropathy

Matrix
metalloproteinase-17 levels

5.85 0.75 0.75 0.0570 0.13 0.86

Matrix
metalloproteinase-9 levels

10.31 0.74 0.75 0.0112 0.61 0.86

Matrix
metalloproteinase-3 levels

9.16 0.10 0.50 0.0390 0.53 0.86

Matrix
metalloproteinase-2 levels

8.05 0.23 0.63 0.0375 0.52 0.86

Matrix
metalloproteinase-12 levels

0.83 0.36 0.72 NA NA NA

Matrix metalloproteinase-
14 levels

16.47 0.12 0.50 0.0167 0.74 0.86

Matrix metalloproteinase-
16 levels

7.76 0.73 0.75 0.0002 1.00 1.00

Matrix metalloproteinase-
7 levels

2.64 0.45 0.72 0.0480 0.52 0.86
NA, not applicable.
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MMP-17, MMP-3, MMP-7, and MMP-9, and DN. This research

contributes to the understanding of MMPs’ role in DN by

employing a genetics-based approach, which is relatively

unexplored in the existing literature. The findings from this

research add a valuable genetics-based perspective to the

understanding of MMPs’ role in DN, an area that has been

relatively underexplored in existing literature. By identifying the

differential impacts of specific MMPs on DN, this study underscores

the clinical relevance of these molecular markers. The results could

inform future therapeutic strategies, particularly by targeting MMP-

2 and MMP-16, thus enhancing the potential for clinical translation

of genetic findings into practice.

MMPs, a family of 23 endopeptidases, can degrade and remodel

extracellular matrix proteins, participating in many physiological

and pathological processes through regulating tissue remodeling,

inflammatory responses, and cell migration (21). In the context of

diabetes, high glucose treatment can damage the electron transport

chain in mitochondria, leading to the production of reactive oxygen

species (ROS), both high glucose and ROS can induce the

expression of MMPs (22). In DN, changes in MMPs expression

and activity can affect extracellular matrix remodeling,

inflammatory responses, and the processes of nerve regeneration

and damage, thereby participating in disease progression (23).

Multiple substances, by inhibiting the activity of MMPs such as

MMP-3 (24) and MMP-9 (25), exert antioxidant effects, which in

turn inhibit neuroinflammation and neural damage. Thus, targeting

specific MMPs is hypothesized to harness antioxidant actions to

ameliorate DN. Increasing experimental evidence shows that MMPs

such as MMP-2, MMP-9, and MMP-13 play roles in DN (26). For

instance, in a streptozotocin-induced DN rat model, the activity of

MMP-2 in the dorsal root ganglia and spinal cord decreased, and

MMP-9 activity increased, significantly alleviating pathological pain

by inhibiting MMP-9 or restoring MMP-2 activity (27). High

glucose can upregulate ROS-mediated overexpression of MMP-
Frontiers in Endocrinology 07
13, inducing axonal degeneration, and inhibition of matrix

metalloproteinase-13 can reverse neuropathy in diabetic mice

(28). These studies suggest that MMPs are closely related to the

disease progression of DN, but most are based on diabetic models,

lacking in-depth research on the role of MMPs in the pathogenesis

of DN.

To evaluate the consistency of our study results with clinical

data, we analyzed results from previous clinical studies. A cross-

sectional clinical study reported that the risk of DN is associated

with elevated levels of serum MMP-2 (OR=4.5, p<10^-5) (29). Our

findings diverge from this study, prompting further investigation

into the reasons behind these differences. This deviation could be

attributed to the smaller sample size and limited control over

confounding factors in the previous study’s design. Specifically, it

included 187 type 1 diabetes mellitus (T1DM) patients with diabetic

peripheral neuropathy (DPN) as the experimental group—a

relatively small cohort—and used T1DM patients without DPN as

controls. In contrast, our study utilized a broader control group

drawn from the general population. Furthermore, the DPN patients

in the referenced study were, on average, 14 years older than the

controls, introducing age as a potential confounding factor that

could influence inflammatory markers such as MMPs. Conversely,

an in vivo study suggested that MMP-2 overexpression might

facilitate neurite growth, enhancing nerve regeneration in DN

(30), thereby supporting the need for further investigation into

MMP-2’s role in DN pathogenesis.

Regarding MMP-16, our results demonstrate a genetic

correlation with DN risk. However, there is a notable gap in

clinical studies directly examining the relationship between

MMP-16 expression and DN. MMP-16, also known as MT3-

MMP, is predominantly expressed in the nervous system,

particularly in neural crest cell where it is implicated in the

remodeling of the extracellular matrix (31). This enzyme is

critical for cell migration in various tissues (32). Given the
TABLE 3 Testing Pleiotropy of MMPs and DN using MRPRESSO.

Exposure Outcome
Raw

Outlier
corrected Global P

Number
of outliers

Distortion P

OR (CI%) P OR (CI%) P

Matrix
metalloproteinase-9 levels

Diabetic
neuropathy

0.90 (0.82 - 0.99) 0.05 NA NA 0.760 NA NA

Matrix
metalloproteinase-17 levels

1.00 (0.90 - 1.12) 0.95 NA NA 0.729 NA NA

Matrix
metalloproteinase-2 levels

0.88 (0.79 - 0.99) 0.07 NA NA 0.329 NA NA

Matrix
metalloproteinase-16 levels

1.15 (1.03 - 1.29) 0.03 NA NA 0.743 NA NA

Matrix
metalloproteinase-14 levels

0.91 (0.75 - 1.10) 0.34 NA NA 0.174 NA NA

Matrix
metalloproteinase-7 levels

1.02 (0.89 - 1.18) 0.77 NA NA 0.520 NA NA

Matrix
metalloproteinase-3 levels

0.99 (0.87 - 1.13) 0.92 NA NA 0.205 NA NA
NA, not applicable.
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potential role of MMP-16 in the pathogenesis of neuropathy, it is

imperative to further investigate its expression characteristics and

mechanisms of action in clinical patients with DN. These insights

could facilitate the development of MMP-16 as a biomarker for the

severity of DN or as a therapeutic target.

Multiple clinical and basic experimental studies have indicated

that MMP-9 is a risk factor for DN, and targeting inhibition of

MMP-9 can alleviate DN-induced neuropathic pain and damage

(33, 34). A study based on type 1 diabetic patients showed that

peripheral blood MMP-9 levels might serve as surrogate biomarkers

of retinopathy in type 1 diabetic patients free of other vascular

complications (35). However, most studies between MMP-9 and

DN have been based on rat models (33, 36, 37). In our study, IVW

analysis results did not show statistical significance between MMP-

9 and the risk of DN (P=0.061), but Multiplicative Random Effects

analysis indicated a statistically significant causal relationship

(OR=0.90, 95% CI: 0.82-0.99, P=0.029). The Multiplicative

Random Effects model is often used when there is considerable

heterogeneity among IVs, as it can account for the heterogeneity in

instrument variable estimates. MR-PRESSO and Cochran’s Q tests

indicated no significant overall heterogeneity, but it does not

exclude that the results may reveal subtle genetic causal

relationships not detected by the IVW method. Additionally, no

genetic correlation was found between other MMPs and DN in this

study, and these results await further verification by clinical data.

Despite this study using genetic variants as IVs through the MR

method, applying extensive quality control and sensitivity analyses to

reduce biases and insufficient control of confounding factors inherent

in observational studies, thereby enhancing the reliability of the

genetic causality. However, the study still has certain limitations:

Firstly, not all MMPs were included in this analysis, which may limit

the scope of our findings. Secondly, the study population primarily

consisted of individuals of European descent, thus, the

generalizability of the results to other ethnic groups remains to be

established. Lastly, while this study provides insight into the genetic

causality between MMPs and DN from a genetic perspective, the

specific underlying mechanisms still require elucidation through

basic research. Future research should include a wider range of

MMPs, encompass diverse populations to validate the findings

across different genetic backgrounds, and conduct mechanistic

studies to directly link genetic associations with functional

outcomes. Implementing longitudinal designs and clinical trials

could further deepen our understanding of how MMPs influence

DN progression and aid in developing targeted therapeutic strategies.
5 Conclusions

In conclusion, this study utilized the two-sample MR to

investigate the genetic links between MMPs and DN,

demonstrating the power of genetic tools in pinpointing risk

factors for intricate diseases. We identified definitive genetic
Frontiers in Endocrinology 08
causal relationships for MMP-2 and MMP-16 with DN, shedding

light on the molecular mechanisms that may underpin the

pathogenesis of DN. These insights not only deepen our

understanding of DN but also offer a foundation for crafting

targeted therapeutic strategies that could mitigate or potentially

reverse the progression of DN. Nonetheless, while these findings are

encouraging, they highlight the need for further confirmation

through studies involving larger and more ethnically

diverse populations.
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