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Diabetic peripheral neuropathy (DPN) is a complication of diabetesmellitus that lacks

specific treatment, its high prevalence and disabling neuropathic pain greatly affects

patients’ physical and mental health. Schwann cells (SCs) are the major glial cells of

the peripheral nervous system, which play an important role in various inflammatory

and metabolic neuropathies by providing nutritional support, wrapping axons and

promoting repair and regeneration. Increasingly, high glucose (HG) has been found

to promote the progression of DPN pathogenesis by targeting SCs death regulation,

thus revealing the specific molecular process of programmed cell death (PCD) in

which SCs are disrupted is an important link to gain insight into the pathogenesis of

DPN. This paper is the first to review the recent progress of HG studies on apoptosis,

autophagy, pyroptosis, ferroptosis and necroptosis pathways in SCs, and points out

the crosstalk between various PCDs and the related therapeutic perspectives, with

the aim of providing new perspectives for a deeper understanding of the

mechanisms of DPN and the exploration of effective therapeutic targets.
KEYWORDS

diabetic peripheral neuropathy, Schwann cells, hyperglycemia, programmed cell death
regulation, neuropathic pain (NP)
Introduction

Diabetes, a serious chronic disease, is growing worldwide and is now one of the top ten

leading causes of death worldwide (1). Worldwide, an estimated 537 million adults between

the ages of 20 and 79 have diabetes, and the number is expected to increase to 643 million

by 2030 (2). Persistent hyperglycemia, dyslipidemia, and insulin deficiency or dysfunction
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contribute to the multiple chronic complications of diabetes

mellitus, and the vascular and neuronal systems, as providers of

nutrients to all organs as well as connectors, play an important role

in the development of diabetes mellitus complications (3). Diabetic

peripheral neuropathy (DPN) as the most common complication of

diabetes mellitus (4), is a debilitating and complex neurologic

condition that has gained widespread attention due to its

prevalence of up to 50% in patients with type 1 and type 2

diabetes mellitus (5). It affects patients’ quality of life by causing

numbness, neuropathic pain, and severe lower extremity

amputations (6), more studies have found that diabetic

autonomic neuropathy increases the risk of death by more than

twofold (7). Despite the numerous studies on the treatment of DPN,

current treatments are limited to improved glycemic control,

lifestyle and dietary interventions, and pain management, it

remains the only diabetic microangiopathy that lacks specific

therapy (8). Therefore, an in-depth exploration of the specific

pathogenesis of DPN is essential to facilitate the prevention and

treatment of the disease. Further studies have revealed that cellular

therapies may be an effective way to address the underlying causes

of neuropathy, and cellular therapies for both MSC and pulp stem

cell transplantation point to the realization of a neurorestorative

effect through the protection of Schwann cells (SCs) (9, 10), At this

juncture, studies have substantiated that human tonsil-derived

mesenchymal stem cells (MSCs) that have undergone

differentiation into Schwann cells (TMSC-SCs) have the capacity

to facilitate nerve regeneration in animal models of peripheral nerve

injury. Additionally, Schwann cell-derived exosomes (SCEVs) have

been demonstrated to possess therapeutic potential for the

management of DPN (11, 12), the results of these studies indicate

that SCs may play a significant role in the pathogenesis of

peripheral neuropathy.

SCs, as the main glial cells in the peripheral nervous system,

possess regenerative properties of interest and have important roles

in the nervous system in coordinating the gradual formation of

peripheral nerves, ensuring neuronal survival, axonal support and

myelination, and promoting neurodegeneration and regeneration

(13, 14). In addition, SCs can influence neuronal responses to

stimuli, respond rapidly in the face of injury and coordinate

intraneural changes, playing a key role in the development and

maintenance of neuropathic pain (15, 16). The current study found

that in DPN patients, SCs are subjected to high glucose (HG), which

results in pathologically edematous cytoplasm, proliferation of cell

bases, and reduction of neurotrophic factors, leading to

mitochondrial dysfunction, localized oxidative damage, and the

formation of immature cellular phenotypes, which in turn

disrupts their support of neurons triggering neuropathy (4, 17).

With more in-depth studies, HG was found to have a significant

impact on the death regulation process of SCs.

Programmed cell death (PCD) is an active death process (e.g.,

apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis) that

occurs after a cell receives a certain stimulus or signal in order to

maintain the homeostasis of the internal environment (18), this

process is important for the elimination of damaged cells, and the

disruption of the process will result in the impairment of the
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function of normal cells and organs or even the inability to

sustain the basic life (19). The effect of HG on this process in SCs

may be an important part of the pathogenesis of DPN, which also

suggests that intervening in the death of SCs by targeting and

alleviating the disrupted PCDs pathway may serve as an effective

way to treat DPN. Therefore, our narrative review highlights the

current molecular mechanisms and understanding of HG damage

to common PCDs in SCs, including apoptosis, autophagy,

pyroptosis, ferroptosis, and necroptosis, to characterize the

underlying mechanisms of diabetes-induced damage to SCs,

highlight new insights, and provide perspectives on preventing as

well as treating DPN by targeting the mode of death of SCs.

SCs are an important link in the
pathogenesis of DPN: the role
of axons

SCs encapsulate all axons in peripheral nerves and maintain the

long-term functional integrity of axons (20), they have also been

shown to provide trophic support to axons (21). Given their close

association with axons, axonal damage due to abnormal function

and metabolism of SCs is an important component of neuropathy.

Increased polyol pathway flux is a recognized pathway for HG-

induced DPN pathogenesis (22, 23). Aldose reductase (AR), the

rate-limiting enzyme of the polyol pathway, is highly expressed by

SCs in the peripheral nervous system, and overactivity of the polyol

pathway in diabetic conditions, especially in SCs, leads to multiple

metabolic abnormalities related to DPN (24). Overactivity of this

pathway and altered biology of SCs may also be important for

impaired axonal regeneration, one of the characteristics of the DPN

(25). The lipid metabolism of SCs can transfer long-chain fatty acids

(LCFA) to the mitochondria for b-oxidation to produce acetyl-

coenzyme A, which enters the TCA cycle and eventually contributes

to the production of OxPhos and ATP. In patients with type 2

diabetes mellitus, when there is an overload of the substrate, the

remaining acetyl-coenzyme A is unable to enter the new round of b-
oxidation and the TCA cycle, and is converted to acyl-carnitine.

Carnitine accumulates in SCs and is eventually released into axons,

causing axonal toxicity and nerve damage (26, 27). The

maintenance of Ca2+ homeostasis plays an important role in axon

function and integrity (28), whereas acyl-carnitine allow

extracellular Ca2+ to enter axons, leading to abnormal axonal

mitochondrial function and the onset of apoptosis (29, 30).

Functionally, HG leads to the overproduction of advanced

glycosylation end products (AGEs), and the structure and

function of SCs can be altered by AGE-induced changes in key

proteins, lipids, and nucleic acids, which in turn affect axons,

leading to the development of neuropathy (31, 32). SCs

mitochondrial function has been shown to be critical for

maintaining axon survival, and studies have shown that HG is

able to alter mitochondrial respiration, which may lead to SCs

mitochondrial dysfunction (33, 34). In conclusion, the above

process suggests that SCs may play a non-negligible role in the

progression of DPN pathogenesis by acting axonal (Figure 1).
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Apoptosis

Apoptosis is the most prominent and widely studied mode of

PCD during development (35), the process relies on the activation

of a family of cysteine proteases to form an irreversible apoptotic

pathway that is morphologically characterized by cell shrinkage or

fragmentation, chromosome condensation, plasma membrane

vesiculation, and DNA fragmentation (36, 37). The process of

apoptosis is regulated by three major pathways: the mitochondrial

apoptotic pathway, which is primarily controlled by the Bcl-2 family

of proteins; the death receptor pathway, which is characterized by

the binding of death receptors to ligands; and the endoplasmic

reticulum (ER) apoptotic pathway, which consists of three apoptotic

pathways activated by the UPR (IRE1a, PERK, and ATF6

pathways) (19). HG was identified as a crucial initiator of

neuronal apoptosis, and HG was found to induce late neural tube

apoptosis during gestation in mice (38). The administration of HG

to adult gerbils subjected to forebrain ischemia results in the

exacerbation of neuronal apoptosis (39). HG causes apoptosis in

rat superior cervical ganglion neurons in vitro (40).

The apoptosis of SCs was successfully induced by HG. It was

demonstrated that HG could cause the early activation of caspase-3/

7 in SCs in vitro and in vivo, inducing caspase-dependent apoptosis

in SCs (41). The results of an in vivo study demonstrated that the

apoptosis rate of RSC96 cells treated with HG for 48 h was increased
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by 9.72-fold, confirming that high glucose also elevated the

mitochondrial pathway apoptosis-related Bax/Bcl-2 and cleaved

caspase-9/caspase-9 ratios, and suggested that knockdown of

histone deacetylase (HDAC1) could effectively inhibit HG-

promoted mitochondrial apoptosis (42). Endoplasmic reticulum

stress (ERS) is an important pathway for apoptosis, and C/EBP

homologous protein (CHOP) is the most important apoptotic

factor induced by ERS (43), Wu et al. found that the ratio of

ERS-activated pro-apoptotic protein CHOP to anti-apoptotic

protein ORP150 increased under long-term HG conditions (after

16 weeks), leading to apoptosis (44). The RNA-dependent protein

kinase-like ER kinase (PERK) pathway, one of the three apoptotic

pathways of the endoplasmic reticulum, PERK/nuclear factor-E2-

related factor 2 (Nrf2) play important roles in oxidative stress and

ERS (45). It has been demonstrated that the PERK/Nrf2 pathway is

activated in the DPN model, thereby promoting apoptosis through

the up-regulation of CHOP expression. However, the intervention

of traditional Chinese medicine TangLuoning has been shown to

reduce the level of CHOP, thereby inhibiting ERS (46). In addition,

Salem et al. found an increase in the relative expression of ERS

pathway markers ATF6, PERK, ATF4, eIF2a, and CHOP in SCs in

the HG environment as determined by protein blotting, suggesting

that ERS active (47). Padilla et al. experimental study found that

HG-conditioned culture increased lipotoxic damage in SCs and

confirmed that this process first occurs by triggering ERS leading to
FIGURE 1

Programmed cell death of SCs in diabetic peripheral neuropathy. (A) SCs apoptosis pathway (B) SCs autophagy molecular pathway (C) SCs
pyroptosis-associated signaling pathway (D) SCs ferroptosis mechanisms.
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apoptosis (48). In a study conducted by Li et al., it was discovered

that excessive ERS in SCs under a HG environment was associated

with the inhibition of PI3K/Akt/glycogen synthase kinase 3 beta

(GSK3b) and ERK1/2 signaling pathways. Additionally, the

administration of nerve growth factor (NGF) was observed to

regulate neuronal growth and promote the restoration of DPN.

Furthermore, the aforementioned study demonstrated that NGF

administration inhibited ERS through the activation of the

aforementioned pathways, thereby achieving a protective effect on

SCs (49). Oxidative stress is another key pathway for HG-mediated

apoptosis in SCs. As the main source and target of reactive oxygen

species (ROS) (50), the function of mitochondria is affected by the

content of ROS. Elevated ROS cause apoptosis by increasing the

permeability of the outer mitochondrial membrane leading to

the release of pro-apoptotic factors, such as cytochrome c,

caspase, etc. (51–53). The study found that the level of ROS in

HG-treated SCs was significantly higher than that of the control by

1.54 times, suggesting that HG may lead to SCs apoptosis by

inducing mitochondrial oxidative stress damage (54), whereas,

salvianolic acid B (SalB) and geranylgeranyl exhibited inhibitory

effects on HG-induced oxidative stress and mitochondrial

depolarization in a dose-dependent manner, thereby protecting

SCs from apoptosis (55, 56). More studies have shown that long-

term HG similarly leads to ROS accumulation in the endoplasmic

reticulum and induces ERS (57), interestingly ERS has the potential

to contribute to elevated mitochondrial ROS levels, an undesirable

interaction that accelerates cell death (46). CXC motif chemokines

are involved in neuronal injury, CXC motif chemokine ligand 2

(CXCL2) expression is significantly increased in HG-induced SCs,

CXCL2 knockdown increases SCs viability and reduces cleaved

caspase 3/9 expression and associated apoptosis (58).

In addition to the above regulatory pathways, the role of HG on

signaling pathways is critical in inducing apoptosis in SCs. One of

the downstream targets of AMPK, rapamycin (mTOR), plays a role

in the apoptosis and autophagy of SCs in the development of DPN

disease (59). A study conducted on RSC96 cells revealed that the

Akt/mTOR signaling pathway was inhibited and apoptosis and

autophagy were increased under HG conditions. Furthermore, the

inhibition of the mTOR kinase protein complex mTORC1 in

RSC96 cells promoted apoptosis by silencing PARTOR or

RICTOR. Additionally, animal experiments yielded similar

results, demonstrating that in the sciatic nerves of diabetic mice,

the phosphorylation of mTOR decreased, and the apoptosis of

Schwann cells increased in diabetic mice (60–62). PI3K/Akt

signaling is strongly associated with the prevention of apoptosis

(63), thioredoxin interacting protein (TXNIP) plays an important

role in inflammatory response, apoptosis (64), Zhang et al. found

that HG promotion of SCs apoptosis was associated with TXNIP

upregulation and was shown to be achieved by inhibiting the PI3K/

Akt pathway (65), whereas artesunate (ART) was shown to inhibit

SCs apoptosis and promote SCs viability by acting on the PI3K/

AKT/mTOR signaling pathway in ex vivo experiments (66).

Extracellular signal-regulated kinase (EPK) as a multifunctional

protein kinase, activation of the EPK pathway has been shown to be

involved in apoptosis in glial cells (67, 68). Liu et al. found that the

decrease in SCs viability and the increase in SCs apoptosis under
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HG conditions paralleled the increase in ERK phosphorylation

levels, suggesting that EPK activation may play a role in HG-

induced SCs apoptosis (69), but the exact mechanism remains to

be further clarified.

Additionally, dyslipidemia and insulin deficiency are significant

predisposing factors for the development of DPN. Diabetes mellitus

complicated by dyslipidemia with elevated oxidized low-density

lipoprotein (oxLDL) levels affects the progression of DPN. In vitro

experiments have demonstrated that the intervention of HG with

oxLDL leads to the activation of the Caspase-3 pathway by inducing

the overactivation of Toll-like receptor 4 (TLR4) signaling in SCs,

which promotes the development of apoptosis (70). Insulin-like

growth factor-1 (IGF-1) is a polypeptide protein that exhibits

molecular similarity to insulin and is capable of exerting a range

of metabolic effects analogous to those of insulin (71). Previous

studies have demonstrated that IGF-1 plays a regulatory role in the

viability of developing SCs and has been shown to protect SCs from

apoptosis through caspase activation of PI3-K signaling, which is

located upstream. Subsequent studies have found that high levels of

IGF-1 (10 nm) are protective, whereas cells treated with 0.3 nm

IGF-I succumbed to cellular apoptosis (41, 72, 73). A recent clinical

study has confirmed that there is an association between IGF-1

deficiency and DPN. Furthermore, the study has indicated that

there is a potential risk factor for DPN in patients with lower levels

of IGF-1. The findings demonstrate that patients with DPN have

significantly lower levels of IGF-1 compared to patients without

DPN (74). Moreover, an in vivo experiment demonstrated that islet

transplantation effectively reversed sciatic nerve injury in diabetic

mice. Additionally, islet cells exhibited a protective effect on RSC96

cells under HG conditions through the activation of the mTOR/S6

kinase 1 (S6K1) pathway (75). It can be reasonably deduced that the

investigation of pertinent therapeutic modalities that target lipids

and insulin is crucial to enhance the progression of DPN lesions.
Autophagy

Autophagy is an important intracellular degradation and

recycling process that renews and generates new building blocks

and energy for the cell by recycling and degrading intracellular

components and damaged organelles, thus acting as a dynamic

recycling system (76, 77). Normal autophagy sessions in the

nervous system facilitate the maintenance of neuronal integrity as

well as synaptic plasticity (78), autophagy also promotes recovery

and regeneration of peripheral nerve function by improving myelin

and axonal regeneration (79). Not only that, but studies in recent

years have shown that autophagy is involved in the formation of

neuropathic pain, and that insufficient autophagic activity may lead

to neuropathic pain development (80). The autophagy mechanism

of SCs has even been shown to favor scar reduction and myelin

formation, which is important in preventing or delaying the onset

and chronicity of neuropathic pain and neuropathy (81, 82). It has

even been suggested that autophagy dysfunction in SCs may be the

root cause of DPN (83). Therefore, an in-depth understanding of

the disruption of the autophagic mechanism of SCs by HG is

extremely important for DPN as well as neuropathic pain.
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Autophagy in SCs was shown to be inhibited in HG

environments, microtubule-associated protein light chain 3 (LC3)

was a key readout for cellular autophagy levels (84), Du et al. found

that autophagy markers LC3-II/LC3-I and P62 were significantly

reduced in rat SCs in HG environment compared to normal

glucose-treated cells (85). Zhang et al. improved autophagy

inhibition in SCs by knocking down TXNIP in HG-cultured SCs,

effectively preventing the HG-induced downregulation of LC3-II/

LC3-I ratio (65). Qu et al. not only found that LC3 protein

expression was down-regulated in SCs in the HG environment,

but also observed the appearance of morphologically and

structurally abnormal autophagosomes in the cells, suggesting

that autophagy is disrupted in SCs (86). Beclin-1 as an important

gene in the autophagic process, Beclin-1/VPS34 controls

phagocytosis in response to stress signaling pathways in the ER

and other membranes (87), Yuan et al. experimentally found that

HG reduced the expression of beclin-1 and autophagy-related gene

Atg3 in SCs, nevertheless, strychnine treatment via the AMPK

pathway negated the correlation and augmented the expression of

the SCs autophagosome marker LC3-II, effectively inhibiting

autophagy occurrence (88). Similarly, Gao et al. demonstrated

that rats with DPN induced by HG exhibited reduced Beclin-1

and LC3-II/LC3-I ratios in SCs. They proposed that translocator

protein (TSPO) agonists exert a therapeutic effect on DPN through

the regulation of autophagy in SCs (89). In addition, oxidative stress

is also involved in the autophagic process, and the HG-induced

increase in ROS levels may contribute to autophagic dysfunction in

SCs (83). More interestingly, it was found that there may be over-

activation of autophagy in SCs by HG, Wei et al. observed abundant

autophagic vesicles and enhanced autophagic flux in SCs from the

HG group (90), autophagy hyperactivity was also observed in the

streptozotocin (STZ)-induced rat model of DPN in Wang et al.,

these effects were also found to potentially increase apoptosis in SCs

and demyelination of sciatic nerves in rats with DPN (91). A recent

in vivo and ex vivo study revealed that phosphorylated mTOR and

p62 expression was markedly elevated in SCs treated with HG,

indicating that HG may facilitate autophagy by influencing

mitochondrial function, whereas the combination of cannabidiol

(CBD) and Beta-Caryophyllene (BC) pretreatment demonstrated a

substantial protective effect against mitochondrial autophagy in

SCs (92).
Pyroptosis

Neuroinflammation is emerging as a pivotal factor in diabetes-

induced peripheral neuropathy. Chronic HG has been linked to

advanced glycation end products AGEs formation, which in turn

activates intracellular signaling and promotes the expression of pro-

inflammatory transcription factors and the release of various

inflammatory cytokines (93). The results of animal experiments

indicated that elevated serum TNFa expression in DPN rats and

elevated sciatic nerve IL-6 and IL-1b levels in diabetic rats were

associated with neuropathy, this suggests that inflammatory factors

may play a role in the pathogenesis of neuropathy (94, 95).
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Moreover, several clinical studies have identified elevated levels of

numerous inflammatory markers, including CRP, TNF-a, IL-1RA,
sTNFR1, and sTNFR2, along with elevated serum NF-kB levels, in

patients with DPN compared to patients with T2DM without

neuropathy, suggesting that patients with DPN exhibit a more

pronounced inflammatory response (96–98). More significantly,

elevated plasma levels of pro-inflammatory factors have been

demonstrated to play a pivotal role in predicting the incidence of

DPN. Of these factors, the IL-6 inflammatory factor has been shown

to be particularly relevant, exhibiting a distinct difference between

painful and painless DPN (99, 100). The presented evidence

indicates a strong correlation between inflammatory processes

and DPN.

Pyroptosis is a cleavage PCD triggered by inflammatory vesicles

(101), it is dependent on members of the Gasdermin protein family

to form plasma membrane pores and shares DNA breakage, nuclear

condensation and caspase-dependent morphological alterations

with apoptosis (102). The process of pyroptosis mainly involves

the caspase-1-dependent pathway (classical pathway) and the

caspase-1-independent pathway (non-classical pathway), and is

closely related to the secretion and activation of the pro-

inflammatory cytokines interleukin-1b (IL-1b) and IL-18, which

play an important role in inflammatory response and immune

defense through the release of inflammatory mediators and the

recruitment of immune cells (103–105). Pyroptosis has been shown

to play a crucial role in the development of diabetes and its

complications (106, 107). NLRP3 inflammasome is a cytoplasmic

multiprotein complex that is commonly aberrantly activated in

inflammatory diseases such as diabetes to induce pyroptosis (108).

Cheng et al. observed a significant increase in the protein expression

of NLRP3 and Gasdermin D in SCs under HG (25 mM)

environment, which promoted the development of SCs pyroptosis

(109);Wang et al. found that taurine deoxycholic acid (TUDCA)

effectively inhibited pyroptosis in HG-stimulated SCs by targeting

NLRP3 expression to enhance cell viability and migration (110).

Immunofluorescence staining and quantitative RT-PCR confirmed

that pyroptosis-related proteins cleaved-GSDMD, NLRP3, caspase-

1, IL-1b, and IL-18 were significantly enhanced in HG-stimulated

SCs (106). These findings strongly suggest that HG induces the

onset of SCs pyroptosis and that pyroptotic SCs inhibit neuronal

function and promote an inflammatory response (111), thus

inhibiting pyroptosis in SCs has implications for neurons.

Furthermore, NF-kB plays a pivotal role in the pathogenesis of

inflammatory neuropathies. It is a crucial mediator of immune,

inflammatory, and apoptotic responses, which are initiated by the

activation of the RAGE pathway. A study of 45 diabetic patients

with peroneal nerve biopsies revealed that RAGE was upregulated

in SCs, this suggests that RAGE may be a key regulator of apoptosis

or pyroptosis in SCs. However, the precise mechanism by which

RAGE exerts its effects remains to be elucidated (112, 113). A recent

study demonstrated that the Ras-related protein Rab32 induces

significant oxidative stress by disrupting the mitochondria of SCs,

thereby exacerbating SCs pyroptosis in peripheral nerve injury, it

would be beneficial to investigate whether Rab32 plays a role in the

death process of SCs in DPN (114).
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Ferroptosis

Diabetes mellitus as a lifelong metabolic disease due to the

presence of disturbances in cellular metabolism leading to

ferroptosis and ferritin autophagy (115). Ferroptosis is an iron-

dependent regulated necrosis that is considered a byproduct of

cellular metabolism because of its close association with oxygen,

iron, and lipid metabolism (116), it is dependent on the metabolites

reactive oxygen species (ROS), phospholipids containing

polyunsaturated fatty acid chains (PUFA-PL), and the transition

metal iron, and exhibits biochemical features of iron accumulation

and unrestricted lipid peroxidation, as well as morphologic

alterations such as loss of plasma membrane integrity,

mitochondrial abnormalities, cytoplasmic swelling, and moderate

chromatin condensation (117, 118). Briefly, Fe3+ is deoxygenated

to catalytically active Fe2 + and released into the cytoplasmic labile

iron pool (LIP) to be utilized or stored as ferritin in the cell. when the

intracellular Fe2+ overload exceeds the caching capacity of ferritin,

and intracellular free iron generates ROS through the fenton reaction,

and glutathione (GSH), one of the critically important antioxidants

in cells, is catalyzed by peroxidase to oxidized glutathione (GSSG)

during lipid peroxidation, and inhibit lipid peroxidation-induced

ferroptosis (19). The typical ferroptosis mechanism is mediated by

glutathione peroxidase 4 (GPX4), and inactivation or knockdown of

GPX4 leads to the onset of ferroptosis (119). It was confirmed that

serum GPX4 and GSH were significantly reduced and lipid peroxides

MDA were significantly elevated in DPN patients, suggesting that

ferroptosis levels were elevated in DPN patients, and it was found that

HG induced ferroptosis in SCs through the inhibition of a pathway

directly downstream of ROS (NRF2 signaling pathway) (120). Hu

et al. found that and honokiol reduced HG-induced ferroptosis and

SCs mitochondrial dysfunction by acting on the AMPK/SIRT1/PGC-

1a axis and downstream gene expression profiles (121). Even though

some studies have shown a crossover between the underlying

pathologic mechanisms of DPN and ferroptosis (115), and the

above experiments have confirmed that HG exerts an effect on

ferroptosis in SCs, However, overall more research is needed on the

mechanisms of ferroptosis in DPN. For example, a recent report

indicates that arachidonic acid 15-lipoxygenase (ALOX15), which is

highly correlated with ferroptosis, is highly expressed in human

Schwann cells, and also has an important role in functional

changes in the DPN, as well as in demyelination, in light of these

findings, it would be beneficial to investigate whether HG influences

ferroptosis in SCs by modulating ALOX15 activity (122).
Necroptosis

Necroptosis is a regulated mode of cell death induced by

environmental stimuli, which is mainly regulated by the TNF-a
receptor system and ultimately directly activates and regulates the

inflammatory response through the loss of membrane integrity and

the efflux of intracellular content (123, 124). MLKL, a key mediator

of necroptosis, is phosphorylated by RIP3 kinase and disrupts

plasma membrane integrity leading to necrosis (125). Guo et al.

demonstrated that MLKL mediates DPN demyelination by in vivo
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and in vitro observations and found that MLKL levels were

increased in the gastrocnemius muscle of STZ-induced diabetic

mice and that MLKL signaling was prominent in the myelin sheaths

of patients with DPN (126), Demyelination of SCs is associated with

a “sock and glove” pattern in patients with DPN, and the process

described above involves MLKL-mediated damage to SCs, which

may be the result of necroptosis in SCs (127), but Guo et al. did not

detect necroptotic apoptotic MLKL phosphorylation in diabetic

patients (126). The component nuclear pore protein Seh1 plays a

role in protecting the homeostasis of SCs by maintaining genomic

integrity, and it has been shown that interactions following Seh1

ablation trigger ZBP1-dependent necroptosis in SCs leading to

peripheral neuropathy (128), however, whether HG has an effect

on this link is not clear.
Cross-targeting cell death patterns
and therapeutic perspectives

Although each of these pathways has specific mechanisms and

outcomes, different cell death regulatory pathways crosstalk with

each other. Crosstalk between apoptosis and autophagy is regulated

by multiple factors such as Ca2+ signaling, Bcl-2 and caspase-3/8

factors, and oxidative stress (129–131), Beclin-1 is a direct bridge

between the two signaling pathways and plays an important role in

the communication between autophagy and apoptosis (132). The

calcium mimetic cinacalcet has been shown to regulate Ca2+ levels

and increase Beclin-1 and Bcl-2/Bax expression in SCs in the diabetic

sciatic nerve, and to play an important role in the restoration and

amelioration of DPN through the regulation of apoptosis and

autophagy (133). In addition to its important role in apoptosis, ER

is likewise at the crossroads of two pathways, apoptosis and

autophagy, in the diabetes process (134), Melatonin (MEL) as an

antioxidant and anti-inflammatory agent was found to play a role in

the ER major stress response (135). Negi et al. found that MEL can

regulate neuroinflammation through activation of the Nrf2 pathway

(136), another experimental and clinical study confirmed the

protective effect of MEL on glial cells and its beneficial effect on

DPN, but the specific therapeutic regimen of administration needs to

be further clarified (137). Pro-inflammatory cytokines similarly link

autophagy to apoptosis and have been shown to be associated with

neuropathic pain (138), This phenomenon suggests that we may be

able to further explore whether there are pro-inflammatory cytokine-

related drugs to treat neuropathic pain in DPN patients by

improving the apoptosis and autophagy link.

The establishment of the concept of PANoptosis (which refers to

the inflammatory PCD pathway regulated by the PANoptosome

complex, encompassing pyroptosis, apoptosis, and necroptosis, and

which cannot be explained by one or the other alone) strongly

suggests that there is a broad crosstalk between apoptosis,

pyroptosis, and necroptosis (139, 140). NLRP3 inflammasome is

important for the crosstalk between the three, CASP8-NLRP3 can

connect pyroptosis with apoptosis; MLKL and macrophage

potassium efflux-mediated activation of NLRP3 inflammasome

crosstalk pyroptosis with necroptosis (summarized in (141)). ZBP1-

NLRP3 inflammatory vesicles were even shown to be key
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components of PANoptosis (142). In addition, NLRP3 inflammatory

vesicles play a role in peripheral neuropathic pain, which has been

highlighted as having the potential to be a therapeutic target for

neuropathic pain (143). Taurine deoxycholic acid (TUDCA), loganin,

and CXCL2 blocking therapy all have the effect of modulating

NLRP3, and all three have also been shown to improve SCs

mortality in the HG environment (58, 109, 110). Caspases are

dominant in apoptosis and pyroptosis, apoptotic Caspase-3 and 8

mediate pyroptosis by cleaving Gasdermin and thus Caspase-8 is

even more important to maintain the balance between apoptosis and

necroptosis (141, 144), thus, strict adjustment of the level of caspase

in SCs is important to improve PCD sessions.

The crosstalk between autophagy and ferroptosis at the

molecular level was revealed by Hou et al. They demonstrated

that autophagy triggers ferroptosis through degradation of ferritin,

and found that autophagy mediated by autophagy-associated genes

Atg5 and Atg7 likewise led to ferroptosis (145). The GPX4 essential

cofactor GSH not only plays an important role in ferroptosis, but

GSH depletion also induces a significant increase in autophagy

(146), whereas erythropoietin (EPO) was able to increase the level of

total GSH, reduce ROS levels, and improve cell viability in SCs in

the HG environment (147). The human tumor suppressor protein

p53 not only regulates autophagy in a dual manner, nuclear p53 is

revealed to stimulate ferroptosis in a transcription-dependent

manner (148, 149), Li et al. also showed that p53 may be a key

molecule in the ferroptosis - apoptosis crosstalk (150), and as

previous studies have long found that p53 is critical for neuronal

death (151, 152), we believe that p53 may be a potential therapeutic
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target. Erastin acts as a ferroptosis activator, which not only induces

ferroptosis, but also causes apoptosis to occur (153). The combined

action of erastin and the apoptotic agent TRAIL was shown to

mediate apoptosis via activation of caspases (154), suggesting a

possible mechanism of interaction between ferroptosis and

apoptosis. Furthermore, ER and mitochondria are key organelles

in PCD, Lee et al. found that ferroptosis-induced ERS crosstalks

ferroptosis with apoptosis by increasing the expression of the pro-

apoptotic molecule PUMA (155). The Bax-mediated mitochondrial

pathway not only affects apoptosis but also mediates ferroptosis by

acting upstream of SLC7A11 and GPX4 (156). In addition, Nrf2, as

an important participant in redox and inflammatory responses, not

only mediates the process of apoptosis, but also participates in the

regulation of autophagy and ferroptosis during disease therapy

(157). The expression of Nrf2 has been shown to promote SCs-

mediated neurological recovery in DPN (158), whereas salvianolic

acid A, paeoniflorin, and the traditional Chinese medicine

Tangluoning were all found to have a modulatory effect on Nrf2

expression in SCs in the HG environment (46, 159, 160).
Concluding remarks

SCs have an extremely important role in the peripheral nervous

system, and the disruption of the death process of SCs by HG is an

important part of DPN occurrence and development. In this review,

we discuss the specific molecular mechanisms by which several

forms of PCD in SCs are affected (Figure 2), and exemplifies some of
FIGURE 2

SCs-associated axonal injury.
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the drugs that ameliorate the death of SCs through the

corresponding linkages (Table 1). For example, HG induces

apoptosis in SCs through multiple pathways involving disruption

of mitochondrial function, endoplasmic reticulum stress, as well as

oxidative stress and signaling pathways; inhibition or over-

activation of autophagy is achieved by decreasing the expression

of LC3-II/LC3-I, beclin-1, and autophagy genes in SCs, or by

increasing autophagy fluxes. Among them, HG-induced

inflammatory response is the culprit for the pyroptosis of SCs,

and the aberrant activation of NLRP3 inflammatory vesicles is the

key link for the induction of pyroptosis and PANoptosis, which

suggests that targeting the NLRP3 inflammatory vesicles is a reliable

therapeutic pathway. Unfortunately, although a few studies have

observed the effects of HG on ferroptosis and necroptosis in SCs,

the molecular mechanisms involved are relatively homogeneous

and more and deeper mechanistic explorations are lacking, thus

these two pathways need to be further explored, especially

necroptosis. We conclude by describing the relevant targets of

crosstalk of these PCDs, pointing out that some of the drugs

targeting the targets are effective in mitigating DPN progression
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and neuroinflammation, but there is still a therapeutic void for

important targets like p53.

It is worth noting that despite significant progress in potential

research on the cellular and molecular levels of SCs death,

nevertheless, apart from a few encouraging preclinical studies,

there is a dearth of clinical studies targeting the Schwann cell

pathway for the treatment of DPN. The majority of the promising

therapeutic agents currently available remain in ex vivo studies

lacking robust clinical validation. Consequently, there is an

imperative need for broader and more comprehensive clinical

exploration as a means of combating DPN. In addition, although

SCs autophagy and NLRP3 were found to be possible therapeutic

directions for neuropathic pain, the specific effective mechanisms in

DPN need to be further clarified. In conclusion, we believe that

there is an urgent need to explore DPN therapies targeting different

forms of PCDs in HG-induced SCs and the molecular mechanisms

that crosstalk with each other, and, despite the many challenges, we

strongly believe that thorough experimental and clinical studies can

make the protection of SCs PCDs an important target for the

intervention and treatment of DPN.
TABLE 1 Targets related to cell death in SCs.

Programmed
cell death

Regulatory pathway
Targets and signaling

pathways
Active substance References

Apoptosis

Mitochondrial Apoptotic Pathway
Caspase-3/7 — (41)

Bax/Bcl-2, caspase-9/caspase-9 ratios HDAC1 (42)

Endoplasmic Reticulum Stress

CHOP TangLuoning (46)

PI3K/Akt/GSK3b, ERK1/2 NGF (49)

PERK, PERK/Nrf2, ATF6, ATF4, eIF2a — (43, 44, 47)

Oxidative Stress
Cytochrome c, caspase — (51–53)

ROS, Mitochondrial damage SalB, geranylgeranyl (55, 56)

Other paths

Akt/mTOR, mTORC1 — (60–62)

TXNIP, PI3K/AKT/mTOR artesunate (66)

Caspase, PI3-K IGF-1 (41, 72, 73)

EPK, TLR4, Caspase-3 — (67, 68, 70),

Autophagy
Inhibitory

beclin-1, Atg3, LC3-II strychnine, Translocator agonists (88, 89)

LC3, LC3-II/LC3-I, P62, TXNIP — (85, 65),

Over-activation mTOR, p62 CBD, BC (92)

Pyroptosis
Classical pathway

NLRP3 TUDCA (110)

Gasdermin D, caspase-1, IL-1b, IL-18 — (106)

Other paths RAGE, Rab32 — (112, 113, 114)

Ferroptosis
— AMPK/SIRT1/PGC-1a honokiol (121)

— GPX4, GSH, Nrf2, ALOX15 — (120, 122)

necroptosis — MLKL, RIP3, Seh1 — (125, 128)
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