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Prediction of personalised
postprandial glycaemic response
in type 1 diabetes mellitus
Xin Xiong1†, Yuxin Xue1, Yunying Cai2†, Jianfeng He1*

and Heng Su2*

1Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming, China, 2Department of Endocrinology, The First People’s Hospital of Yunnan Province, The
Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
Objectives: Patients with type 1 diabetes (T1D) face unique challenges in

glycaemic control due to the complexity and uniqueness of the dietary

structure in China, especially in terms of postprandial glycaemic response

(PPGR). This study aimed to establish a personalized model for predicting

PPGR in patients with T1D.

Materials and methods: Data provided by the First People’s Hospital of Yunnan

Province, 13 patients with T1D, were recruited and provided with an intervention

for at least two weeks. All patients were asked to wear a continuous glucose

monitoring (CGM) device under free-living conditions during the study period. To

tackle the challenge of incomplete data from wearable devices for CGM

measurements, the GAIN method was used in this paper to achieve a more

rational interpolation process. In this study, patients’ PPGRs were calculated, and

a LightGBM prediction model was constructed based on a Bayesian

hyperparameter optimisation algorithm and a random search algorithm, which

integrated glucose measurement, insulin dose, dietary nutrient content, blood

measurement and anthropometry as inputs.

Results: The experimental outcomes revealed that the PPGR prediction model

presented in this paper demonstrated superior accuracy (R=0.63) compared to

both the carbohydrate content only model (R=0.14) and the baseline model

emulating the standard of care for insulin administration (R=0.43). In addition, the

interpretation of the model using the SHAP method showed that blood glucose

levels at meals and blood glucose trends 30minutes before meals were the most

important features of the model.

Conclusion: The proposed model offers a heightened precision in predicting

PPGR in patients with T1D, so it can better guide the diet plan and insulin intake

dose of patients with T1D.
KEYWORDS

type 1 diabetes, postprandial glycaemic response, personalized nutrition, continuous
glucose monitors, dietary nutrients
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1423303/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1423303/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1423303/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1423303&domain=pdf&date_stamp=2024-07-09
mailto:jfenghe@kust.edu.cn
mailto:su_hen@hotmail.com
https://doi.org/10.3389/fendo.2024.1423303
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1423303
https://www.frontiersin.org/journals/endocrinology


Xiong et al. 10.3389/fendo.2024.1423303
1 Introduction

Diabetes is a metabolic disorder that causes abnormal

regulation of blood glucose, if not managed properly, it can lead

to short- and long-term health complications and even death (1). At

the present time, there is no cure for diabetes. However, self-

management of the disease, particularly keeping blood glucose

levels within the recommended range, is central to treatment.

This includes actively tracking blood glucose levels, managing

physical activity, diet and insulin intake (2).

The postprandial glycaemic response (PPGR) has a very

important impact on overall glycaemic control and is a difficult

aspect of T1D glycaemic control (3). Optimally dosing insulin at each

meal presents a significant challenge in disease management.

Accurately determining the appropriate insulin dosage is critical for

regulating blood glucose levels and avoiding both hyperglycaemia

and hypoglycaemia (4). In previous studies, researchers have typically

used carbohydrates and insulin doses to predict blood glucose

concentrations. However, the predictive accuracy of these models

varies from person to person (5, 6). In addition to the nutritional

content characteristics of the food consumed, changes in blood

glucose may also arise from preprandial blood glucose, the patient’s

lifestyle, and their clinical data. Mendes et al. (7) tested the efficacy of

a prediction model for personalised postprandial glycaemic response

developed using an Israeli cohort, which took into account

characteristics such as food composition, blood, and lifestyle when

applied to individuals in the Midwestern U.S. The results of the study

demonstrated that the precision prediction method was more

accurate in predicting blood glucose levels than the traditional

method, which relied solely on the energy and carbohydrates in

food. Thus, the most successful strategy for controlling blood glucose

concentrations depends on the characteristics of each individual.

Eating habits are strongly influenced by ethnicity and region. For

example, the Chinese have a very complex diet (8). A large number of

current postprandial glucose predictionmodels for type 1 diabetes are

based on Western dietary structures. Due to the complexity and

uniqueness of the dietary structure, postprandial glycaemic control in

Chinese patients with T1D faces unique challenges.

Therefore, the aim of this study was to construct a personalised

model for predicting PPGR applicable to patients with T1D by

collecting data on insulin dose, nutrient content of diet and

additional clinical indicators from 13 patients with T1D in

Kunming, Yunnan Province, in order to better guide the dietary

plan as well as the dose of insulin intake in patients with T1D.
2 Materials and methods

2.1 Research object

This study used data provided by the First People’s Hospital of

Yunnan Province for the period from September 2023 to January 2024.

Thirteen patients with T1D (10 females and 3 males) were recruited in

Kunming, Yunnan Province, and an intervention lasting at least two

weeks was provided to each patient. Following were the criteria for

inclusion (1): aged 18 years or older. (2) Diagnosed with diabetes for
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more than 1 year. Participation in the study was excluded if the

participant was suffering from active inflammatory, neoplastic disease,

pregnancy or a history of antibiotic use in the three months before

participation in the study, chemotherapy or radiotherapy in the past 2

months, chronic gastrointestinal disease, and chronic anaemia.

During the study period, all participating patients agreed to

wear the SIBIONICS GS1 CGM continuous glucose monitoring

device, which uses a subcutaneous sensor to measure blood glucose

levels at five-minute intervals, under free-living conditions. The

SIBIONICS GS1 Continuous Glucose Monitoring (CGM) System is

a 14-day calibration-free RT-CGM that supports data sharing with

caregivers and seamlessly integrates with the advanced ProView

Remote Access Platform, enabling healthcare providers to monitor

patients remotely. Clinical evaluations and user feedback have

demonstrated excellent accuracy, with the GS1 CGM achieving a

Mean Absolute Relative Difference (MARD) of 8.83%, a key

measure of glucose monitor accuracy (lower MARD values

indicate higher accuracy). In addition, the GS1 CGM has been

tested in a variety of environments, including with over 1,600

hospitals, and has been used by over 600,000 users (9, 10).

Prior to wearing the continuous glucose monitoring device,

medical staff collected comprehensive information from each

patient, including anthropometric measurements (e.g., height,

weight), a set of blood tests, and lifestyle and basic information

questionnaires (gender, age, etc.). Patients were requested to adhere

to their usual daily routines and dietary patterns, reporting their

dietary intake for breakfast, lunch and dinner to physician on a

daily basis in real-time. The weight of each meal was weighed by the

patients themselves and then registered by the physician, and a

mobile app - Sugar Sugar Circle’s food bank of foods was used to

measure carbohydrate, protein and fat content. Sugar Sugar Circle is

a mobile app for blood sugar self-management and peer support for

people with type 1 diabetes. It provides a food bank of up to more

than 300,000 food items, which is very much in line with Chinese

dietary habits, and allows for quick access to nutrient information

for the food you want to find, as well as quick calculation of nutrient

content using a weight scale. The physician must accurately

document the specific nutritional components and timing details

of patients’meals. Reported meal times were rounded to the nearest

5-minute interval. To improve compliance, patients were told that

accurate recording was essential to obtain an accurate analysis of the

PPGR of foods. Insulin was manually infused by the physicians

before the patients’ meals and the exact insulin dose was recorded.

The following filtering measures were applied to all meals

recorded in this study: 1) To mitigate the potential impact of

neighbouring meals and their antecedent insulin dosages, other

meals recorded within 90 minutes were excluded from the analysis.

Many studies have shown that the effects of mealtime insulin on

insulin levels in subjects usually gradually return to basal levels within

approximately 90-120 minutes after eating a meal. For example, the

study by Hayashi et al. (11) details that in the oral glucose tolerance

test (OGTT), insulin concentrations typically peak 30 to 60 minutes

after glucose intake and approach basal levels 90 to 120 minutes after

the meal. Shankar et al. (12) used the Mixed Meal Tolerance Test

(MMTT) to study insulin levels and showed that insulin levels

returned to basal levels within 90 to 120 minutes after a meal.
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Therefore, to ensure that the effect observed was that of a single meal

alone and not the result of multiple meals superimposed on each

other, we chose 90 minutes as a threshold that would allow for a

better separation of the effects of taking insulin between meals. 2)

Incomplete meal records were deleted. 3) Records of meals with a

carbohydrate content of greater than 200 grams were deleted.

According to the recommendations of the Institute of Medicine of

the National Academy of Sciences (13), carbohydrates should

account for 45-65 per cent of total daily calories, so an intake of

200 grams of carbohydrates per meal is considered abnormally high,

and these outliers can have an asymmetric effect on the overall

analysis, leading to distorted results.
2.2 Data pre-processing

Dealing with missing data presents a significant obstacle in

analysing information gathered from wearable devices, frequently

stemming from incorrect or delayed usage. Statistical imputation,

matrix decomposition, and machine learning algorithms are among

the frequently used computational techniques for addressing the

challenge of incomplete data. However, these approaches often fail

to adequately capture the temporal fluctuations inherent in time

series data, leading to occasional interpolation outcomes that may

appear unreasonable (14).

GAIN (Generative Adversarial Imputation Networks) is a

generative adversarial network (GAN) approach for processing

missing data (15).The GAIN framework consists of a generator and

a discriminator. In GAIN, the generator fills the data and the

discriminator distinguishes between real and generated data. The

discriminator aims to minimize classification errors, while the

generator seeks to maximize the discriminator’s error. Consequently,

both networks undergo training through an adversarial process. To

ensure that the adversarial training achieves the desired goal, GAIN

assists the discriminator with a hint mechanism that ensures that the

generator generates samples according to the distribution of the real

data (Figure 1).

Generator: The generator G receives input consisting of a data

matrix, a random matrix, and a mask matrix. The data matrix
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contains known data, but may also have missing values. The

random matrix exclusively contains missing data and is populated

with random values at the missing positions. The mask matrix is

used to mark the positions of the missing values in the data matrix.

Then, the generation process can be represented as follows:

�X = G(~X,M, (1 −M)⊙Z)

where ⊙ represents the multiplication at the element level, �X

represents the output matrix, M represents the mask matrix, ~X

represents the data matrix, and Z represents the random matrix.

This configuration closely resembles a typical GAN, with Z

resembling the noise variables introduced in that structure.

Discriminator: In the GAIN framework, a discriminator D is

introduced to continually counter the generator G. Nevertheless, in

contrast to conventional GANs, the generator’s output comprises

both genuine and spurious elements. The goal of the discriminator

is not to identify the truth of the whole vector, but to identify which

components of the vector are real and which are fake

(i.e. interpolated).

Hint: The hint mechanism is intended to specify the positions of

both the true and generated values, enhancing control over the

direction of interpolation adjustments.

The Mean Absolute Error (MAE) criterion in this paper is

adopted to assess the accuracy of the estimated values in relation to

the actual values:

MAE = min
f o

(i,j)ϵM

x̂ ij − �xij
�� ��

Mk k
2.3 Prediction of postprandial
glycaemic response

In order to measure the effect of the meal on blood glucose, two

metrics (PPGR and Glumax) were calculated in this study (16).

Firstly, according to the method of Zeevi et al. (17), the PPGR

for every meal was computed by integrating meal times using CGM

data and determining the incremental area under the curve (iAUC)
FIGURE 1

Process of missing data imputation using GAIN.
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of the blood glucose curve within a 2-hour postprandial window.

The median of the blood glucose values during the first 30 minutes

of the meal was taken as the initial blood glucose concentration.

This initial concentration will be used as the reference value for

calculating the incremental area under the curve. The final result of

this procedure is the PPGR per meal based on the calculated

incremental area under the curve and the initial blood glucose

concentration:

PPGR =
o
n

i=1

hi
2
· (yi−1 + yi − 2y0)

y0

where n represents the number of time points, hi represents the

time interval between two adjacent time points, yi−1 and yi are the

blood glucose measurements at two adjacent time points, and y0
represents the initial blood glucose concentration.

Second, the variance in blood glucose levels at mealtime and the

maximum blood glucose level within 2 h after the meal (Glumax)

was calculated. This metric was selected due to its reduced

sensitivity to inaccuracies in patients’ logging times:

Glumax = maxni=1 yi − y0

In order to predict these two metrics (PPGR and Glumax), a

LightGBM prediction model based on Bayesian hyperparameter

optimisation algorithm combined with stochastic search algorithm

was constructed in this paper. Model inputs consisted of 38 features

in total, encompassing features such as meal composition and blood

test outcomes, blood glucose measurements and insulin doses. 60%

of the meals were utilized for training the model, while the

remaining 40% were reserved for validation purposes.

The experiment was conducted on a computer with Windows 11

operating system. The simulation platform is Pycharm and is

programmed using Python with sklearn, pandas and numpy libraries.

2.3.1 LightGBM model
The primary concept behind GBDT (Gradient Boosting Decision

Tree) is to iteratively train using a weak classifier (decision tree) to
Frontiers in Endocrinology 04
obtain an optimal model, while LightGBM optimises the traditional

GBDT algorithm as follows (18): histogram algorithm, gradient-

based one-sided gradient sampling (GOSS), exclusive feature

bundling (EFB), and leaf-wise growth strategy with depth constraints.

The basic idea of the histogram algorithm is to first discretise

the continuous floating-point eigenvalues intointegers, and at the

same time construct a histogram with a width of. When traversing

the data, statistics are accumulated in the histogram based on the

discrete values as indexes, when traversing the data once, the

histogram accumulates the required statistics and then traverses

to find the optimal segmentation point based on the discrete values

of the histogram.

The basic idea of GOSS (gradient-based one-side sampling) is to

calculate the gradient of the samples and then keep only the samples

with larger gradient. This reduces the number of trainings samples

and improves the training efficiency while maintaining similar

information. The set of samples for GOSS sampling is N , and the

threshold of gradient is a , then the sampling process is as follows:

N = ij nij j > af g
where ni is the gradient of the sample i.

The basic idea of the EFB (exclusive feature bundling) algorithm

is to reduce the number of features and improve the generalisation

ability of the model by bundling the features and merging the highly

correlated features into one feature group.

The leaf-wise algorithm with depth constraints aims to reduce

the complexity of the model and improve the training efficiency by

controlling the depth of the tree and the number of leaf nodes

(Figure 2). LightGBM firstly divides the dataset into different

histograms according to the range of values of the features. Such

a division can speed up the training process because the histograms

can replace the original data in decision tree learning, reducing

memory and computation. During each tree growth, instead of

splitting based on nodes, the tree is split based on leaf nodes to find

the leaf node with the maximum splitting gain among all current

leaf nodes. Such a leaf splitting strategy reduces the risk of

overfitting and improves model generalisation.
B

A

FIGURE 2

Two kinds of tree growth strategy. (A) Level-wise growth strategy (B) Leaf-wise growth strategy. ..., and so forth.
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In LightGBM, the objective function consists of two parts, one is

a measure of the fit to the training data and the other is a measure of

the model complexity to avoid overfitting. The objective function

can be represented like this:

Obj(k) =o
n

t=1
 l(yt , y

(k)
t ) +o

T

t=1
 W(ft)

¼o
n

t=1
 l(yt , y

(k−1)
t + fk(xt)) +o

T

t=1
 W(ft)

where, k indicates the overall count of iterations, n represents

the quantity of training samples, yt is the true value of the t th

training sample, y(k)t is the predicted value of the t th training

sample, l(yt , y
(k)
t ) is the loss function, fk(xt) is the anticipated impact

of the decision tree to the t th training sample xt in the k th iteration,

and W(ft) is the regularisation term.

In each iteration, the goal of the model is to minimise the

aggregate loss across all training samples by finding a new decision

tree, while also considering the model’s complexity aimed at

mitigating overfitting. When adding a new decision tree, the

model considers a combination of loss functions and

regularisation terms to minimise the loss of training data while

maintaining the model’s ability to fit.

2.3.2 Bayesian hyperparametric
optimisation algorithm

In order to improve the accuracy of the LightGBM prediction

model, in this paper, a Bayesian hyperparameter optimisation

algorithm combined with a stochastic search algorithm is used to

automatically search for the optimal parameter configurations of

the model. Hyperopt is one of the Bayesian optimisation libraries in

Python, which uses an optimisation algorithm called Tree Parzen

Estimation (TPE) (19). The core idea of TPE is to use the

information about the parameter combinations that have been

explored to dynamically adjust the parameter search space for the

next iteration, so that better hyperparameter combinations can be

found within a limited number of iterations. By transforming the

generative process that describes the configuration space X, the TPE

model p(xjy) replaces the distribution of a priori configurations

with non-parametric densities. Each iteration of TPE not only scales

linearly according to the number of samples, but also optimises the

number of dimensions in the parameter space by maintaining the

ordering of the observed variables.

p(xjy) = ‘(x) if  y < y*
g(x) if  y ≥y*

�

where ‘(x) and g(x) denote the observations and the rest of

the observations.

When using Hyperopt for hyperparameter optimisation, a new

approach is used where the data is first randomly sampled. The core

idea of this approach is that since the sample is representative of the

entire population, a sample can be used instead of the entire training

dataset, and then Hyperopt is used to generate the optimal

hyperparameters for LightGBM, an approach that greatly reduces the

execution time required to generate the optimal hyperparameters (20).
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Bayesian hyperparameter optimisation using Hyperopt is

performed by combining a random search algorithm with a set of

hyperparameters randomly selected from the search space to try in

each iteration. By randomly sampling a set of hyperparameters in

the hyperparameter space, their performance is evaluated and then

the best performing set of hyperparameters is selected. This helps to

avoid falling into a local optimal solution, thus enabling a more

global search.

The set of hyperparameters for this study includes the

following: learning_rate is used to control the magnitude of the

update at each step, a smaller learning rate makes the model

converge more slowly but may result in better generalisation

performance; n_estimators specifies the number of weak learners,

i.e. the number of decision trees to be trained; max_depth is the

maximum depth of each tree, which controls the tree’s complexity, a

larger depth may lead to model overfitting; colsample_bytree is the

proportion of features used in each tree, which controls the

proportion of features randomly selected in constructing each tree

and prevents overfitting; min_child_samples is the minimum

number of samples required for each leaf node, which prevents

overfitting; num_leaves is the number of maximum number of leaf

nodes per tree; subsample is the proportion of samples used per

tree, which controls the proportion of samples randomly selected

during training of each tree and prevents overfitting.

2.3.3 LightGBM prediction model based on
Bayesian hyperparameter optimisation algorithm
combined with stochastic search algorithm

In this paper, a Bayesian hyperparameter optimisation

algorithm combined with a stochastic search algorithm is used to

optimise the LightGBM model and develop a model to predict

PPGR in patients with T1D. The specific experimental procedure is

shown in Figure 3.

Taken together, as described in Sections 2.3.2 and 2.3.2, the

LightGBM model combining Bayesian hyperparameter optimisation

algorithm and stochastic search algorithm has the advantages of high

efficiency, adaptive and global optimisation, which can effectively

improve the performance and generalisation of the model, and it can

predict the patients’ PPGRs more efficiently and accurately.
2.4 Feature attributions

To further understand the factors that influence model

predictions, in this study, Shapley Additive exPlanations (SHAP)

is employed to achieve model interpretability (21–23).

Shapley Additive exPlanations (SHAP) is a method for

interpreting machine learning model predictions based on the

concept of Shapley values from cooperative game theory. In

machine learning, the SHAP method provides each feature with

its contribution to the model prediction by applying this concept to

the interaction between features. This method of interpretation not

only provides interpretability for model predictions, but also can

help understand the logic behind the model and the interactions

between features. The ability to correctly interpret the predictive
frontiersin.or
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model outputs is important in providing insights into how to

improve the model, as well as an understanding of the process

being modelled.

SHAP has a wide range of applications for interpreting various

types of machine learning models, including decision trees, neural

networks, and integrated models, etc. SHAP estimates the

contribution of each feature by ranking and combining a subset of

features, and this feature-interaction-based interpretation approach

allows SHAP to reveal the complexity of model predictions and help

users understand the model’s decision-making process. In clinical

applications, these interpretations provide important information to

guide doctor-patient discussions when the model categorises patients

as being at high risk of certain adverse outcomes (24). Therefore, the

SHAP method is important in interpreting machine learning models

and has been widely used and recognized in practical applications.

In this paper, SHAP was used to interpret the PPGR prediction

model in order to reveal important features affecting postprandial

glucose elevation in patients with T1D, with the aim of providing

more tailored guidance to healthcare professionals to help patients

with T1D to improve their lifestyle habits and optimize the dose of

insulin intake.
3 Experiments and results

3.1 Study population

A total of 13 patients with T1D (10 females and 3 males) were

recruited into this study between September 2023 and January 2024,

and a total of 867 meals were recorded during the study period, with

a final sample of 826 usable meals selected for modelling. Of these,

the mean age was 3810 years (median 35 years, interquartile range

[IQR] 32-46 years), the mean BMI was 212.1 kg/m2 (median 21.3

years, interquartile range [IQR] 20-22 kg/m2), and the mean HbA1c

level was 8.08%2.26% (see Table 1 for an analysis of all the blood

test results).
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In order to be able to visualize the patients’ dietary habits more

closely, the distribution of macronutrient intake in total energy

intake was analysed in this study (Figure 4). The average

carbohydrate, fat and protein consumption was 53.611.5g,

19.15.9g and 20.74.4g, respectively.
3.2 GAIN processing results

In this paper, the GAIN algorithm was applied to the processing

of missing values in patients’ continuous glucose data (CGM). In

order to validate the effectiveness of the GAIN model used to

process missing data, in this study, all instances of missing data in

the original dataset were removed to obtain a intact validation set.

For the validation set, ten percent of the data were randomly chosen

to serve as missing values. The MAE between the generated

interpolated values and the true dataset values was employed as

the metric. In this paper we compared the results of three data

interpolation methods for the blood sugar data processing,

including GAIN, K-Nearest Neighbour (KNN) interpolation and

Linear interpolation.

The experimental results demonstrate that the GAIN model

achieved the optimal imputation performance for CGM data, with a

mean absolute error (MAE) of 16.11 mg/dL, significantly lower than

the KNN interpolation algorithm’s 20.16 mg/dL and the linear

interpolation algorithm’s 19.8 mg/dL. This indicates that the GAIN

model outperforms the other two traditional methods in imputing

time-series blood glucose data.
3.3 Predicting the glycaemic response to a
realistic diet

In this paper, a LightGBM prediction model was constructed

based on a Bayesian hyperparameter optimization algorithm

combined with a stochastic search algorithm. Additionally, the
FIGURE 3

Experiment flow chart.
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ability of the model to predict PPGR and Glumax was assessed by

calculating the Pearson correlation coefficients between the

predicted and observed values:

p =
cov(X, �X)
sXs�X

where �X represents the actual observed values, �X represents the

predicted values, cov(X, �X) is the covariance of X and �X, and sx and

s�x are the standard deviations of X and �X, respectively.

In order to validate the accuracy rate of the model, compared to

other models using only carbohydrates as well as insulin dose to

predict PPGR, in this study, a LightGBM prediction model that

included the following three Bayesian hyperparametric optimisation

algorithms combined with stochastic search algorithms was

constructed: 1) a model based on carbohydrate content only: only

one feature of carbohydrates in the food was used as an input. 2) An

insulin administration baseline model: carbohydrate content, pre-

meal insulin dose, and blood glucose level at the time of the meal were

used as input features. 3) A full model: incorporating as inputs all of

the information gathered from the patients over the duration of the

study, encompassing features such as meal composition and blood

test outcomes, blood glucose measurements, and insulin dosage (for

features included in the model see Table 2).

In the prediction of PPGR, the model relying solely on

carbohydrate content demonstrates a relatively low correlation
Frontiers in Endocrinology 07
(R=0.14, Figure 5A) of its predictions with observed PPGRs and

explains only about 2% of the variance in glycaemic response. The

insulin administration baseline model performs better (Figure 5B),

with a correlation of its predictions with the observed PPGRs is 0.43

(R=0.43, P<10-10) and explains 15% of the variance in glycaemic

response. The full model integrating glucose measurements, insulin

dose, meal content, and blood characteristics achieves a significantly

higher correlation (R=0.63, P<10-10) and the explained variance

increases to 39% (Figure 5C).

After parameter optimisation of the LightGBM model using a

Bayesian optimisation algorithm combined with a stochastic search

algorithm, the optimal hyperparameter settings for the complete

model are obtained as follows: learning_rate is 0.009, n_estimators

is 345, max_depth is 5, colsample_bytree is 0.75, min_

child_samples is 2, num_leaves is 36, and subsample is 0.69.

Similarly, for Glumax predictions, the model relying solely on

carbohydrate content has a correlation that is relatively low

(R=0.15) (Figure 5D), the baseline model performs better

(R=0.38, P<10-10) (Figure 5E), and the full model has a

significantly higher correlation (R=0.58, P<10-10) (Figure 5F).
3.4 Characteristic attribution results

In order to clearly observe the relationship between the various

parameters, a heat map was used. The heatmap provided a clearer

visualisation of the linear relationship between the various features

and PPGRs (Figure 6). From the heat map, it can be seen that the

correlation coefficients of ALT, AST and TSH with PPGR seem to

be close to 0, i.e., there is almost no linear relationship, whereas 4

hour base amount, and high dose of insulin have a strong positive

correlation with blood glucose level at meal time.

To further understand the factors affecting the model

predictions, Shapley Additive exPlanations (SHAP) was used in
FIGURE 4

Distribution of the mean daily macronutrient proportions derived
from the total energy intake of participants in the cohort (each
participant represented by a single point).
TABLE 1 Blood test results.

Blood test result Mean
Standard
Deviation

HbA1c (%) 8.08 2.26

Creatinine (umol/l) 60.53 12.64

Sodium (mmol/l) 137.33 0.55

Potassium (mmol/l) 4.19 0.24

Serum chloride (mmol/l) 105.57 1.52

Calcium (mmol/l) 2.27 0.08

Total bilirubin (umol/l) 12.71 3.16

Uric acid (umol/l) 296.31 56.32

ALT (u/l) 16.86 6.55

AST (u/l) 19.03 5.74

ALP (u/l) 74.16 21.05

Total protein(g/l) 71.12 6.54

ALB (g/l) 43.05 2.57

Cholesterol (mmol/L) 9.11 10.79

Triglycerides (mmol/L) 1.05 0.54

HDL (mmol/L) 1.55 0.31

LDL (mmol/L) 2.74 1.24

TSH (mIU/L) 3.69 1.89

Fasting C peptide levels
(nmol/L)

0.02 0.02
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this paper to achieve model interpretability. The results of using

SHAP to assess feature importance are shown in Figure 7. The

illustration portrays the influence of the top 20 most substantial

features (arranged in descending order from top to bottom) on

predicting PPGR for a particular data point within the test set. Each

feature’s effect on the prediction (SHAP value) is displayed on the

scale. The distance from zero (indicated by a gray vertical line)

indicates the magnitude of the feature’s influence on the model. The
Frontiers in Endocrinology 08
colours represent the feature’s value at each point, spanning from

below-average (blue) through average (purple) to above average

(red). For the most important feature blood glucose level at meals, it

is clear that lower blood glucose levels at meals lead to significantly

lower PPGR values.

It follows that the model’s most impactful features with the

highest mean absolute SHAP values include blood glucose level at

meal time, blood glucose trend 30 minutes before the meal, gender,

serum chloride, blood glucose trend 120 minutes before the meal,

carbohydrate-to-protein ratio, protein content, calorie content,

carbohydrate content, and fat content (Figure 7).
4 Discussions

In this paper, a personalised postprandial glycaemic response

prediction model for patients with T1D is proposed, using

LightGBM based on a Bayesian hyperparametric optimisation

algorithm combined with a stochastic search algorithm. The input

features of the model include features such as meal composition and

blood test outcomes, glycaemic measurements and insulin dose.

Postprandial glycaemic response (PPGR) is an important

indicator of the effectiveness of glycaemic control and glucose

metabolism in all types of diabetic patients. Clinical trials have

shown the importance of keeping postprandial glucose within the

normal range (25, 26). In recent years, the increased use of

continuous glucose monitors (CGMs) among diabetic patients

(27) has radically improved the application of predicting

postprandial glucose responses. However, modelling different

individuals remains a challenge. For example, Kezhi Li et al. (28)
TABLE 2 Features included in the model.

Category Features

Meal content Calorie, proteins, fats, carbohydrates, carbohydrate/fat ratio,
carbohydrate/proteins ratio

Blood
tests results

HbA1c,creatinine,sodium,potassium,serum chloride,calcium,
total bilirubin,uric acid,alanine transaminase(ALT),aspartate
transaminase(AST),total protein,alkaline phosphatase(ALP),
cholesterol,triglycerides,HDL,LDL,thyrotropin,fasting C-
peptide levels,glucose),alkaline phosphatase(ALP),total
protein,albumin,cholesterol,triglycerides,HDL,LDL,

thyrotropin,fasting C-peptide levels,glucose

Anthropometric
measurements

Weight, height, waist and hips circumference, BMI

Survey-
derived features

Age, gender

CGM-
derived features

Glucose value at meal initiation,glucose
trends calculated by subtraction of glucose value at meal

initiation from
The glucose values at 30, 60 and 120 minutes before the

commencement of the meal.

Insulin High dose of insulin before meal,4 hours basal insulin
B C

D E F

A

FIGURE 5

Various model predictions of PPGR and Glumax. 1) Models for Predicting PPGR: Model (A) based solely on postprandial carbohydrate content,
Baseline model simulating insulin administration (B), and Model (C) utilizing all features. 2) Models for Predicting Glumax: Model (A) based solely on
postprandial carbohydrate content, Baseline model simulating insulin administration (B), and Model (C) utilizing all features.
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utilized GluNet, a personalized deep neural network framework, to

predict the short-term (30-60 minutes) probability distribution of

future CGM values in T1D subjects using historical data, including

glucose measurements, dietary information, insulin dosage, and

other factors. In 2017, KOREM et al. (29) conducted a randomised

crossover trial in which 20 healthy subjects consumed two types of

bread to compare their PPGRs and other clinical metrics. After

careful examination of individual responses, it was found that there

were significant differences in PPGRs between individuals after

bread consumption. Models that incorporate individual-specific

factors have been shown to be more effective in predicting an

individual’s PPGR than traditional methods. These personalised

models rely on key variables, including anthropometric

measurements, dietary intake, etc., to accurately predict PPGR.

There are also several studies of PPGR prediction models that

include CGM-related characteristics, gut microbiome characteristics

of individuals, anthropometrics, and dietary macronutrients, as

shown in Table 3.
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In the above study, Shilo et al. (16) developed a model for

predicting PPGR in patients with T1D using a cohort of Israeli T1D

patients and the inputs to the model also included microbiome

profiles. Pustozerov et al. (30) used data from patients with

gestational diabetes to construct a PPGR model. Whereas Zeevi

et al. (17), Mendes-Soares et al. (31) and Tily et al. (32) all used

healthy cohorts. Thus, the generally higher correlation between

PPGRs obtained from CGM extracted from healthy individuals and

PPGRs obtained from blood tests also suggests that predicting

glycaemic response to diet is more challenging in patients with

T1D than in healthy individuals, as patients with T1D have higher

glycaemic variability.

These studies are all based on Western dietary structures,

however, Chinese dietary habits are very complex, so more

accurate postprandial glycaemic response (PPGR) prediction

models are needed to guide postprandial glycaemic control in

Chinese patients with T1D. In this paper, data from 13 patients

with T1D in Kunming City, Yunnan Province are collected,
FIGURE 6

Correlation of clinical parameters (red for positive correlation, blue for negative correlation).
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provided by the First People’s Hospital of Yunnan Province, and we

developed a personalised PPGR prediction model for patients with

T1D, using LightGBM based on Bayesian hyperparameter

optimisation algorithm combined with a stochastic search

algorithm to construct the model. The input features of the model

include features such as meal composition and blood test outcomes,

blood glucose measurements and insulin doses. The experimental
Frontiers in Endocrinology 10
results show that the correlation (R=0.63) between the predictions

of the model in this paper and the observed PPGR is better than that

of the Shilo et al. (16) ‘s model (R=0.59), and that the model

developed here does not necessitate microbiome data as input,

enhancing its accessibility for clinical application. In the prediction

of both PPGR and Glumax, the proposed model also significantly

outperforms the traditional model relying solely on carbohydrate

content in food and the baseline model simulating the current

standard of care for insulin administration.

In addition, although the advent of continuous glucose

monitors (CGMs) in recent years has significantly enhanced the

application of CGMs in glucose prediction by providing a large

amount of time-series data through real-time monitoring of blood

glucose levels, incomplete monitoring data may occur due to factors

such as inappropriate or untimely wearing patterns and sensor

malfunctions. These missing data may affect the accuracy and

stability of the prediction model. In this study, in order to fill the

missing values in the blood glucose data more rationally, the GAIN

algorithm was used, which has a great advantage in capturing the

temporal variations of time series data. And from the results of the

study, GAIN does have higher accuracy than traditional methods in

the processing of blood glucose data.

In this study, it reveals the drivers of postprandial glucose

elevation in patients with T1D by analysing the factors

influencing the prediction model using SHAP. From the results of
FIGURE 7

Interpretation of the prediction model.
TABLE 3 Summary statistics from previous studies (correlation
coefficient R).

Reference Statistics R Cohort

Shilo et al., 2022 (16) R=0.59, Full model A cohort of Type 1
diabetes patients
from Israel

Pustozerov et al.,
2020 (30)

R=0.53, Full model A cohort of patients
with gestational diabetes

Zeevi et al., 2015 (17) R=0.7, Full model A cohort of non-
diabetic adults
from Israel

Mendes-Soares et al.,
2019b (31)

R=0.62, Full model A non-diabetic cohort
from the Midwest

Tily et al., 2022 (32) R=0.77, Full model The U.S. Health Cohort,
of which 73 per cent
were Caucasian
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the study, the most influential features include blood glucose levels

at the time of the meal, blood glucose trends 30 minutes before the

meal, and carbohydrate to protein ratio. These results show that

features related to CGM data have the greatest impact on the model,

for example, the blood glucose level at mealtime, the blood glucose

trend 30 minutes before meal and other features rank highly,

followed by features related to dietary nutrient content. In this

cohort, the lower the blood glucose level at mealtime and the lower

the carbohydrate intake, the better the blood glucose control. These

results are in good agreement with the results reported in the study

by Shilo et al. (16).

Gender is also an important influencing factor in this study. In

2019, González-Rodrıǵuez et al. (33) have demonstrated that the

effects of dietary nutrients on postprandial glycaemic responses

were different in women compared to men in a non-diabetic

population. From the results in this study, it appears that gender

characteristics also have an effect on postprandial glycaemic

response in patients with T1D, but this conclusion may also be

affected by the small sample size of the data and the uneven ratio of

male to female patients.

In this study there has several limitations. Firstly, inaccuracies

in patient self-reporting of dietary intake may affect the ability to

predict postprandial glycaemic response. Secondly, because

accurate dietary intake data are difficult to collect, the sample size

of data in this paper is small and not representative of a broader

population, and better predictions could have been obtained with

more high-quality clinical data to train the model. Finally, although

the PPGR prediction model proposed in this paper has a high level

of accuracy, there is still potential for enhancement. For example,

the inclusion of microbiome data and a detailed assessment of

physical activity does increase costs, but may also improve the

accuracy of the predictions.
5 Conclusions

In this study, a personalised PPGR prediction model for patients

with T1D is proposed. For the model, glucose measurements, insulin

dose, dietary content, blood measurements, and anthropometrics are

integrated, and it is substantially superior to traditional models that

rely solely on the amount of carbohydrates in food and baseline

models that simulate the current standard of care for insulin

administration. The proposed model could accurately predict

postprandial glycaemic response in patients with T1D, and it

maybe better guide patient dietary planning as well as insulin

intake dosage. Furthermore, the proposed model can be further

implemented within closed-loop systems, personalized decision

support systems, and alert systems to mitigate anticipated

hyperglycaemic and hypoglycaemic events in patients with Type 1

Diabetes (T1D). Additionally, the model can tailor dietary nutritional

plans for T1D patients based on anticipated hypoglycaemic

responses. In summary, the model represents a meaningful step

forward in improving postprandial glycaemic control in T1D

patients, providing direction for future research and development

in personalized diabetes care.
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