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Introduction: We aimed to comprehensively investigate the causal relationship

between 731 immune cell traits and autoimmune thyroiditis (AIT) and to identify

and quantify the role of 1400 metabolic traits as potential mediators in between.

Methods: Using summary-level data from genome-wide association studies

(GWAS) we performed a two-sample bidirectional Mendelian randomization (MR)

analysis of genetically predicted AIT and 731 immune cell traits. Furthermore, we

used a two-step MR analysis to quantify the proportion of the total effects (that the

immune cells exerted on the risk of AIT) mediated by potential metabolites.

Results: We identified 24 immune cell traits (with odds ratio (OR) ranging from

1.3166 6 to 0.6323) and 10metabolic traits (withOR ranging from 1.7954 to 0.6158)

to be causally associated with AIT, respectively. Five immune cell traits (including

CD38 on IgD+CD24-, CD28 onCD28+CD45RA+CD8br, HLA DR+CD4+ AC, TD

CD4+%CD4+, andCD8on EMCD8br) were found to be associatedwith the risk of

AIT, which were partially mediated by metabolites (including glycolithocholate

sulfate, 5alpha-androstan-3alpha,17beta-diol disulfate, arachidonoylcholine, X-

15486, and kynurenine). The proportion of genetically predicted AIT mediated by

the identified metabolites could range from 5.58% to 17.7%.

Discussion: Our study identified causal associations between AIT and immune

cells which were partially mediated by metabolites, thus providing guidance for

future clinical and basic research.
KEYWORDS

autoimmune thyroiditis, immune cells, metabolites, Mendelian randomization,
mediation effects
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1 Introduction

Autoimmune thyroiditis (AIT), also known as Hashimoto’s

thyroiditis (HT) or chronic lymphocytic thyroiditis, is an

autoimmune disorder affecting the thyroid gland (1). In AIT,

immune cells lead to the death of the thyroid’s hormone-

producing cells, which could result in a decline in hormone

production (i.e. hypothyroidism) (1). The primary treatment is

thyroid hormone replacement. AIT affects about 5% of Caucasians

at some point in their lives (1). It is the most common cause of

hypothyroidism in iodine-sufficient areas of the world. It typically

begins between the ages of 30 and 50 and is much more common in

women than men. Rates of the disease appear to be increasing (1). It

is generally believed that HT manifests through a combination of

genetic susceptibility and environmental risk factors (2),

nevertheless, the specific risk factors and detailed pathogenesis of

AIT remained inconclusive.

AIT is a classic example of a T-cell-mediated disease in which

thyroid cells is destroyed by an inflammatory infiltrate consisting of

CD4+ and CD8+ T cells, CD19+ B cells, macrophages, and plasma

cells (3). In terms of thyroid cell injury, cytokines derived from the

inflammatory infiltrate play a key role, including their ability to

stimulate the thyroid cells themselves to release pro-inflammatory

mediators, thus amplifying and perpetuating the autoimmune

response (2). CD4+ T cells can differentiate into different

subtypes such as T helper cell 1 (Th1), Th2, Th17, and the

regulatory T cells (Treg). Th1 cells activate killing lymphocytes

(including CD8+T cells, macrophages, etc.) which are primarily

responsible for the destruction of thyroid cells (3, 4). In AIT tissues,

CD8+Tcytotoxic cells attack self-thyroid cells, causing cell death

and tissue damage (3, 4). The functional imbalance between pro-

inflammatory Th17 and immunosuppressive Treg is involved in the

pathogenesis of various autoimmune diseases including AIT (2, 5).

Cytokine productions of Th1 and Th2 dictate the activation of B

cells to secrete antibodies (6). The majority of thyroid

autoantibodies (i.e. TGAb and TPOAb) detected in the serum of

HT patients are IgG secreted by activated B cells. HT can be

classified into IgG4 and non-IgG4 subtypes based on the subtypes

of thyroid autoantibodies (7). Patients with IgG4 HT are more likely

to experience early onset hypothyroidism and thyroid atrophy (8).

And it is reported that thyroid autoantibodies, particularly TGAb,

are associated with recurrent miscarriage and could be an

expression of a more general maternal immune system

abnormality (9, 10). The close relationship between AIT and

immune cells has been shown by extensive by observational

studies. However, the causal associations between a specific

immune cell trait and AIT remained somehow elusive, possibly

due to limited sample sizes, flaws in study design, and confounding

factors beyond the scope of the existing studies.

Metabolites are the end products of biochemical processes.

Metabolites can induce permanent alterations in cellular

organization and genetic architecture through the regulation of

the epigenome, a phenomenon known as metabolic epigenetics

(11). It has been proposed that aberrant energy metabolism disrupts

immune tolerance, which may ultimately lead to autoimmune
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responses. The incidence of autoimmune might be attributed to

the aberrations of metabolites in immune cells (12, 13). Moreover,

studies have shown that immune cells are very sensitive to

metabolites in the body and can rapidly adapt to the

microenvironment of hypoglycemia and high lactate, thus

participating in the maintenance of immune tolerance to self and

in the control of metabolic homeostasis (14). Previous epidemiology

studies have proved the crucial role of metabolites that participate

in the reprogramming of various autoimmune diseases (15–17).

Changes in serum metabolites have been reported in AIT. Jiang

et al. reported that phospholipids influenced the pathogenesis of

Hashimoto’s thyroiditis, and fatty acid degradation and lysine

degradation pathways had an impact on different clinical stages of

HT (18). Krupa et al. reported that the serum kynurenine

metabolite profile was dysregulated in young women with AIT

and could serve as a new predictor of AIT risk (19). Song et al.

reported that patients with AIT had higher serum L-arginine, L-

ornithine, lysine and agmatine levels, and lower putrescine, 1,3-

diaminopropane, spermine, N-acetylputrescine levels; and N-

acetylspermidine might be a risk factor for HT progression to

overt hypothyroidism (20). The existing studies mainly focused

on the development of novel diagnosis metabolic markers, while the

causal relationship between specific metabolites and AIT and their

potential mediation effects on the pathways from immune cells to

AIT remained unclear.

Mendelian randomization (MR) is a potential causal inference

method that uses genetic variation as an instrumental variable to

obtain the effect of exposure factors on outcomes from

observational data (21). MR can reduce the effects of non-

measurement errors or confounding factors while avoiding

reverse causality through Mendelian inheritance laws (21). In the

present study, we aimed to determine the specific immune cell

signature that was causally associated with AIT and to assess the

extent to which a specific metabolic trait could mediate the effect of

the immune cell on AIT.
2 Methods

2.1 Study design

Figure 1 shows a schematic summary of the analysis. First, we

obtained published GWAS summary datasets that included traits

including metabolites, immune cells, and AIT (also known as HT).

Second, two-sample MR analyses were used to evaluate the

relationship among metabolites, immune cells, and AIT.

Additionally, to reinforce the validity of our findings, a reverse

MR analysis was conducted, leveraging significant results from the

initial MR analysis between immune cells and AIT to enhance the

robustness of the outcomes. Our approach was firmly rooted in

adhering to the fundamental tenets of MR analysis. We ensured a

robust association existing between genetic variants and the

exposure (assumption 1); we ascertained that these genetic

variants are not associated with potential confounding factors

(assumption 2); and we confirmed that the impact of genetic
frontiersin.org
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variants on the outcome is mediated exclusively through the

exposure, without the influence of alternative biological pathways

(assumption 3). Finally, mediation analysis was used to determine

the mediation effect of metabolites on the relationship between

immune cells and AIT. This study is conducted and reported

following the Strengthening the Reporting of Observational

Studies in Epidemiology Using Mendelian Randomization

guidelines (STROBE-MR) (22).
2.2 Genome-wide association study
data sources

The datasets used in our analysis were publicly available and

were approved by the institutional review committee in the

respective studies. Therefore, no further sanctions were needed.
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2.2.1 GWAS data for AIT and HT
Data on AIT were drawn from the GWAS summary data

sources on the FinnGen consortium (https://www.finngen.fi/en).

AIT GWAS summary statistics consist of 350,256 individuals (539

AIT cases and 349,717 controls), which are available at https://

r10.risteys.finregistry.fi/endpoints/E4_THYROIDITAUTOIM.

Individuals with ICD codes [ICD-10 E06.3] “Autoimmune

thyroiditis” including Hashimoto thyroiditis, hashitoxicosis

(transient), lymphadenoid goiter, lymphocytic thyroiditis, struma

lymphomatosa were defined as AIT cases (https://icd.who.int/

browse10/2016/en#/E06.3).

Data on HT for MR validation were drawn from IEU Open

GWAS project (dataset: ebi-a-GCST90018855). HT GWAS

summary statistics consist of 395,640 European individuals

(15,654 HT cases and 379,986 controls), which can be

downloaded from GWAS catalog (https://www.ebi.ac.uk/gwas/)
FIGURE 1

Flow chart illustrating the study design. First, we obtained published GWAS summary datasets that included traits including metabolites, immune
cells, and AIT (also known as HT). Second, two-sample MR analyses were used to evaluate relationships among metabolites, immune cells, and AIT.
Additionally, a reverse MR analysis was conducted between immune cells and AIT to enhance the robustness of the outcomes. A HT dataset was
also used for MR validation. Our approach was firmly rooted in adhering to the fundamental tenets of MR analysis. Finally, mediation analysis was
used to determine the mediation effect of metabolites on the relationship between immune cells and AIT.
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under the accession number GCST90018855. A total of 24,146,037

SNPs were included in this dataset (23).

2.2.2 GWAS data for immune cells
GWAS summary statistics for each immune cell traits are

publicly available from the GWAS Catalog (accession numbers

from GCST0001391 to GCST0002121) (24). A total of 731 immune

signatures including 7 panels of B cells, dendritic cells (DC), mature

stages of T cells, monocytes, myeloid cells, TBNK (T cells, B cells,

natural killer cells), and Treg. The original GWAS on immune cells

was performed using data from 3,757 European individuals and

there were no overlapping cohorts. Approximately 22 million SNPs

genotyped with high-density arrays were imputed with Sardinian

sequence-based reference panel and associations were tested after

adjusting for covariates (i.e., sex, age and age2). This immune cell

dataset detected 122 significant independent association signals for

459 cell traits and 70 loci (53 of them novel); 53 signals at 36 loci

overlapped with previously reported disease-associated signals,

predominantly for autoimmune disorders, highlighting

intermediated phenotypes in pathogenesis (25).

2.2.3 GWAS data for metabolites
GWAS summary statistics for each metabolic trait are publicly

available from the GWAS Catalog (accession numbers from

GCST90199621 to GCST90201020) (26). A total of 1400

metabolic signatures included 1091 blood metabolites and 309

metabolite ratios in 8,299 individuals of European descent from

the Canadian Longitudinal Study on Aging (CLSA) cohort (26).

This is the currently most comprehensive analysis of plasma

metabolome metabolites implicated in human diseases which

included approximately 15.4 million SNPs (26). Of the 1,091

plasma metabolites tested, 850 had known identities across eight

super pathways (i.e., lipid, amino acid, xenobiotics, nucleotide,

cofactor and vitamins, carbohydrate, peptide, and energy). The

remaining 241 were categorized as unknown or partially

characterized molecules (26). Metabolite ratios included the ratio

of substrates to products of enzymatic reactions, and the metabolite

level ratios for metabolite pairs sharing an enzyme or

transporter (26).
2.3 Selection of instrumental variables

To estimate causal effects using genetic variation, three basic

assumptions of IVs must be satisfied: (1) genetic variation is directly

associated with exposure; (2) genetic variation is not associated with

possible confounders between exposure and outcome; and

(3) genetic variation does not affect outcome through pathways

other than exposure. In accordance with recent research (24), the

selection criteria for identifying IVs were as follows: a) SNPs linked

to each genus with locus-wide significance (P < 1 × 10−5) were

considered as potential IVs; b) Data from the European samples

within the 1000 Genomes Project served as the reference panel for

calculating linkage disequilibrium (LD) among the SNPs (27). SNPs

with an R2 value of less than 0.001 (using a clumping window size of
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10,000 kb) were further analyzed, and only those SNPs exhibiting

the most significant P-values were retained for subsequent analysis;

c) The F statistic was calculated by the variance explained by SNPs

for each exposure, i.e. [(N – K – 1)/K]/[R2/(1 – R2)], where K is the

number of genetic variants, N is the sample size. SNPs with an F

statistic <10 should be excluded (28).
2.4 Statistical analysis

2.4.1 Primary analysis: two-sample
bidirectional MR analysis

We conducted a two-sample bidirectional MR to evaluate the

mutual causality between 731 immune cell traits and AIT

(Figure 1), which was designated as the total effect. Inverse

variance weighting (IVW) uses meta-analysis to combine the

Wald ratios of causal effects for each single nucleotide

polymorphism (SNP) (29). Then, MR-Egger (30), weighted-

median (31), simple mode, and weighted mode methods (32)

were used as a complement to IVW. We initiated by harmonizing

SNPs with identical alleles from the data source, followed by

conducting a two-sample MR analysis. The IVW method

integrates Wald estimates from each SNP through meta-analysis,

providing a comprehensive estimation of the influence of immune

cells on AIT. Its advantage lies in simultaneously considering the

effects of multiple genotypes on the study factor, thereby enhancing

the accuracy of causal inference. The IVW result remains unbiased

in the absence of horizontal pleiotropy (33). We utilized odds ratios

(ORs) of the exponential b for categorical outcomes along with

corresponding CIs to estimate effect sizes of causality. A significance

threshold of P < 0.05 was applied (or otherwise indicated). All the

analyses were done by R package named “TwoSampleMR” within

the environment of R 4.3.2 (available at https://cran.r-project.org/

bin/windows/base/). To ensure the robustness and sensitivity of our

findings, we also performed additional analyses, including MR-

Egger, weighted median, simple mode, and weighted mode. The

MR-Egger method is a commonly employed randomization pattern

in Mendelian randomization, assessing the impact of a factor on

disease through a linear regression model. Egger regression is

utilized to estimate bias and correct results, enhancing the

accuracy of causal estimates (34). The weighted median method is

primarily applied to address biased samples, effectively mitigating

sample bias and improving the reliability and accuracy of

randomized experiments (31). Both the simple mode and

weighted mode are frequently implemented randomization

patterns that eliminate interfering factors in experimental results

by random grouping (35). The reverse MR analysis procedure was

similar to that used for the MR analysis with AIT as the exposure

while immune cells as the outcome. The HT dataset was used for

MR validation, and the procedure was the same as the above

described. Missing values were not inferred.
2.4.2 Mediation analysis
Mediation analysis aims to evaluate the pathway from exposure

to outcome through a mediator, which helps explore the potential
frontiersin.org
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mechanisms by which exposure affects outcome (24). We

performed a mediation analysis using a two-step MR design to

explore whether 1400 metabolic traits mediate the causal pathway

from immune cells to AIT (Figure 1). The total effect of immune

cells on AIT can be decomposed into an indirect effect and a direct

effect (36). First, the causal relationship between metabolites and

immune cells was evaluated using two-sample MR methods to

obtain beta (A). Second, two-sample MR was used to screen

metabolites that still had a causal relationship with AIT after

correction for immune cells to obtain beta (B) and ensure that

the mediating effects on outcomes are independent of exposure

(36). The mediation effect was thus calculated using a two-step MR:

mediation effect = beta (A) × beta (B). The total effect of the

immune cells on AIT was obtained in the previous two-sample MR,

and direct effect = (total effect − mediation effect). The mediation

proportion used the following formula: mediation proportion =

(mediation effect/total effect) × 100%. The 95% confidence intervals

(CI) for the mediation effects and proportions mediated were

estimated using the delta method (36). Based on the results, we

categorized the mediators into different levels of evidence. When

only a triangular relationship existed, the metabolites were

considered to have potential mediation effects in the pathway

from immune cells to AIT (Figure 1).
2.5 Sensitivity analysis

Heterogeneity was assessed using Cochrane’s Q test calculated

in the IVW methods while potential pleiotropy was evaluated and

corrected using the MR-Egger intercept test. Cochran’s Q test is

employed as a method to evaluate heterogeneity among different

IVs in a study (37). The P-value derived from Cochran’s Q test is

crucial in determining the presence or absence of significant

heterogeneity. If the P-value is less than the pre-defined

significance level (usually 0.05), it is indicative of significant

heterogeneity among the IVs (37).To assess the effect of

horizontal pleiotropy, a common method was used (i.e., MR-

Egger), which implies the presence of horizontal multiplicity if its

intercept term is significant (30). Furthermore, a powerful method,

the MR pleiotropy residual sum and outlier (MR-PRESSO) method

was utilized to exclude possible horizontal pleiotropic outliers that

could substantially affect the estimation results in the MR-PRESSO

package (38). In addition, scatter plots and funnel plots were

generated. Scatter plots showed that the results were not affected

by outliers. Funnel plots demonstrated the robustness of the

correlation and no heterogeneity. Finally, the “leave-one-out”

method was employed to evaluate the causal genetic impact of

potential outlier SNPs and to ascertain whether the exclusion of

these SNPs influenced the MR estimates.
2.6 Metabolic enrichment analysis

For identified known plasma metabolites (P < 0.05 at least in IVW

method), we used MetaboAnalyst 6.0 (https://www.metaboanalyst.ca/)

to conduct metabolic enrichment analysis to identify metabolic
Frontiers in Endocrinology 05
pathways that may be related to AIT. This study used two libraries:

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and

the Small Molecule Pathway Database (SMPDB).
3 Results

3.1 Exploration of the causal effect of
immune cells and AIT

Based on the criteria for selecting IVs, a total of 3 to 753

independent IVs were determined to investigate 731 immune cell

traits. To explore the causal effects of immune cells on AIT, two-

sample MR analysis was performed, and the IVWmethod was used

as the main analysis. At the significance of 0.05, 27 suggestive

immune cells were identified to be significantly associated with AIT

at least in the IVM method, including 16 with risk effects (OR > 1)

and 11 with protective effects (OR < 1) (Figure 2). Seventeen

immune cells with risk effects on AIT onset fell into the B cell

panel (including CD20 on IgD- CD27-, CD38 on IgD+ CD24-,

CD25 on B cell, CD27 on sw mem, CD27 on CD24+ CD27+, CD38

on naive-mature B cell), the Myeloid cell panel (including CD45 on

Mo MDSC, CD45 on CD66b++ myelod cell, Im MDSC AC, CD14

on Mo MDSC, CD33br HLA DR+ CD14- AC), the Treg panel

(including CD28 on activated Treg, CD28 on CD28+ CD45RA+

CD8br, CD28- CD8dim AC), the Monocyte panel (CD14 on

CD14+ CD16- monocyte), and the TBNK panel (HLA DR+

CD4+ AC) (Figure 2). Similar results were observed by using four

more methods (Supplementary Figure S1; Supplementary Table S1).

Eleven suggestive immune cells with protective effects on AIT onset

fell into the Maturation stages of T cell panel (including TD CD4+

%CD4+, CD8 on EM CD8br, HVEM on CD45RA- CD4+), the

TBNK panel (including HLA DR++ monocyte %monocyte,

CD8dim NKT %T cell, CD8dim NKT %lymphocyte), the Treg

panel (including CD127 on CD28+ CD45RA- CD8br, CD39+

CD4+ %CD4+), the DC panel (including Plasmacytoid DC %DC,

CD11c on CD62L+ myeloid DC), and the Monocyte panel (HLA

DR on CD14- CD16-) (Figure 2). Similar results were observed by

using four more methods (Supplementary Figure S1;

Supplementary Table S1). Characteristics of significant SNPs with

genome-wide associations for immune cells on AIT were

summarized in Supplementary Table S2. Additionally, both the

intercept of MR-Egger and the global test of MR-PRESSO were used

to evaluate the possibility of horizontal pleiotropy, and Cochran’s Q

test was used to evaluate the possibility of heterogeneity. Horizontal

pleiotropy was evaluated by both MR-EGGER and MR-PRESSO

methods (Supplementary Table S3). Heterogeneity was suggested in

the causal associations of AIT with HLA DR++ monocyte %

monocyte, HLA DR+ CD4+ AC, CD20 on IgD- CD27-, HLA DR

on CD14- CD16-, and CD45 on Mo MDSC (Supplementary

Table S4). Reverse causal associations of AIT with immune cells

were assessed as well. Based on the criteria for selecting IVs, 14 IVs

for AIT (as exposure) were preserved for further analysis. Out of the

27 above-identified immune cells, no reverse causality was found for

24 immune cells, as revealed by our MR analysis (Figure 3;

Supplementary Table S5), which were subsequently subjected to
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the mediation analysis. AIT was identified as a protective factor for

three immune cells including HLA DR++ monocyte %monocyte

(OR = 0.9377, 95% CI = 0.8979-0.9793, P = 0.0037), CD33br HLA

DR+ CD14- AC (OR = 0.9381, 95% CI = 0.8869-0.9924,

P = 0.0261), and CD45 on CD66b++ myelod cell (OR = 0.9313,

95% CI = 0.8760-0.9902, P = 0.0228) (Supplementary Table S6). No

horizontal pleiotropy or heterogeneity was indicated as revealed by

sensitivity analyses (Supplementary Table S7).
3.2 MR validation

A GWAS dataset of HT (ebi-a-GCST90018855), which

incorporated meta-analyses of the UK Biobank and FinnGen data

to improve the resolution of the genomic map of human diseases

(23), was also used for MR validations. At the significance of 0.05,

31 suggestive immune cells were identified to be significantly

associated with HT at least in the IVM method, including 12 with

risk effects (OR > 1) and 19 with protective effects (OR < 1)

(Supplementary Figure S2). Immune cells with risk effects on HT
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onset fell into the Maturation stages of T cell panel (including

CD45RA on naive CD8br, CM DN (CD4-CD8-) %DN, HVEM on

CD45RA- CD4+), B cell panel (CD25 on transitional), the Treg

panel (including Resting Treg %CD4, CD39+ CD8br AC, CD28+

CD45RA+ CD8br %T cell, CD28 on activated & secreting Treg,

CD28 on resting Treg), the TBNK panel (HLA DR++ monocyte %

monocyte), and the DC panel (CD62L on monocyte, CCR2 on

CD62L+ myeloid DC) (Supplementary Table S8). Immune cells

with protective effects on HT onset fell into the Maturation stages of

T cell panel (including Naive CD8br %T cell, EM CD8br %CD8br,

CD45RA+ CD8br %CD8br, CD3 on CM CD8br), B cell panel

(including IgD+ CD38dim %B cell, Sw mem %lymphocyte, CD24

on IgD- CD38dim, CD25 on memory B cell, CD25 on unsw mem),

the Treg panel (including CD3 on CD45RA+ CD4+, CD3 on

CD39+ CD8br, CD3 on CD4 Treg, CD3 on resting Treg), the

TBNK panel (including CD8dim NKT AC, CD3 on HLA DR+

T cell, CD16-CD56 on NKT), and the DC panel (including CD62L-

plasmacytoid DC %DC, CD86 on CD62L+ myeloid DC, CD127

on CD45RA- CD4 not Treg) (Supplementary Table S8). Similar

results were observed by using four more methods (Supplementary
FIGURE 2

The forest plot to visualize effects of immune cell on the risk of AIT (IVW method).
FIGURE 3

The forest plot to visualize effects of AIT on immune cells (IVW method).
frontiersin.org

https://doi.org/10.3389/fendo.2024.1424957
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2024.1424957
Figure S2, Supplementary Table S8). Characteristics of significant

SNPs with genome-wide associations for immune cells on HT were

summarized in Supplementary Table S9. Possibilities of horizontal

pleiotropy and heterogeneity were examined accordingly.

Horizontal pleiotropy was suggested in the causal associations of

HT with HLA DR++ monocyte %monocyte (Supplementary Table

S10), and heterogeneity was suggested in HLA DR++ monocyte %

monocyte and Resting Treg %CD4 (Supplementary Table S11).

Reverse causal associations of HT with immune cells were assessed

as well (Supplementary Tables S12, S13). Based on the criteria for

selecting IVs, 11 IVs for HT (as exposure) were preserved for

further analysis. As a result, HT was identified as a protective factor

on HVEM on CD45RA- CD4+ (OR = 0.7067, 95% CI = 0.5626-

0.8877, P = 0.0028) (Supplementary Table S13). No horizontal

pleiotropy or heterogeneity was indicated as revealed by

sensitivity analyses (Supplementary Table S14).

In a comparison of results of the MR analyses using AIT

(FinnGen) and HT (ebi-a-GCST90018855) datasets, two identical

immune cells: HLA DR++ monocyte %monocyte and HVEM on

CD45RA- CD4+ were suggested to be involved in the onset of AIT/

HT. However, as the horizontal pleiotropy, heterogeneity, or reverse

causality was likely involved, neither was subjected to further

mediation analysis. Though not identical, closely related immune

cell traits were independently identified by the two outcome

datasets (Figure 2; Supplementary Figure S2). Specifically by using

the IVW method, in the Treg panel CD28 on CD28+ CD45RA+

CD8br (OR = 1.1846, 95% CI = 1.0287-1.3640, P = 0.0186), and

CD28 on activated Treg (OR = 1.2076, 95% CI = 1.0504-1.3883,

P = 0.0080) were risk factors for AIT, while CD28+ CD45RA+

CD8br %T cell (OR = 1.0049, CI = 1.0002-1.0095, P = 0.0410),

CD28 on activated & secreting Treg (OR = 1.0320, 95%

CI = 1.0035-1.0613, P = 0.0273), and CD28 on resting Treg (OR =

1.0808, 95% CI = 1.0053-1.1621, P =0.0355) were also identified as

risk factors for HT; in the Maturation stages of T cell panel, CD8 on

EM CD8br (OR = 0.8050, 95% CI = 0.6835-0.9480, P = 0.0093) was

a protective factor for AIT, while EM CD8br %CD8br (OR =

0.9710, 95% CI = 0.7010-0.9890, P = 0.0042) was also identified as

a protective factor for HT; in the TBNK panel CD8dim NKT %T

cell (OR = 0.8326, 95% CI = 0.6835-0.9480, P = 0.0369), and

CD8dim NKT %lymphocyte (OR = 0.8533, 95% CI = 0.7332-0.

0.9931, P = 0.0404) were protective factors for AIT, while CD8dim

NKT AC (OR = 0.9314, 95% CI = 0.8858-0.9794, P = 0.0056) was

also identified as a protective factor for HT; in the DC panel CD11c

on CD62L+ myeloid DC (OR = 0.8951, 95% CI = 0.8067-0.9932,
Frontiers in Endocrinology 07
P = 0.0368) was a protective factor for AIT, while CD86 on CD62L+

myeloid DC (OR = 0.9605, 95% CI = 0.9247-0.9979, P = 0.0386) and

was identified as a protective factor for HT; in the B cell panel CD25

on B cell (OR = 1.1775, 95% CI = 1.0364-1.3377, P = 0.0121) was a

risk factor for AIT, while CD25 on transitional B cell (OR = 1.0694,

95% CI = 1.0192-1.1221, P = 0.0062) and was identified as a risk

factor for HT (Figure 2; Supplementary Figure S2).
3.3 Association of metabolites with AIT

Based on the criteria for selecting IVs, a total of 12 to 93

independent IVs were determined to investigate 1400 metabolite

traits. At the significance of 0.01, 10 suggestive metabolites, including

8 metabolites (choline, X-15486, kynurenine, arachidonoylcholine,

vanillic alcohol sulfate, sphingomyelin, 5alpha-androstan-

3alpha,17beta-diol disulfate, glycolithocholate sulfate) with risk

effects and 2 metabolites (carotene diol (3), maleate) with

protective effects, were identified to be significantly associated with

AIT at least in the IVMmethod (Figure 4; Supplementary Figure S3).

In MR validation analysis using the HT dataset, 9 suggestive

metabolites were identified to be significantly associated with HT at

least in the IVM method (Supplementary Figure S4). The estimation

directions of all five methods, IVW, MR-Egger, weighted median,

simple mode, and weighted mode were consistent (Supplementary

Figures S3, S4; Supplementary Tables S15, S19). Characteristics of

significant SNPs with genome-wide associations for metabolites on

AIT or HT were summarized in Supplementary Tables S16, S20. No

heterogeneity (Supplementary Tables S17, S21) or horizontal

pleiotropy (Supplementary Tables S18, S22) was indicated as

revealed by sensitivity analyses.

At the significance of 0.05, an identical metabolite was identified

independently with both AIT and HT datasets: 5alpha-androstan-

3alpha,17beta-diol disulfate was identified as suggestive risk factor

for AIT (OR=1.4167,95% CI = 1.0914-1.8389, P = 0.0089) and HT

(OR=1.0781,95% CI = 1.0065-1.1548, P = 0.0319) (Supplementary

Tables S15, S19). No heterogeneity (Supplementary Tables S17,

S21) or horizontal pleiotropy (Supplementary Tables S18, S22) was

indicated. Besides, a total of 58 suggestive metabolic traits

(including 47 metabolites and 11 metabolic ratios) were identified

to be significantly associated with AIT, at least in the IVM method

(P < 0.05). Enrichment analysis using the identified AIT-associated

metabolites revealed ‘Tryptophan Metabolism’ as the top 1 enriched

metabolic set possibly related to AIT (Supplementary Figure S5).
FIGURE 4

The forest plot to visualize effects of metabolites on AIT (IVW method).
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3.4 Association of immune cells
with metabolites

The above identified AIT-associated immune cells were further

evaluated for their causal effects on the levels of metabolites that

were causally associated with AIT. At the significance of 0.05, 15

suggestive causal associations involving 11 AIT-associated immune

cells and 9 AIT-associated metabolites were identified at least in the

IVM method (Figure 5). Specifically by using the IVW method,

CD38 on IgD+ CD24- was associated with increased

glycolithocholate sulfate levels (OR = 1.0640, 95% CI = 1.0134-

1.1170, P = 0.0126), CD28 on CD28+ CD45RA+ CD8br was

associated with increased 5alpha-androstan-3alpha,17beta-diol

disulfate levels (OR = 1.0467, 95% CI = 1.0100-1.0847,

P = 0.0122), HLA DR+ CD4+ AC was associated with increased

X-15486 levels (OR = 1.0407, 95% CI = 1.0076-1.0749, P = 0.0157),

TD CD4+ %CD4+ was a s s o c i a t ed w i t h de c r e a s ed

arachidonoylcholine levels (OR = 0.9500, 95% CI = 0.9082-0.9937,

P = 0.0255), CD8dim NKT %T cell was associated with decreased

X-15486 levels (OR = 0.9435, 95% CI = 0.9017-0.9873, P = 0.0120),

and CD8 on EM CD8br was associated with decreased levels of

kynurenine (OR = 0.9573, 95% CI = 0.9220-0.9940, P = 0.0229),

5alpha-androstan-3alpha,17beta-diol disulfate (OR = 0.9482, 95%

CI = 0.9073-0.9909, P = 0.0178), and arachidonoylcholine (OR =

0.9589, 95% CI = 0.9237-0.9954, P = 0.0275). Similar results were

observed by using four more methods (Supplementary Figure S6;

Supplementary Table S23). Characteristics of significant SNPs with

genome-wide associations for immune cells on metabolites were

summarized in Supplementary Table S24. No heterogeneity

(Supplementary Table S25) or horizontal ple iotropy

(Supplementary Table S26) was indicated as revealed by

sensitivity analyses.
3.5 Proportion of the association between
immune cells and AIT mediated
by metabolites

In summary, we analyzedmetabolites as a mediator of the pathway

from immune cells to AIT using the IVWmethod as the main analysis

(Figure 6). We found that CD38 on IgD+ CD24- was associated with

increased glycolithocholate sulfate levels, which in turn was associated

with an increased risk of AIT. Glycolithocholate sulfate accounted for
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7.93% of the increased risk of AIT associated with CD38 on IgD+

CD24- (proportion mediated: 7.93%; 95% CI = -13.6%−29.5%). CD28

on CD28+ CD45RA+ CD8br was associated with increased 5alpha-

androstan-3alpha,17beta-diol disulfate levels, which in turn was

associated with an increased risk of AIT. 5alpha-androstan-

3alpha,17beta-diol disulfate accounted for 9.39% of the increased risk

of AIT associated with CD28 on CD28+ CD45RA+ CD8br

(proportion mediated: 9.39%; 95% CI = -44.3%−63%). HLA DR+

CD4+ AC was associated with increased X-15486 levels, which in turn

was associated with an increased risk of AIT. X-15486 accounted for

17.7% of the increased risk of AIT associated with HLADR+CD4+AC

(proportion mediated: 17.7%; 95% CI = -162%−198%). TD CD4+ %

CD4+ was associated with decreased arachidonoylcholine levels, while

arachidonoylcholine was associated with an increased risk of AIT.

Arachidonoylcholinethus accounted for 5.58% of the decreased risk of

AIT associated with TD CD4+ %CD4+ (proportion mediated: 5.58%;

95% CI = 41.2%−-30%). CD8dim NKT %T cell was associated with

decreased X-15486 levels, while X-15486 was associated with an

increased risk of AIT. X-15486 thus accounted for 17.2% of the

decreased risk of AIT associated with CD8dim NKT %T cell

(proportion mediated: 17.2%; 95% CI = 137%−-103%). CD8 on EM

CD8brwas associated with decreased levels of arachidonoylcholine,

kynurenine, and 5alpha-androstan-3alpha,17beta-diol disulfate levels;

all three metabolites was associated with an increased risk of AIT.

Kynurenine accounted for 10.2% of the decreased risk of AIT

associated with CD8 on EM CD8br (proportion mediated: 10.2%;

95% CI = 82.4%−-61.9%); arachidonoylcholine accounted for 9.66% of

the decreased risk of AIT associated with CD8 on EM CD8br

(proportion mediated: 9.66%; 95% CI = 84.9%− -65.6%); and

5alpha-androstan-3alpha,17beta-diol disulfate accounted for8.54% of

the decreased risk of AIT associated with CD8 on EM CD8br

(proportion mediated: 8.54%; 95% CI = 50.4%−-33.4%). Similar

results were observed by using four more methods (Supplementary

Figure S7; Supplementary Table S27). Suggestive heterogeneity (by

Cochran’s Q test) (Supplementary Table S28) and pleiotropy (by MR-

PRESSO) (Supplementary Table S29) was indicated in the association

of HLA DR+ CD4+ AC with AIT, otherwise, detailed information

from the sensitivity analysis proved the robustness of the causal

associations observed in the causal associations. Moreover, scatter

plots (Supplementary Figures S8–S10), funnel plots (Supplementary

Figures S11–S13), and forest plots for MR leave-one-out sensitivity

analysis (Supplementary Figures S14–S16) were also generated to

visualize the overall stability in the results.
FIGURE 5

The forest plot to visualize effects of immune cells on metabolites (IVW method).
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4 Discussion

Based on large publicly available genetic data, we explore causal

associations between 731 immune cell traits and AIT through

potential mediation of 1400 metabolic traits. We identified 27

immune cells and 10 metabolites to be causally associated with AIT

(at least in the IVM method), among which 5 immune cells

(including CD38 on IgD+ CD24-, CD28 on CD28+ CD45RA+

CD8br, HLA DR+ CD4+ AC, TD CD4+ %CD4+, and CD8 on EM

CD8br) were found to affect the onset of AIT partially through the

mediation of metabolites (including glycolithocholate sulfate, 5alpha-

androstan-3alpha,17beta-diol disulfate, arachidonoylcholine, X-

15486, and kynurenine). The results suggest that metabolites were

able to, at least partially, mediate the causal relationship between

immune cells and AIT. To our knowledge, this is the first study that

thoroughly explored potential causal associations among immune

cells, metabolites, and AIT.

We identified that CD28 on CD28+ CD45RA+ CD8br was

associated with increased 5alpha-androstan-3alpha,17beta-diol

disulfate levels, which in turn was associated with an increased

risk of AIT. In addition to CD28 on CD28+ CD45RA+ CD8br,

CD28 on activating Treg was also a risk factor for AIT. Similarly,

CD28+ CD45RA+ CD8br %T cell, CD28 on activated & secreting

Treg, and CD28 on resting Treg were all identified as risk factors in

MR validation using the HT dataset (ebi-a-GCST90018855). This is

consistent with the previous finding that CD28+ CD45RA+ CD8br

was a suggestive risk factor for AIT (24, 39). CD28 is a well-known

key co-stimulatory molecule expressed on T cells, required for T cell

activation. The expression of CD28 on T cells was coincidently

affected by genetic variation in the BACH2 gene region (40). A

single fine-mapped variant (rs72928038[A]) of BACH2 is associated

with increased CD28 expression on CD45RA+ cells and overlapped

with increased risk for AIT (40). Another variant in BACH2

positively associated with the same immune cell traits also

overlapped with increased risk for type 1 diabetes (T1D) and

systemic lupus erythematosus (SLE) (41). These findings link

genetic variations in BACH2 to CD28 regulation, indicating their

synergistic role in directing T cell fate toward inflammatory or

autoimmune status. Furthermore, CD28 has been predicted as a

primary drug target for AIT based on three considerations: its
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expression can be influenced by the cis-acting signal of BACH2

underlying coincident associations; its pharmacological modulation

might reproduce a therapeutic protective effect on AIT; and the

anti-CD28 drug was already developed for SLE (24). On the other

hand, 5alpha-androstan-3alpha,17beta-diol disulfate is a major

androstane sulfate, which was also identified as a risk factor in

the MR validation using the HT dataset. Through constitutive

androstane receptor (CAR), metabolites such as androstane

sulfates possibly participate in the regulation of intestinal mucosal

homeostasis and inflammation (42). This metabolite has also been

suggested to play an important role in the regulation of the

hypothalamo-pituitary–adrenal (HPA) axis (43). The specific

regulatory role of 5alpha-androstan-3alpha,17beta-diol disulfate

in CD28+ Treg and consequentially in their associations with

AIT needs to be further explored.

CD8 on EM CD8br was a protective factor of AIT, and is

associated with decreased levels of kynurenine, arachidonoylcholine,

and 5alpha-androstan-3alpha,17beta-diol disulfate levels; all three

metabolites were associated with increased risk of AIT. Similarly, EM

CD8br %CD8br was also identified as a protective factor in MR

validation using the HT dataset. CD8 on EM CD8br or EM CD8br %

CD8br is an effector memory T-cell (TEM) trait from the panel of

maturation stages of T cell (24). CD8+ T cells of memory phenotype

and function can arise in response to self-peptide and/or in a

lymphopenic environment in response to cytokines that trigger

homeostatic proliferation (“virtual” and “innate” memory) (44). It

has been proposed that TEM are specialized to handle infections arising

within peripheral organs due to their cytotoxicity and ability to localize

to tissues (44). TEM cells likely drive the persistence of autoimmune

diseases because of their ready effector functionality and relative

longevity. As shown in studies of chronic infections, persistent

antigen increases the pool of TEM cells, which might be the case in

autoimmune disease settings with persistence of self-antigens (45). A

higher percentage of TEM was reported in the cerebrospinal fluid (CSF)

lymphocytes of patients with various inflammatory diseases compared

with non-inflammatory controls (46). However, the role of TEM in AIT

was yet studied. Our enrichment analysis using AIT-associated

metabolites also revealed ‘Tryptophan Metabolism’ as a major

enriched metabolic set. Tryptophan (Trp) is an essential amino acid,

which is utilized via the dominant kynurenine pathway (up to 95% of
FIGURE 6

The forest plot to visualize effects of immune cells on AIT through the mediation of metabolites (IVW method).
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Trpmetabolism). Upon immune stimulation, the so called ‘kynurenine

switch’ snaps into action, and most Trp molecules enter

immunocompetent cells and are metabolized therein via the

kynurenine pathway (47). Kynurenine binds to the aryl hydrocarbon

receptor (AHR) in multiple immune cell types, leading to immune

regulation (19, 48). It has been shown that after immune stimulation,

immune cells generate high levels of various intracellular Trp

metabolites (49), which in turn is involved in the induction of the

synthesis of cytoskeletal proteins and regulation of immune cell

motility (50). Indoleamine 2,3-dioxygenase 1 (IDO1), the key

enzyme of kynurenine pathway, is one of the major regulators of the

function of immune cells, controlling the balance between stimulation

and suppression of the immune system at sites of local inflammation

and thus is relevant to a wide range of autoimmune and inflammatory

diseases (19). Significant attention has been paid to the

immunoregulatory role of IDO1 in the most prevalent, organ-

specific autoimmune endocrinopathies such as T1D and AIT (19,

48). It was reported that the serum kynurenine metabolite profile was

dysregulated in young women with AIT and could serve as a new

predictor of AIT risk (19). Numerous studies have been devoted to the

role of metabolites of the kynurenine pathway of Trp metabolism in

immune regulation, as well as to the analysis of the effects of

kynurenine on the activity of immunocompetent cells (48). These

works showed that the disruption of kynurenine metabolism is one of

the key mechanisms of autoimmune provocations (51). Modulation of

the kynurenine pathway reversed the progression of experimental

autoimmune encephalomyelitis (52), indicating a potential

prophylactic and therapeutic effect of the kynurenine pathway on

autoimmune diseases. How kynurenine links the immune cells,

particularly TEM, and AIT merits further investigation.

Choline (a component of the majority of phospholipids in

membranes of mammalian cells), arachidonoylcholine (acylated

derivatives of choline), and sphingomyelin (a dominant

sphingolipid in membranes of mammalian cells) were all risk

factors for AIT revealed by our analysis. Cholines acylated with

unsaturated fatty acids are a recently discovered family of

endogenous lipids (53, 54). These are acylated derivatives of

choline. Arachidonoylcholine, also known as choline

arachidonate, belongs to the class of acylcholine (53, 54). Choline

has been found to affect dry eye syndrome and autoimmune

diseases (55). Choline modulates the function of inflammatory

response of immune cells (56). Impaired choline uptake and

metabolism modulate macrophage IL- 1b and IL-18 production,

and its kinase inhibitors ameliorated acute and chronic models of

IL-1b-dependent inflammation (57). Sphingomyelin is a

prospective metabolic immune checkpoint for natural killer cells

and is important for directing immune responses (58, 59). It is also

known that lipid metabolism has a complex relationship with AIT:

patients with AIT are prone to lipid metabolism disorder, and the

serum thyroid hormone level has a close correlation with blood

lipid metabolism and inflammatory factors (60). Phospholipids

influence the pathogenesis of HT, and fatty acid degradation and

lysine degradation pathways have an impact on different clinical

stages of HT (18). TD CD4+ %CD4+ that features the percentage of

terminally differentiated CD4+ T cells (24) was also found to affect

the onset of AIT partial ly through the mediation of
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arachidonoylcholine in this study. The precise mechanisms by

which arachidonoylcholine and/or choline link the pathway from

immune cells to AIT need more in-depth studies in the future.

In the B cell panel, CD38 on IgD+ CD24- was found to be

associated with increased glycolithocholate sulfate levels, which in

turn was associated with an increased risk of AIT. CD38 on IgD+

CD24- represents plasmablasts that rapidly produced and short-

lived effector cells of the early antibody response, to the contrast of

plasma cells that are long-lived mediators of the lasting humoral

immunity (61). Short-lived plasmablasts can be associated with

disease flares and increased autoantibody levels (62). Plasmablasts

that produce autoantibodies can be pathogenic or regulatory.

Comparing these two types of plasmablasts may help researchers

understand the mechanisms of autoant ibody-re la ted

autoimmunological diseases (62). Plasmablasts might be as

promising a therapeutic target in autoimmune diseases as the

plasma cells (63). Glycolithocholic acid 3-sulfate is a cholic acid

derivative and a metabolite of glycolithocholic acid, which belongs

to secondary bile acids (BAs). Cholic acid and chenodeoxycholic

acid are the primary bile acids formed in humans. The action of

intestinal bacterial flora on primary bile acids results in the

formation of secondary BAs (64). Secondary BAs contribute to

the differentiation of Tregs, thus participating in the regulation of

host immune responses (65). Via the secondary BAs, a pan-

genomic biliary network interaction between hosts and their

bacterial symbionts can control host immunological homeostasis

(65). Evidence also shows that BAs could regulate the differentiation

of Th17 through its surface receptor RORgt (66). There is a growing
consensus that BAs have both pro- and anti-inflammatory actions

through different nuclear and cell surface BA receptors in the

intestine, as well as the liver (67). Whether this biliary network

interaction could participate in the pathogenesis of AIT through its

resulting metabolites raises an interesting question. In addition to

plasmablasts, CD27 on sw mem, representing the immune trait of

switched memory B cells, was also identified as a risk factor of AIT.

It was previously reported that a signal led by rs1883832[T] in the 5’

untranslated region of CD40 increases the expression of CD27 on

memory B cell subsets, which overlaps with increased risk of various

autoimmune diseases such as multiple sclerosis (MS), inflammatory

bowel disease (IBD), Crohn’s disease, and SLE (24).

HLA DR+ CD4+ AC and CD8dim NKT %T cell were both

identified to affect AIT through the same unknown metabolite X-

15486. HLA DR+ CD4+ AC was identified to be a risk factor for

AIT. HLA-DR+ CD4 T cells could be a useful marker for identifying

effector T cells and monitoring immune responses in many

infection and vaccination models (68). HLA-DR is a well-

recognized susceptibility gene associated with AIT (69).

Mechanistically, the presence of an arginine at position 74 elicits

a significant structural change in the peptide binding pocket of

HLA-DR, potentially affecting the binding of pathogenic thyroidal

peptides (69). Future therapeutic interventions may attempt to

block or modulate pathogenic peptide presentation by HLA-DR.

CD8dim NKT %T cell and CD8dim NKT %lymphocyte were both

identified to be associated with decreased risk of AIT; similarly,

CD8dim NKT AC was also a protective factor in MR validation

using the HT dataset. It has been reported that CD8+NKT-like cells
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suppressed T-cell responses through elimination of dendritic cells

in an antigen-specific manner (70). Such antigen-specific

downregulation may provide an active and precise method for

constraining an excessive immune response and avoiding bypass

suppression of necessary immune responses to other antigens (70).

Whether CD8dim NKT or CD8+NKT-like cells act in a similar

manner in AIT requires further investigation.

This study conducted two-sample and mediation MR analyses

based on the published results of large GWAS cohorts, so it has

relatively high statistical efficiency. The conclusions of this study are

based on genetic instrumental variables, and causal inference is

made using a variety of MR analysis methods. Our results are robust

and were not confounded by horizontal pleiotropy and other

factors. Hopefully, our study provides new insights into the

integration of immune cells and metabolites for further

exploration of the biological mechanisms of AIT, and some

guidance for potential therapeutic strategies for AIT.

Nevertheless, there were several limitations in our study. First,

our analysis was performed using the European population,

which limits its prevalence. Second, the numbers of individuals in

the current GAWS datasets of immune cell traits and metabolites

were relatively small and it is hoped that larger GWAS data will be

available for validation in the future. Third, even when multiple

sensitivity analyses are performed, horizontal pleiotropy cannot be

fully assessed. Fourth, due to the lack of individual information, we

cannot conduct further stratified analysis of the population. Fifth,

we used a relatively looser threshold to evaluate the results, which

may increase some false positives while simultaneously enabling a

more comprehensive assessment of the strong association between

the immune or metabolic profiles with AIT. Sixth, some immune

cell traits or metabolites identified in this study have not been fully

elucidated concerning their functions and mechanisms in AIT,

which limits our interpretation of the MR analysis results. Lastly,

although the MR method is effective in evaluating the causal

relationship between exposure factors and outcomes, the results

needs to be further validated based on more experimental and

clinical studies.
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