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Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that

belongs to the group of gasotransmitters along with nitric oxide (NO) and carbon

monoxide (CO). H2S plays a pivotal role in male reproductive processes. It is

produced in various tissues and cells of the male reproductive system, including

testicular tissue, Leydig and Sertoli cells, epididymis, seminal plasma, prostate,

penile tissues, and sperm cells. This review aims to summarize the knowledge

about the presence and effects of H2S in male reproductive tissues and outline

possible therapeutic strategies in pathological conditions related to male fertility,

e. g. spermatogenetic disorders and erectile dysfunction (ED). For instance, H2S

supports spermatogenesis by maintaining the integrity of the blood-testicular

barrier (BTB), stimulating testosterone production, and providing cytoprotective

effects. In spermatozoa, H2S modulates sperm motility, promotes sperm

maturation, capacitation, and acrosome reaction, and has significant

cytoprotective effects. Given its vasorelaxant effects, it supports the erection of

penile tissue. These findings suggest the importance and therapeutic potential of

H2S in male reproduction, paving the way for further research and potential

clinical applications.
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GRAPHICAL ABSTRACT
1 Introduction

Hydrogen sulfide (H2S) is a gasotransmitter, a gaseous signaling

molecule that provides cell signaling through a series of intracellular

signaling cascades. H2S is produced in mammalian tissues via the

transsulfuration pathway, which involves the interconversion of

cysteine and homocysteine through cystathionine. In mammals,

H2S is synthesized by the enzymes cystathionine-b-synthase (CBS)

and cystathionine-g-lyase (CTH) (1), which require pyridoxal-5’-

phosphate (PLP) as a cofactor and use L-cysteine to produce H2S (2).

Some studies suggest that the effect of CBS and CTH on L-cysteine is

the main pathway to produce endogenous H2S (3). However, several

other pathways have been described (Figure 1). H2S can be produced,

for example, by 3-mercaptopyruvate sulfurtransferase (3-MST),

which is also one of the H2S-producing enzymes (1), which, unlike

the previous two, is not dependent on PLP. The production of H2S

through 3-MST also requires cysteine aminotransferase (CAT),

which catalyzes the reaction of cysteine with keto acids to form 3-

mercaptopyruvate and the corresponding amino acid. 3-MST then

catalyzes the conversion of 3-mercaptopyruvate to pyruvate and H2S

(4, 5) in the presence of reducing agents such as thioredoxin or

dihydrolipoic acid (6). In 2013, Shibuya et al. (7) described another

pathway of endogenous H2S production, which involves two enzymes

– diamine oxidase (DAO) and 3-MST. DAO catalyzes the conversion

of D-cysteine to 3-mercaptopyruvate, a substrate for 3-MST (7).
Frontiers in Endocrinology 02
The H2S production has been described in several mammalian

tissues in which H2S has a specific function. Endogenous H2S uses

several signaling pathways to engage in physiological processes. In

many mammalian systems, the effect of H2S is mediated by ATP-

sensitive potassium channels (KATP) (8, 9). Other signaling

pathways involve T- and L-type calcium channels (10, 11), large

conductance calcium-activated potassium channels (BKCa) (12, 13),

MAPK signaling cascade (14), mitochondrial cytochrome c oxidase

(15) and transient receptor potential ion channel 1 (TRPA 1) (16).

In addition to acting on various signaling pathways, H2S is a potent

reducing agent that protects sulfhydryl groups of proteins from

oxidation thanks to its reactivity with oxygen and nitrogen radicals

(17–20). In some tissues, H2S deficiency or excess can affect the

pathogenesis of some diseases. An insufficient concentration of H2S

has been described, for example, in Alzheimer’s or Huntington’s

disease (17, 21), whereas overexpression of hydrogen sulfide-

producing enzymes, such as CTH, is often associated with the

presence of testicular neoplasms, embryonic carcinoma (22), or

prostate cancer (23, 24). At the same time, this higher expression of

CTH correlates with higher aggressiveness of cancer (22, 25, 26).

Since early detection is crucial for cancer treatment, new methods

have been developed in recent years that can detect H2S in these

tissues and could also help in the early diagnosis of cancer (27, 28).

H2S and its synthases have also been demonstrated in the male

reproductive tract. For example, CBS has been reported in testicular
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germ cells, Sertoli and Leydig cells, and CTH has been described in

immature testicular germ cells and Sertoli cells (29). H2S-producing

enzymes have also been detected in spermatozoa (30), seminal plasma

(31), epididymis (32), vas deferens (13, 33), prostate (24, 34) and penile

tissue (35–37). The presence of H2S and its synthases in particular parts

of the male reproductive tract in different species are listed in Table 1.

H2S is currently considered to be a modulator of physiological sexual

function in both sexes (45–48), so it is the reason why many scientific

publications have been published in recent years dealing with the

function of H2S in different parts of the male reproductive tract

(Figure 2). It has been described that H2S increases the antioxidant

capacity of sperm (49), has anti-inflammatory and antioxidant effects

on testicular cells (50, 56), promotes testosterone production (57, 58)

and can support (31, 59) and suppress (31, 32, 60, 61) sperm motility.

One of the most critical functions of H2S in the male reproductive

system is vasorelaxation of smooth muscle, where it helps to relax the

smooth muscles of the vas deferens (33), prostate (34) or corpus

cavernosum (CC) (35, 53, 62). Smooth muscle relaxation of CC with

H2S is a highly discussed topic because the treatment of ED in some

patients is not sufficient with conventional medications, and H2S-based

compounds could, therefore, be another possible treatment used for

ED patients (42, 54).
2 Hydrogen sulfide in sperm and
seminal fluid

H2S activates several signaling pathways in spermatozoa

(Figure 3) which participate in the development of sperm
Frontiers in Endocrinology 03
motility, capacitation, and acrosome reaction, such as the

activating MAPK pathway involving four central cascades (ERK

1/2, JNK, p38, and ERK5) (31, 63). H2S also affects sperm ion

channels (Ca2+, K+, Na+), which are also concerned with the

physiological processes of spermatozoa (64). An example of the

Ca2+ channel regulation by H2S is the cation channels of sperm

(CatSper) engaged in capacitation, hyperactivation, acrosome

response, and sperm chemotaxis ability (65). In addition, the

opening of K+ channels by H2S regulates ATP production in the

mitochondria, which supports progressive sperm motility and

hyperactivation (38, 66). Other molecular targets of H2S are some

of the subfamilies of transient vanilloid receptor proteins (TRPVs)

(64). The TRPV1 channel has been described in the acrosome and

flagellum of bull spermatozoa, where it promotes progressive

motility, capacitation, including hyperactivity, and acrosome

reaction (67). Similarly, the TRPV4 channel has been detected in

the flagellum and acrosome of human spermatozoa and is involved

in sperm capacitation associated with motility hyperactivation. In

addition, TRPV1 mediates Na+ influx and subsequent membrane

depolarization, activating other important ion channels related to

sperm capacitation (e.g., CatSper) (68, 69).
2.1 Role of hydrogen sulfide in
sperm motility

H2S-producing enzymes are mainly found in the midpiece of

the human, boar, and mouse sperm flagellum, but during

epididymal maturation and capacitation, their sequential
FIGURE 1

Enzymatic production of endogenous H2S. The main producers of H2S are the enzymes CBS and CTH, which use L-cysteine to produce H2S.
Another possible route of H2S formation from L-cysteine is the activity of 3-MST and CAT. In addition to L-cysteine, D-cysteine can also be
another substrate.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1427069
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pilsova et al. 10.3389/fendo.2024.1427069
disappearance occurs probably due to plasma membrane

remodeling (30). These results suggest that H2S is not involved in

oocyte fertilization alone but in the preceding processes. Given the

presence of H2S-producing enzymes in the midpiece of the

flagellum, it seems likely that H2S could be involved primarily in

the development of sperm motility by promoting ATP production

in mitochondria. The effect of H2S on sperm motility is the subject

of many research studies describing both the positive and negative

effects of H2S on this important functional sperm parameter. One of

the negative impacts may be the action of the sodium sulfide (Na2S)

donor, which releases H2S rapidly in high concentrations, in vitro

reducing sperm motility (70). Reduction of sperm motility by H2S

includes decreasing Na+/K+ ATPase activity, which is known to

affect spermatogenesis, metabolism (71), and sperm motility of

various mammalian species (e.g., mice, stallions, humans) (72–75),

and protein kinase B (Akt) levels, activating adenosine 5’-

monophosphate (AMP)-activated protein kinase (AMPK) and
Frontiers in Endocrinology 04
phosphatase and tensin homolog deleted on chromosome ten

(PTEN), and increasing reactive oxygen species (ROS) (70). This

result has also been confirmed by Wang et al. (61) in an in vivo

study on mice, which described the same negative effect of a donor-

different gasotransmitter (NaHS) on sperm chemotactic abilities

when treated at a dose of 50 mg/kg daily. The reason for the

negative impact of H2S donors on sperm motility is probably the

fact that some H2S donors release this gasotransmitter in

concentrations that are supraphysiological and, therefore,

unfavorable for sperm function, which can cause a decrease in

sperm motility (70).

Compared to these results, a positive effect of H2S donors on

sperm motility has also been described in oligoasthenozoospermic

(ejaculate with reduced sperm concentration and motility) and

asthenospermic (ejaculate with reduced sperm motility)

ejaculates, in which lower activity of CBS in seminal plasma was

measured in comparison to healthy men. Spermatozoa of these

patients were in vitro exposed to two H2S donors – GYY4137 (10

µM), releasing H2S slowly in low concentrations, and NaHS (5

µM), rapidly releasing H2S in high concentrations. The first of the

mentioned donors (GYY4137) led to improved sperm motility in

contrast to NaHS (31). However, improvement in sperm motility

occurred only in patients with lower levels of H2S (< 18 µM) in

seminal plasma, which is probably related to the activation of the

MAPK signaling pathway (31), which fundamentally affects sperm

motility, morphology, and capacitation (76, 77). Other effective

molecules in terms of sperm motility and concentration are the

H2S precursor SG1002 (in vivo study on men, 750 mg of SG1002

da i ly ) (78) and fina l ly , the amino ac id-der ived N-

thiocarboxyanhydrides (NTAs), which releases H2S in the

presence of carbonic anhydrase, in vitro increasing progressive

sperm motility and prolonging sperm survival through supported

mitochondrial activity (59). These results suggest that H2S

concentration probably plays a crucial role in the effect on

sperm motility.
2.2 Hydrogen sulfide as an antioxidant
in spermatozoa

One of the leading causes of male infertility is oxidative stress,

so experiments have been conducted focusing on using various H2S

donors, which are considered potent antioxidants (49, 55). The

donor GYY4137 releasing H2S slowly in small concentrations can

maintain sperm motility in vitro, even under conditions of

increased oxidative stress. Conversely, the in vitro effect of NaHS,

which releases H2S rapidly in high concentrations, preserves sperm

motility only in lower concentrations, while in higher

concentrations (300 mM), it appears to be cytotoxic. However,

both mentioned donors and amino acid NTAs can mitigate

damage caused by oxidative stress, thereby increasing sperm

antioxidant capacity (49, 59). In addition to its direct ability to

neutralize ROS (like O2H, O2
-, OH, etc.), H2S also enhances the

expression of antioxidant enzymes, for example, glutathione

peroxidase (GSH-Px) or superoxide dismutase (SOD), through

nuclear factor erythroid-derived 2 (Nrf2) activation and
TABLE 1 Presence of H2S and its synthases in the male
reproductive tract.

Localization Species Enzyme Source

Sperm
Human,

mouse, boar
CBS, CTH, 3-MST (30, 31)

Seminal plasma Human CBS, CTH (31)

Testicular tissue Mouse CBS, CTH, 3-MST (30, 38)

Leydig cells Rat CBS (29)

Sertoli cells Rat CBS, CTH (29)

Germ cells of
the testicle

Rat CBS (29)

Immature testicular
germ cells

Rat CTH (29)

Epithelial cells of
the epididymis

Rat CBS (32)

Epididymis smooth
muscle cells

Rat CTH (32)

Ejaculatory duct
Rat,

mouse, human
CBS, CTH (13, 33)

Prostate Rat, human
CBS, CTH, 3-
MST, CAT

(24, 34)

Corpus cavernosum
Mouse,
Human

CTH, CBS
(35,

39–42)

Corpus cavernosum Mouse 3-MST (40, 41)

Corpus cavernosum Rat
CBS, CTH, 3-MST,

CAT, DAO
(37)

Penile
tissue endothelium

Human,
mouse, cattle

CBS, CTH (39, 43)

Muscular trabeculae of
penile tissue

Human CBS, CTH
(35,

43, 44)

Smooth muscle of the
penile artery

Human CBS, CTH
(35,

43, 44)

Dorsal nerve of
the penis

Rat CTH (35)
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translocation, which regulates the expression of antioxidant

proteins (79).
2.3 Hydrogen sulfide in persulfidation of
sperm proteins

H2S facilitates the persulfidation (S-sulfhydratation) (55, 80),

posttranslational modification converting thiols (RSH) to
Frontiers in Endocrinology 05
persulfides (RSSH, RSSSH, etc.) (Figure 4) (81) when H2S modifies

proteins by attaching a sulfhydryl group to specific cysteine residues

(82). This protein modification is a redox process, and it is significant

in many signaling pathways relevant to sperm development (48). This

modification can be reversible and dynamic, allowing precise

regulations of protein functions (83, 84). Persulfidation prevents

protein damage caused by irreversible cysteine hyperoxidation,

which can be detrimental to protein function (30). Persulfidation

protects proteins from irreversible oxidative damage, particularly in
FIGURE 3

H2S signaling cascades in spermatozoa. H2S activates the MAPK signaling cascade, further affecting ion channels (mainly potassium and calcium) and
some TRPV channels (TRPV1, TRPV4). All these signaling cascades affect sperm motility, capacitation, hyperactivation, or acrosome reaction, and
CatSper channels can also engage sperm chemotaxis ability.
FIGURE 2

Summary of H2S functions in different parts of the male reproductive tract. H2S has an impact on various sperm functions, it enhances sperm and
testicular antioxidant capacity (38, 49, 50) and inhibits superoxide generation in penile tissue (51, 52). H2S effectively promotes erectile function (53),
and this gasotransmitter is a promising therapeutic agent for the treatment of erectile dysfunction (42, 54). A key function of H2S is protein
persulfidation, through which H2S can modify proteins and regulate various signaling pathways (55). H2S also plays a crucial role in facilitating ion
transport across the epididymal epithelium (32) and significantly enhances BTB constitutive protein expression in the testis (31), thereby promoting
spermatogenesis and testosterone biosynthesis. H2S can also effectively regulate smooth muscle relaxation in vas deferens (33) and prostate
tissue (34).
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environments with high oxidative stress (83, 84). In the context of

male reproductive health, this protective mechanism is crucial for

maintaining the integrity of sperm proteins, which are vital for sperm

motility and function. Persulfidation has been shown to be relatively

common in the testes (30), with almost 244 identified persulfidated

proteins in human sperm. Interestingly, in asthenozoospermic

patients, histones H3.1 and H3.3 on cysteine 111 exhibit

significantly lower levels of persulfidation, potentially leading to

reduced sperm motility and contributing to infertility (55). Proteins

like GADPH, tubulin, and anchor protein A-kinase, which are

involved in flagellum structure and sperm motility, are identified as

persulfidated (30, 83). The interaction of H2S with GADPH, a critical

enzyme for sperm motility, enhances cysteine reactivity, indicating

that persulfidation could be responsible for the beneficial effects of

H2S on sperm movement (80).
3 Hydrogen sulfide in testes

3.1 Hydrogen sulfide function in the
blood-testicular barrier

Endogenous production of H2S has been confirmed in testicular

tissue, and it is assumed that its production is necessary for

spermatogenesis (30, 31, 38). Reduced H2S production results in

impaired spermatogenesis, decreased MAPK phosphorylation, and

disruption of the BTB, which plays a critical role in

spermatogenesis. Conversely, the presence of H2S in vivo

increases the resistance and expression of the BTB constitutive

protein under conditions of increased oxidative stress (31).

However, the effect of H2S in this tissue is highly dependent on
Frontiers in Endocrinology 06
its concentration, as is the case in spermatozoa. On the contrary, in

vivo, elevated H2S levels induced by some donors (NaHS, Na2S) can

damage BTB integrity, decrease BTB-related gene expression rates,

reduce testosterone levels, damage seminiferous tubules, and

increase p38 MAPK phosphorylation, a signaling pathway, which

regulates cell proliferation, differentiation, apoptosis, and stress

response (31). These effects are thought to be due to inhibiting

ATP production, specifically mitochondrial Complex IV (85).
3.2 Hydrogen sulfide as an antioxidant
in testes

Antioxidant, antiapoptotic, and anti-inflammatory effects of

H2S have been observed in various systems (38, 86–92).

Therefore, the H2S-producing enzymes CBS and CTH play an

essential role in the testis by synthesizing the antioxidant GSH-Px

in the transsulfuration pathway, promoting male fertility. Decreased

expression of CBS and CTH in testicular tissue leads to a reduced

ability to respond to oxidative stress, which may cause a decrease in

sperm concentration and motility (56). The antioxidant capacity of

H2S consists in the activation of SOD, which reduces the level of

ROS in testicular germ cells. H2S can further promote

mitochondrial function, increase ATP production, and decrease

ROS production (38, 50). In addition, Mao et al. (93) described a

beneficial effect of H2S in attenuating acrolein-induced Sertoli cell

and germ cell damage in vitro, which underlies several reproductive

injuries (94–97), suggesting that H2S might be used in the future to

prevent and treat acrolein-related reproductive injury.

The antioxidant effect of H2S is often associated with reducing

ischemia-reperfusion injury in treating testicular torsion. By
FIGURE 4

Various reaction mechanisms of persulfidation. In solutions, H2S dissociates into H+ and HS−. Protein persulfidation can result from sulfide anion
reactions on oxidized protein thiol, including S-OH, S-N=O, S-SG, and S-SR.
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measuring the levels of some antioxidant substances (SOD, reduced

glutathione) and oxidative stress, it was concluded that H2S

contributes to anti-inflammatory, antioxidant, antiapoptotic, and

antifibrotic activities in the treatment of testicular torsion (90, 92)

via inhibition of inflammatory cytokines (92). H2S donor GYY4137

has been confirmed to in vivo protect against ischemia-reperfusion

injury and attenuate histopathological changes after testicular

torsion/detorsion, as well as mediate an increase in antioxidant

capacity (89, 92), reduce apoptosis of spermatogenic cells, and

increase the expression level of heat shock protein 70 (89), which

helps prevent cell apoptosis during heat stress in testicular cells (98),

preserve spermmotility in cryopreserved bull sperm (99), and protect

proteins and DNA under stress conditions (100). According to the

results of these studies, H2S treatment has beneficial effects on

biochemical and histopathological damage in testicular torsion.

Another study focusing on the protective function of H2S

investigated the in vivo effect of H2S on the heat stress of testicular

germ cells. Heat exposure significantly reduced endogenous H2S

production and CBS and CTH expression in testes. NaHS

application (5,6 mg/kg) alleviated heat stress in testicular germ cells

and induced cell death and apoptosis. The number of apoptotic cells

was significantly lower, suggesting that H2S may protect testicular

germ cells through its anti-apoptotic effects (38), likely mediated by

the inactivation of the intrinsic apoptosis pathway, as the Bax/Bcl-2

protein expression ratio was reduced but caspase activity was

unchanged (38, 89). NaHS also improved mitochondrial function

by reducing oxygen consumption and increasing ATP production,

SOD activity was stimulated, and ROS production was reduced.

Consequently, exogenous H2S may protect germ cells by preserving

mitochondrial function and stimulating antioxidant activity (38).

The protective effect of H2S has also been studied in vivo

concerning varicocele. It has been confirmed that the use of

GYY4137 (5–20 mg/kg) alleviates damage to the testis and ductus

epididymis and reduces the number of apoptotic epithelial cells in

the epididymis, likely due to a reduction in the levels of caspase-3

and Bax (88, 101). GYY4137 also reduces oxidative stress markers

and increases this tissue’s antioxidant activity. In addition, it likely

activates the phosphatidylinositol 3-kinase/protein kinase B (PI3K/

Akt) pathway, which regulates the cell cycle and is associated with

increased sperm motility and may counteract the effects of oxidative

stress (101).

Due to the protective effects of H2S, its effects have also been

investigated about testicular toxicity and male infertility induced by

anticancer drugs. Several studies focusing on this topic have

described a positive effect of H2S against testicular toxicity. As an

example, the in vivo experiment by Azarbarz et al. (102) confirmed

that NaHS administration (200 µg/kg/day) provides a significant

improvement in biochemical, histological, and morphometric

changes (decrease in testicular weight, plasma testosterone

concentration, seminiferous tubule diameter, germinal epithelium

thickness, Sertoli cell count, spermatogonia and spermatocytes,

Johnsen testicular score and testicular antioxidant enzymes

induced by cisplatin (102). Cisplatin is a potent anticancer drug,

but its use is limited due to its ability to generate free radicals that

are highly toxic to specific organs, such as the kidney and testis

(103). A similar in vivo experiment was performed by Özatik et al.
Frontiers in Endocrinology 07
(91), who investigated the effect of NaHS on testicular dysfunction

induced by cyclophosphamide, a drug used to treat many

malignancies but which can also cause serious side effects such as

hemorrhagic cystitis and male infertility. NaHS (25–100 µmol/kg)

has been found to prevent the increase in interleukin 6 and 10 levels,

decrease in cGMP, increase in luteinizing hormone (LH), and

decrease in testosterone that has been related to the effects of

cyclophosphamide (91). Testicular toxicity can also be caused by

the carcinogenic water-soluble acrylamide, which is used in paper

and plastics manufacturing (104) and has been detected in some

cosmetic products, creams, and lotions (105). In addition,

acrylamide is also formed naturally during frying or baking at

temperatures above 120°C and low humidity (106). Mokhlis et al.

(107) described the reversal of the adverse effects of acrylamide-

induced testicular toxicity using NaHS in vivo and described the

protective effects of H2S in this exposure (200 µg/kg NaHS) (107).

Testicular toxicity can be further induced by nanoplasts, which

accumulate in the testes, cause seminiferous tubular degeneration,

and induce ROS-dependent mitochondrial apoptosis. Therefore, Li

et al. (50) conducted in vitro experiments that confirmed the

protective function of H2S in testicular toxicity. NaHS (250 µM)

improved the antioxidant capacity by increasing the protein levels

of NAD(P)H dehydrogenase quinone 1 (NQO1) and heme

oxygenase-1 (HO-1), which synthesizes CO, another

gasotransmitter involved in the regulation of various physiological

processes in the body (108). These results suggest that H2S donors

may be a promising therapy not only for treating varicocele and its

symptoms but also for mitigating the adverse effects of anticancer

drugs and other agents that cause testicular toxicity.
3.3 Hydrogen sulfide and
testosterone biosynthesis

Low testosterone levels and hypogonadism occur in 2.1–5.7% of

men aged 40–79 years and may be a cause of male infertility (109).

However, the crucial role of H2S in testosterone biosynthesis has

recently been described, the clarification of which could help in the

treatment of these disorders associated with low levels of

testosterone (58, 61). H2S has been described to increase steroid

production in Leydig cells and the expression of genes associated

with testicular testosterone biosynthesis (StAR, p450c17, 3beta-

HSD, P450scc) in vivo. H2S further enhanced SOD and GSH-Px

activity, again pointing to its antioxidant effects (58). Another

research team looked at the potential solutions to testosterone

secretion disorders using H2S in vivo and in vitro (110).

Overexpression of CBS was found to inhibit phosphodiesterase

4A (PDE4A) and phosphodiesterase 8A (PDE8A) via

persulfidation, implicating that it is possible that by inhibiting

PDE expression via persulfidation and activating the cAMP/PKA

pathway that regulates testosterone synthesis, which could be

restored (Figure 5). Furthermore, H2S may play an important role

in testicular testosterone secretion in vivo, which is influenced by

LH secretion, because the sulfides contained in garlic support the

secretion of testosterone in the testicles precisely by controlling the

secretion of LH (111).
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4 Hydrogen sulfide in epididymis, vas
deferens and prostate gland

The role of H2S in epididymis is likely to be in regulating

epididymal transepithelial ion transport. In rats, H2S has been

found to induce transepithelial K+ secretion via KATP and BKCa

channels in vivo. The activation of BKCa channels by H2S is

mediated via TRPV4 channels and subsequent Ca2+ influx (32).

The expression of the H2S-producing enzymes CBS and CTH

increases in the epididymis from the caput to the cauda

epididymis, corresponding to the increasing production of

endogenous H2S (32). Moreover, the K+ concentration in rat

intraluminal fluid also increases from the caput to the cauda,

which supports the idea that H2S increases K+ secretion (32, 112).

In the caput epididymis, the function of H2S is probably in reducing

sperm motility by increasing the extracellular concentration of K+

ions, keeping them in a quiescent state before ejaculation (32).

H2S production has also been described in vas deferens (13, 33),

and all three H2S-producing enzymes have been detected in the

prostate, with the highest abundance of CTH, which is likely the

main H2S producer in this tissue (23, 24, 113, 114). The main role of

H2S in the vas deferens and prostate is primarily to relax smooth

muscle (33, 34). In addition, H2S also plays an important role in the

detection and treatment of prostate cancer. Prostate cancer is the

second most frequent malignancy in men and the fifth leading cause

of death worldwide (115). As early as 40 years ago, clinical practice

demonstrated that water treatment with H2S improves prostate

blood flow in patients with chronic prostatitis, indicating a

beneficial role of H2S in prostate tissue in the pathological state

(116). Endogenous H2S plays a vital role in tumor growth in a

variety of cancers through induction of angiogenesis, regulation of

mitochondrial bioenergetics, cell cycle acceleration, and

antiapoptosis (117), and regulation of cell proliferation (23).
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In vivo and in vitro studies have described that H2S, its donors, or

some sulfocompounds have anticancer effects (23, 118–125). The

results suggest that a diet or drug containing H2S-releasing

substances could be beneficial in the treatment of prostate cancer

(23). However, some authors have described that excessive levels of

CTH/H2S in the prostate, on the contrary, may promote prostate

cancer progression and that their inhibition leads to suppression of

tumor growth. This suggests that CTH and H2S could be potential

therapeutic targets in intervening in prostate cancer progression

(26). Moreover, the detection of elevated CTH/H2S levels could help

early prostate cancer detection (27, 28).

5 Hydrogen sulfide in penile tissue

The first effect of H2S on penile physiology was described in 2006

when intracavernous injection of NaHS (1–10µmol/kg) significantly

increased penile length and cavernous pressure in primates (53). A key

event during penile erection is the relaxation of the CC smooth muscle,

leading to an increase in arterial flow and restriction of venous outflow,

thereby resulting in an erection (126–129). Later both in vitro and in

vivo studies suggest that H2S functions here as a vasodilator mediator,

thereby contributing to blood pressure regulation (39, 130–136). H2S is

produced in this tissue by both vascular smooth muscle and

endothelial cells, on which it has vasodilatory effects (137).

Vasodilation is mediated by KATP (138–142), BKCa channels (13, 35,

142), TRPVA1 channels, and through the beta3 adrenoceptor signaling

pathway (44, 143). The vasodilatory effect of H2S is probably enhanced

by testosterone, which promotes the production of H2S from its

precursor, L-cysteine (144), and induces CC smooth muscle

relaxation via KATP channels (145). H2S vasodilatory effect has also

been demonstrated in vitro using its precursor (L-cysteine), donors

(GYY4137), and inhibitors (DL-propargylglycine, aminooxyacetic

acid) (53, 146, 147). Inhibition of CTH and CBS leads to contraction
FIGURE 5

Effect of H2S on testosterone biosynthesis. (A) Signaling cascade of testosterone secretion; (B) Disruption of the signaling cascade of testosterone
secretion by overproduction of PDE, which degrades cAMP, which leads to a decrease in the activity of the PKA signaling pathway;
(C) Persulfidation of PDE by H2S and its subsequent inhibition, which ensures activation of the PKA/cAMP signaling pathway and subsequent
testosterone synthesis.
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of the CC and a reduction in the normal intracavernous pressure

response to electrical stimulation (35, 43, 53, 148, 149).

In addition, another gasotransmitter contributes to the erection

response. A key mechanism of erection lies in the NO signaling

pathway, which stimulates the guanylyl cyclase/cyclic guanosine

monophosphate (GC/cGMP) pathway (Figure 6) (128, 150, 151).

H2S likely exerts its pro-erectile effects precisely by enhancing the

NO signaling pathway (70, 152–155). Indeed, endogenous H2S

production has been described to significantly enhance the

vasorelaxant effect of the NO donor sodium nitroprusside (13,

138, 153, 156–160), and conversely, the H2S donor NaHS

upregulates endothelial NO synthase (eNOS), thereby relaxing

and promoting erectile function (161). Conversely, a decrease in

H2S levels causes dysregulation of the NO/sGC/cGMP signaling

pathway, leading to ED. However, this dysregulation can be

reversed by H2S donors (162). The pro-erectile effect of H2S and

its donors likely involves the inhibition of PDEs, resulting in the

accumulation of cGMP (163–166). Since PDE proteins contain

many cysteine residues, H2S is thought to inhibit PDE activity by

modifying sulfhydryl sulfides (164). H2S alone can enhance cGMP

signaling like a PDE5 inhibitor (PDE5i) (Figure 6) (164). In

addition, H2S increased eNOS phosphorylation and xanthine

oxidase activity, leading to NO production and increasing NO

bioavailability, hence increasing cGMP concentration (166–170).

Conversely, NO can modulate endogenous H2S production (171).

Indeed, it has been found that NO can not only increase the

expression of CTH at the transcriptional level but also increase

the activity of this enzyme itself, for example, by NO stimulating the

uptake of cysteine, which is a substrate for CTH (172). The role of

both gasotransmitters in regulating erectile function is likely to be
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synergistic (153, 155, 173). Taken together, H2S acts in CC by at

least two mechanisms: inhibiting PDE and activating KATP channels

modulated by testosterone. However, what can be inferred from the

available data is that there is an interplay between H2S and NO/

cGMP in CC and that the on/off switching of signaling may be

reciprocally regulated and influenced by testosterone (174). These

data imply a strong link between aging, testosterone, H2S, and

ED (164).

The occurrence of ED is most often related to a disorder of the

blood supply to the penile arteries. The development of ED usually

occurs during aging (148) or due to other diseases such as diabetes (37,

175), hypertension (175, 176), or metabolic syndrome (177). PDE5i are

widely used to treat ED (178) due to its capability to increase cGMP

and/or cAMP levels, leading to activation of PKG/PKA and smooth

muscle relaxation in erectile tissues (179–181). Some patients, though,

specifically elderly, diabetics, and hypertensives, respond inadequately

or not at all to PDE5i (182–184). In addition, they often have impaired

H2S and testosterone signaling (37, 42, 148, 185, 186). In patients who

do not respond to PDE5i therapy, a possible clinical treatment for ED

could be the use of a combination of PDE5i, testosterone, and/or H2S

donors/substrates, which could lead to cGMP levels maintenance (35,

40, 43, 154, 157, 177, 186, 187). The advantage of H2S-induced CC

relaxation is that it is independent of the endothelium (157, 188, 189),

which NO/cGMP pathway is not, and it is one of the reasons why, for

example, diabetic patients develop ED (Figure 6) (190–193). As a

result, it can be said that H2S has a compensatory role in the absence of

NO without altering the downstream mechanisms of the signaling

pathway. However, the potential therapeutic use of H2S could lie not

only in its acute effect on erection but also in its longer-term effect in

reducing oxidative stress in erectile tissue, both of which have been
FIGURE 6

Potential use of H2S in the treatment of ED. (A) NO/cGMP signaling pathway involved in penile erection; (B) Reduction of NO/cGMP signaling
pathway activity in patients with ED in whom PDE5i is used as a therapeutic agent, which subsequently preserves the functionality of the signaling
pathway; (C) Potential use of H2S in patients with ED who, due to disruption of the endothelium and the NO/cGMP signaling pathway, do not
respond adequately to PDE5i treatment.
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described in another H2S donor – a sildenafil derivative ACS6 (52, 157,

194–196).
6 Conclusion

Endogenous production of H2S, which plays a crucial role in the

processes of male reproduction, has been confirmed in most tissues

of the male reproductive system. H2S is essential in the early phase

of male fertility, as it maintains the integrity of BTB during

spermatogenesis, promotes testosterone production, and has

cytoprotective effects. Cytoprotective effects may be used, for

example, in the treatment of testicular cancer as a means of

mitigating the impact of testicular toxicity induced by anticancer

drugs. The vasodilatory effects of H2S and the subsequent

improvement in tissue blood flow could support the treatment of

chronic prostatitis. Cytoprotective effects may, in turn, help in the

treatment of prostate cancer. At the same time, H2S could also aid in

the early detection of prostate cancer as a marker for which

supraphysiological levels of H2S are typical.

In spermatozoa, H2S both inhibits sperm motility during

epididymal maturation and supports its hyperactivation during

capacitation. H2S is also involved in the acrosome response of

sperm and protects sperm from oxidative stress throughout the

reproductive maturation process. These effects are mediated

primarily by the action of H2S on mitochondria, ion channels

(Ca2+, K+, TRPV), the MAPK signaling pathway, or the

persulfidation of sperm proteins. The effect of H2S on sperm

motility could be exploited in treating patients with reduced

sperm motility, for example, by providing an exogenous H2S

donor. The physiological concentration of H2S in the body is

relatively low, so donors would be needed for possible treatment

that releases H2S in low concentrations, such as GYY4137, SG1002,

or NTAs.

The most researched area of this topic is the penile tissue, as H2S

can cause or promote pro-erectile effects. The latter through its

relaxant effects on the CC, mediated by KATP channels, or by

inhibiting PDE or upregulating eNOS, leading to relaxation of CC

mediated by the NO/GC/cGMP signaling pathway. The synergy of

H2S and NO in penile tissue works both ways, promoting CTH

activity through NO. Due to its pro-erectile effects, H2S is a

potential therapeutic agent for treating ED patients who do not

respond to PDE5i therapy or have impaired endothelial NO

production in the CC, such as diabetic patients.

The H2S concentration is a crucial factor in its tissue effects. In

previous studies, two main types of H2S donors have been

investigated. Namely, some donors release H2S rapidly and in

high concentrations (e.g., NaHS) or release H2S slowly in low

concentrations (GYY4137). While the second group of donors

better mimics the physiological concentrations, it is worthwhile

for future research to investigate the physiological effects of H2S

using these donors. The first group of donors, such as NaHS,

forming supraphysiological levels of H2S in cells may cause tissue

or cellular toxicity or promote cancer.
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In conclusion, H2S may be a valuable tool in the treatment of

many pathological conditions of male reproduction, such as

impaired spermatogenesis, lack of sperm motility, or ED.

However, for the successful application of H2S in clinical settings,

it is important to determine the precise concentrations that elicit the

desired therapeutic effects. Furthermore, future research will likely

uncover specific protein targets of persulfidation and elucidate how

this posttranslational modification influences their function. This

understanding will be crucial in identifying and defining critical

therapeutic targets, ultimately paving the way for more targeted and

effective treatments.
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JI, Sánchez-Ferrer A, et al. PS-3-1 reduced expression of hydrogen sulfide synthesizing
enzymes is associated with the functional impairment of L-cysteine-induced responses
in human corpus cavernosum and penile arteries from ED patients. J Sexual Med.
(2020) 17:S128–9. doi: 10.1016/j.jsxm.2020.04.034

43. La Fuente JM, Fernández A, Pepe-Cardoso AJ, Martıńez-Salamanca JI, Louro N,
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