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Hypertension affects one-third of the adult population worldwide, with primary

aldosteronism (PA) accounting for at least 5-10% of these cases. The aldosterone

synthase enzyme (CYP11B2) plays a pivotal role in PA manifestation, as increased

expression of CYP11B2 leads to excess aldosterone synthesis. Physiological

expression of CYP11B2 in humans is normally limited to cells of the adrenal

zona glomerulosa under tight homeostatic regulation. In PA, however, there are

CYP11B2-positive lesions in the adrenal cortex that autonomously secrete

aldosterone, highlighting the dysregulation of adrenal cortex zonation and

function as a key aspect of PA pathogenesis. Thus, this review aims to

summarize the development of the adrenal glands, the key regulators of

adrenal cortex homeostasis, and the dysregulation of this homeostasis. It also

discusses the development of CYP11B2 inhibitors for therapeutic use in patients

with hypertension, as well as the current knowledge of the effects of CYP11B2

inhibition on adrenal cortex homeostasis and cell fate. Understanding the control

of adrenal cell fate may offer valuable insights into both the pathogenesis of PA

and the development of alternative treatment approaches for PA.
KEYWORDS

primary aldosteronism, CYP11B2, aldosterone synthesis inhibition, adrenal cell fate,
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1 Introduction

Hypertension is a chronic yet common medical condition that affects one in three

adults aged 30 to 79 worldwide (1). Endocrine hypertension accounts for at least 10% of

hypertension cases (2). Primary aldosteronism (PA), characterized by excess aldosterone

production by the adrenal glands, is one of the common causes of endocrine hypertension.

Frequently, the underlying causes of PA include aldosterone-producing adenomas (APA)
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1423027/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1423027/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1423027/full
https://orcid.org/0000-0001-8409-1082
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1423027&domain=pdf&date_stamp=2024-08-07
mailto:elena.azizan@ukm.edu.my
https://doi.org/10.3389/fendo.2024.1423027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1423027
https://www.frontiersin.org/journals/endocrinology


Aminuddin et al. 10.3389/fendo.2024.1423027
and idiopathic hyperaldosteronism (IHA) (3). Aldosterone is

normally physiologically synthesized in the zona glomerulosa

(ZG) cells of the adrenal cortex. As the rate-limiting enzyme that

catalyzes the final steps of aldosterone biosynthesis, aldosterone

synthase (CYP11B2), is selectively expressed in the ZG (4).

However, in APA and IHA, increased expression and activation

of CYP11B2 are commonly observed (5).

Owing to the critical role of CYP11B2 in PA manifestation,

research on inhibiting CYP11B2 to suppress aldosterone synthesis

has gained much attention (6). In the past few years, several

selective CYP11B2 inhibitor drugs have been investigated in

clinical trials for treatment of PA (ClinicalTrials.gov). These drugs

effectively decreased aldosterone levels without affecting the activity

of its closely homologous enzyme, 11b-hydroxylase (CYP11B1),

which synthesizes cortisol, a vital hormone for regulating body’s

stress responses (7–10).

Despite the anticipated positive treatment outcomes of

CYP11B2 inhibitors, the effect of inhibiting CYP11B2 on adrenal

cell fate is still understudied. Cell fate determination involving

centripetal migration and cell differentiation are crucial for

zonation and remodeling of ZG, zona fasciculata (ZF) and zona

reticularis (ZR) of the adrenal cortex, thus contributing to the

proper function of the adrenal glands (11). Could the suppression of

CYP11B2, for example, facilitate the differentiation of ZG cells into

ZF cells? Or perhaps could the inhibition of CYP11B2 expression

lead to the apoptosis of ZG cells? Understanding the potential

consequences or compensatory modulations of the steroidogenesis

activity and the remodeling or structural changes of the adrenal

cortex is thus of profound importance to corroborate the use of

these treatments for PA or hypertension in general.

Primarily focusing on the human system, this review will briefly

describe an overview of the adrenal glands development and the key

regulators involved in adrenal cortex maintenance to provide a clear

understanding of the developmental and lineage progression of cells

in the adrenal glands. We further highlight the dysregulation in the

cellular turnover or homeostasis of the adrenal cortex that may

contribute to the onset of PA and endocrine-related hypertension.

Additionally, we discuss the development of therapeutic agents that

target CYP11B2 directly, considering the role of this enzyme in the

pathology of PA. Drawing from both pre-clinical and clinical

studies, we delve into the observed effects of CYP11B2 inhibition

on the homeostasis and cellular turnover within the adrenal cortex,

which seems to significantly influence adrenocortical zonation and

function. We suggest that the mechanisms governing adrenal cell

fate may offer valuable insights into both the pathogenesis of PA

and the development of alternative treatment approaches for PA.
2 Overview of the development of the
human adrenal glands

Located at the superior poles of each kidney, the human adult

adrenal glands are endocrine glands consisting of two major parts: the

adrenal cortex and the adrenal medulla. Each part can be distinctly

differentiated by its specific histological structures and biological
Frontiers in Endocrinology 02
functions (12). The adrenal cortex is the outer layer of the adrenal

glands composed of the ZG, ZF, and ZR. Respectively, each zone is

responsible for producing steroid hormones, namely

mineralocorticoids, glucocorticoids, and androgenic sex hormones

(13). Aldosterone is the main mineralocorticoid produced by the ZG,

which is involved in controlling normal electrolyte balance and blood

pressure (4). The principal glucocorticoid produced by the ZF is cortisol

– a hormone essential for normal metabolic functions and immune

responses (14). The ZR, the innermost layer of the adrenal cortex,

produces small amounts of sex hormones, specifically

dehydroepiandrosterone and androstenedione, which are involved in

androgenic activity (15). On the other hand, the adrenal medulla,

located at the center of the glands, is responsible for releasing adrenaline

and noradrenaline for the fight-or-flight response to various stress

factors (16). Prior to evolving into functional adult adrenal glands, the

human adrenal glands undergo two crucial stages of development and

remodeling – the embryonic and post-natal stages (17, 18).

The embryological origins of mammalian adrenal glands

include: 1) the neural crest cells, which give rise to the

progenitors of chromaffin cells in the adrenal medulla (16), and

2) the celomic epithelium in the urogenital ridge, which forms the

progenitors of the adrenal cortex called the adrenogonadal

primordium (AGP) (19). During early gestation, there is a

marked increase in expression of steroidogenic factor 1 (Sf-1;

nuclear receptor subfamily 5 group A member 1 (NR5A1)), a key

regulator for adrenal development and steroidogenesis, in a subset

of AGP, leading to the formation of the adrenal fetal zone (FZ) (20).

The developing adrenal glands emerge as neural crest cells penetrate

the FZ, forming the adrenal medulla at the center of the developing

organ (21). Subsequently, mesenchymal cells envelop the

developing organ, resulting in the formation of the adrenal

capsule (22). The FZ then starts to enlarge, and successively, the

adrenal definitive zone (DZ) appears between the adrenal capsule

and the FZ (23). The development of the DZ is proposed to be

regulated by: 1) NR5A1; 2) the fetal adrenal-specific enhancer

(FAdE), the repressor of NR5A1; and 3) the glioma-associated

oncogene homolog 1 (Gli1), the activator of hedgehog pathway (20,

23). Later in pregnancy, the DZ expands in size in the fetal adrenal

and starts to produce cortisol, marking the development of the ZF

of the fetal adrenal cortex.

The maturation of the adrenal cortex begins immediately after

birth, whereby the cells within the adrenal FZ start to undergo

apoptosis, and the adrenal DZ differentiates into two distinct zones,

the ZG and the ZF, under the stimulation of angiotensin II (AngII)

and adrenocorticotropic hormone (ACTH) (24). During puberty,

the adrenal glands undergo a process called adrenarche,

characterized by the increased proliferation of cells that produce

adrenal androgens between the ZF and medulla layers. This cell

layer makes up the ZR of the adrenal glands, completing the

maturation of the adrenal cortex (20, 25).
3 Mature adrenal cortex homeostasis

Following the maturation of the adrenal glands, the homeostasis

of the adrenal cortex is constantly maintained throughout life in
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response to physiological demands or hormonal feedback

regulation for steroid biosynthesis (Figure 1) (17, 23, 25–38). As

early as 1883, the ‘Standard Model’ of homeostasis for the mature

adrenal cortex was described as the centripetal migration model of

adrenocytes (39). According to this model, adrenal cortex cells

derive from adrenocortical stem/progenitor cells in the capsule or

subcapsular region of the outer layer of the glands and further

migrate centripetally while changing their phenotypes from the ZG,

to the ZF and the ZR successively. The cells then undergo apoptosis

at the boundary layer between the ZR and the adrenal medulla (26,

39). Until now, this model is yet to be challenged, and lineage

tracing studies, along with recent trajectory analyses from single-

cell transcriptomic studies, continue to support the model of

centripetal migration for the maintenance of homeostasis and

tissue renewal of the mature adrenal cortex (40–42).

Aside from its role as the key regulator and stimulator of

mineralocorticoid secretion, the renin-angiotensin-aldosterone

system (RAAS) also directly controls the proliferation of adrenal

cortical cells. Physiologically, in response to low blood pressure and

volume, activation of the RAAS leads to the secretion of a critical

effector, AngII. The binding of AngII to the AngII receptor type 1

(AT1) activates Gq signaling, which further initiates the

steroidogenic pathway for CYP11B2 biosynthesis in the ZG for

aldosterone production (22–25). An in vivo study by McEwan et al.
Frontiers in Endocrinology 03
(1996) demonstrated that AngII induction, as well as low sodium

intake, resulted in increased uptake of bromodeoxyuridine (BrdU),

a marker of cell proliferation, and hypertrophy of the ZG and ZR,

indicating proliferation of adrenal cortical cells (43).

Both cellular environment stimulation and the interaction

between activated regulatory proteins among cells of different

phenotypes and functions within the adrenal cortex play a crucial

role in maintaining the fate or homeostasis of the adrenal cells. A

crucial mediator that regulates both the development of the fetal

adrenal glands and homeostasis of the adult adrenal cortex is

canonical Wnt signaling. The Wnt family member 4 (Wnt4) is a

well-known component involved in the activation of canonical Wnt

signaling in adrenocortical cells (36). Canonical Wnt signaling

activity is highly specific within the ZG, either maintaining the

pool of adrenocortical progenitor cells or promoting the

differentiation of these progenitor cells into functional

steroidogenic CYP11B2-expressing cells upon AngII stimulation

(17, 23, 25, 26, 28, 30). Suppression of canonical Wnt signaling leads

to the inhibition of ZG zonation and functional control, allowing

for the differentiation of ZG into ZF lineage (28, 29, 36, 37). A study

by Drelon and colleagues demonstrated that upon stimulation by

ACTH, the activation of cyclic adenosine monophosphate (cAMP)/

protein kinase A (PKA)/cAMP response element-binding protein

(CREB) signaling pathway results in the inhibition of Wnt/b-
FIGURE 1

Current understanding of mature adrenal cortex regulation. (1) When in demand, capsular Rspo3 is released and binds to its receptor, leucine-rich
repeat-containing G protein-coupled receptor 5 (Lgr5), located within the cells of the adjacent steroidogenic ZG zone, the CYP11B2-negative/Sonic
hedgehog protein (Shh)-expressing progenitor cells of the ZG. Simultaneously, Rspo3 binds to the Znrf3 and promotes its ubiquitin-mediated
degradation, thereby inhibiting the turnover of the Wnt4 receptor, Frizzled (FZD). (2) This inhibition allows Wnt4 to bind to FZD, promoting further
recruitment of Dishevelled. Consequently, b-catenin is accumulated due to the inactivation of the destruction complex comprising adenomatous
polyposis coli (APC), AXIN, casein kinase 1 (CK1) and glycogen synthase kinase 3 protein (GSK3 protein). (3) Along with the stimulation by AngII, further
nucleus translocation and interaction of b-catenin with transcription factors, including T-cell factor/lymphoid enhancer factor 1 (Tcf/Lef1), lead to the
expression of genes essential for adrenal cortex zonation and function, especially CYP11B2, initiating ZG differentiation. (4) Wnt signaling activation also
further promotes Shh activation. (5) In turn, Shh interacts with Patched (Ptch) and Smoothened (Smo) to activate Gli1-mediated gene transcription in
Gli1-positive capsular cells, facilitating their cellular proliferation or recruitment into the steroidogenic lineage. (6) Meanwhile, upon ACTH stimulation
through melanocortin 2 receptor (MC2R), the cAMP/PKA/CREB signaling pathway is activated. This activation (7) suppresses canonical Wnt signaling,
inhibiting ZG zonation and function, and (8) promotes the transcription of genes that drives the differentiation of ZG into ZF lineage. Created with
BioRender.com.
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catenin activation through the repression of Wnt4 and promotes

lineage conversion towards ZF differentiation (36). Another study

demonstrated that mice with Wnt4 deficiency exhibit disorganized

ZG and aldosterone suppression (44). Concurringly, the

transmembrane E3 ubiquitin ligase, zinc and ring finger (Znrf3),

which antagonizes Wnt/b-catenin signaling, also impact adrenal

cortex homeostasis (38). Loss of Znrf3 expression in a mouse model

was found to promote the expansion of ZF (35).

Another crucial mediator involves the interplay between

adrenal capsule cells and adrenocortical cells. R-spondin 3

(Rspo3), expressed in the Gli1-positive adrenal capsule cells, has

been demonstrated to be an important component to ensure the

replenishment of damaged and lost cells for maintenance of adrenal

zonation throughout life (17, 27, 30). Deletion of Rspo3 in mice

results in a complete reversal of the anticipated activation of the cell

recruitment process, leading to impaired adrenal cortex zonation

(27). These findings could possibly explain the observed reduction

in adrenal cellular number when induced with Rspo3 or when Lgr5

was knocked down (45). The reduced cell number might result from

the absence of crosstalk signaling between capsular cells and

progenitor cells, leading to a lack of cell turnover.
4 Dysregulation in the homeostasis of
adrenal cortex

Dysregulation in the adrenal cortex homeostasis can disrupt the

control of adrenal glands function, leading to the manifestation of

pathological conditions such as Conn’s syndrome, Cushing

syndrome, and virilization (37). To illustrate, adrenal hyperplasia

or enlargement of the adrenal cortex, as seen in aldosterone-

producing diffuse hyperplasia (APDH) and congenital adrenal

hyperplasia, results in excessive aldosterone, cortisol and/or

adrenal androgens production (46). APDH, along with other

characterized CYP11B2-positive adrenal cortical lesions including

carcinoma, adenoma, nodules, micronodules, are the underlying

causes of PA (46, 47). In general, these lesions are characterized by

the abnormal growth of aldosterone-producing adrenal cortical

cells, also known as CYP11B2-positive adrenal cortical neoplasm.

They are mostly benign neoplasms excluding the malignant

aldosterone-producing adrenal cortical carcinoma (48).

In most cases, the development of the CYP11B2-positive

adrenal cortical neoplasm is attributed to somatic mutations in

common aldosterone-driver genes, namely KCNJ5, CACNA1D,

CTNNB1, ATP1A1, and ATP2B3 (49–54). In general (except for

CTNNB1), these mutations affect the regulation of intracellular

calcium concentration, leading to the activation of the CYP11B2

biosynthesis and eventually aldosterone production. For example,

gain of function mutations in CACNA1D produce aberrant L-type

voltage-gated calcium channels, Cav1.3, leading to increased

calcium entry due to the mutated channel being activated at

much lower potential thresholds of membrane depolarization (49,

50). Similarly, increased intracellular calcium levels also can be
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caused by the mutated P-type ATPases pumps, Na+/K+ ATPase a
subunit and Ca2+ ATPase, which respectively arise from ATP1A1

and ATP2B3 mutations. These mutated ATPases promote elevated

sodium and calcium permeability, further leading to membrane

depolarization and calcium channel opening (49–51). Whereas,

mutations in KCNJ5, which encodes for the G-protein-activated

inward rectifier K+ channel 4 (GIRK4), result in an unselective

potassium Kir3.4 channel, leading to increased sodium entry and

subsequent cell membrane depolarization and calcium channel

opening without the stimulation by AngII (52, 53).

Interestingly, a study by Nanba et al. (2017) found that the

prevalence of aldosterone-producing micronodules (APMs), driven

by aldosterone-stimulating somatic mutations, is directly

proportional to aging (55). They found that the thickness of ZG

cells reduced in elderly subjects, corresponding to the suppressed

RAAS in older age. Additionally, the expression of CYP11B2 was

limited to sporadic micronodules containing mutated genes that

cause unregulated aldosterone production. Concurrently, Omata

and colleagues demonstrated that the accumulation of computed

tomography-undetectable APMs, which mainly harbor CACNA1D

aldosterone-driver mutations, contributes to the development of

idiopathic adrenal hyperplasia (56). This finding challenges the

traditional view that idiopathic adrenal hyperplasia results solely

from enlargement of the aldosterone-producing zone within the

adrenal cortex.

We have previously suggested that the frequency of somatic

mutations causing constitutive aldosterone production is due to the

selection of cells that are protected from the fate of apoptosis, which

we postulate occurs in ZG cells when salt excess suppresses

aldosterone synthesis (57). The sharply demarcated, densely

stained APMs that have caught the eye since Celso Gomez-

Sanchez’ development and sharing of an antisera specific for

CYP11B2 (58), contrast strikingly with the complete absence of

CYP11B2 in the adjacent ZG which comprises of the endocrine cells

whose intended cell fate was to make aldosterone. While it is easy to

regard age-related somatic mutation as at best neutral, and

sometimes harmful process, the high prevalence of mutations

causing APMs – at least 20% of all adults in salt-loving societies

[based on prevalence of APMs, and proportion of these in which

mutations are found] – suggests a physiological rather than

pathological process. Thus, it raises the question of whether

APMs could be the life-saving emergency supply of aldosterone,

in times of catastrophic loss of sodium/water loss or rises in

plasma K+.

Meanwhile, the aldosterone-driver mutation in CTNNB1 that

encodes b-catenin, the critical activator of canonical Wnt signaling

pathway, is associated with the development of multiple adrenal

cortex disorders (54). Activation of Wnt signaling has been found to

promote the proliferation of adrenocortical progenitor cells as well

as the differentiation of the progenitor cells into ZG cells (59).

Several studies reported the genetic predisposition of the mutations

is associated with the demographic (52), gender (60), age (61), or

pregnancy-related hormonal imbalance factors (62).
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5 Drug inhibition of
aldosterone synthesis

In the early section, we described how abnormal adrenal cortex

homeostasis promotes the development of CYP11B2-positive adrenal

cortical neoplasms, eventually leading to the manifestation of

endocrine-related hypertension. Hence, it is of interest to explore

therapeutic agents that directly target CYP11B2-positive adrenal

cortical cells to control aldosterone levels, thus reversing endocrine

hypertension. Several discoveries of compounds that suppress

aldosterone production by targeting the CYP11B2-positive cells have

been reported. The compounds that selectively target the CYP11B2-

positive cells interrupt either the expression or activity of CYP11B2,

and hence are known as aldosterone synthase inhibitors.

LCI699 (Osilodrostat) was the first CYP11B2 inhibitor developed

for use in PA and hypertension (63). However, its development was

mainly challenged by its poor selectivity for CYP11B2. The drug also

showed inhibition on the enzymatic action of its homologous protein,

CYP11B1, an enzyme that catalyzes the final step of cortisol synthesis

from the precursor 11-deoxycortisol, leading to impairments in

metabolism, immune function, and stress response (64, 65). In early

2020, Osilodrostat has been approved by the European Medicines
Frontiers in Endocrinology 05
Agency and the Food and Drug Administration for the treatment of

patients with Cushing’s syndrome and Cushing’s disease who are not

candidates for pituitary surgery or those who have failed surgery

respectively (66, 67).

The active development of the selective CYP11B2 inhibitors with

undesired inhibition of CYP11B1 has led to several successes (Table 1).

Baxdrostat is one of the selective CYP11B2 inhibitors that had

completed a phase 2 clinical trial for treatment of patients with

treatment-resistant hypertension (7, 68–71). From the finding, the

drug lowered serum aldosterone levels without affecting the ACTH-

induced change in cortisol in a dose-dependent manner, resulting in

significant reduction in both systolic and diastolic blood pressure (7, 71).

Another promising selective CYP11B2 inhibitor, namely dexfadrostat

phosphate, also known as 5R-fadrozole, had also successfully completed

phase 2 clinical trials for treatment in patients with PA (10). The

discovery of the off-target CYP11B2 inhibition effect of fadrozole, an

approved non-steroidal cytochrome P450 19A1 (CYP19A1) inhibitor

for breast cancer management, led to the development of its derivative,

5R-fadrozole (72). Targeting differences in the substrate binding

pockets, 5R-fadrozole demonstrated precise inhibitory coordination

with the catalytic heme unit of CYP11B2, distinguishing its activity

from that against CYP19A1 and CYP11B1 (73).
TABLE 1 List of aldosterone synthase inhibitors or suppressors and their descriptions on the target proteins and mechanism of action, and pre-
clinical, clinical trials, or clinical use status.

Compound Target
protein

Mechanism of action Status of the compound

Osilodrostat (LCI699) CYP11B1,
CYP11B2

Inhibits both enzymatic actions of CYP11B1 and
CYP11B2 for catalyzing cortisol and aldosterone
synthesis respectively.

• Approved for hypercortisolism in Cushing’s syndrome
or disease.

LY3045697 CYP11B2 Selectively targets CYP11B2 with 39-fold
inhibition effect over CYP11B1.

• Completed phase 1 clinical trial on healthy volunteers for
therapeutic use in patients with hypertension, chronic kidney
disease, diabetic nephropathy, primary hyperaldosteronism, or
cardiac arrhythmias. (ClinicalTrials.gov ID:
NCT01750853; NCT01821703)

RO6836191/Baxdrostat
(CIN-107)

CYP11B2 Provides selective and competitive blockade of
CYP11B2 and inhibit aldosterone production
without affecting cortisol level.

• Active phase 3 clinical trial on patients with uncontrolled
hypertension on two or more medications and with resistant
hypertension. (ClinicalTrials.gov ID: NCT06034743)
• Completed phase 2 clinical trial on patients with treatment-
resistant hypertension. (ClinicalTrials.gov ID: NCT04519658)

5R-Fadrozole/
Dexfadrostat
phosphate (DP13)

CYP11B2 Effectively forms a precise inhibitory coordination
with the catalytic heme unit of the CYP11B2, thus
reducing the aldosterone level. No specific
binding observed with CYP11B1 and CYP19A1.

• Completed phase 2 clinical trial on patients with PA.
(ClinicalTrials.gov ID: NCT04007406)

MLS101/Lorundrostat CYP11B2 Selectively binds to CYP11B2 reducing plasma
aldosterone and systolic blood pressure, with no
observed cortisol insufficiency observed.

• Completed phase 2 clinical trial on patients with uncontrolled
hypertension. (ClinicalTrials.gov ID: NCT05001945)

Atractylenolide-I CYP11B2 Competitively binds to substrate binding site of
CYP11B2 against heme, a catalyst for
aldosterone synthesis.

• Only pre-clinical testing available.

YM750, Acyl-coenzyme
A: Cholesterol
acyltransferase
(ACAT) inhibitor

ACAT Suppresses CYP11B2 expression by inhibiting
intracellular calcium signaling activated by KCl-
stimulated depolarization.

• Only pre-clinical testing available.

Tacrolimus;
Calcineurin inhibitor

Calcineurin Suppresses CYP11B2 expression by inhibiting
calcineurin/NFATc4 downstream signaling.

• Only pre-clinical testing available.
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Other than that, Lorundrostat, a well-tolerated and highly

selective CYP11B2 inhibitor, effectively decreased aldosterone levels

and systolic automated office blood pressure in uncontrolled

hypertension patients with obesity or suppressed renin in a phase 2

clinical study. In vitro analysis revealed that Lorundrostat reduced

aldosterone with a selectivity ratio of 374:1 for the inhibition of

CYP11B2 compared to CYP11B1 (8, 74, 75). Similarly, another

potent CYP11B2 inhibitor, LY3045697, also exhibited high in vitro

selectivity for CYP11B2 over CYP11B1, with a 39-fold difference.

Moreover, the drug also demonstrated a favorable therapeutic index

for effects on CYP11B2 over CYP11B1 in a phase 1 clinical study for

the dose safety and tolerability on healthy subjects (9).

Pre-clinical studies have also explored the efficacy of small

molecules designed to specifically inhibit aldosterone synthesis

without affecting other enzymes involved in steroidogenesis. For

instances, in vitro and in vivo investigations have highlighted

atractylenolide-I as a potent compound (76). This compound

selectively suppressed the activity of CYP11B2 by competitively

binding to its substrate binding sites, Ala320 and Cys450, rather

than to heme, an essential catalyst for aldosterone production.

Similarly, Shimada and colleagues demonstrated that YM750, an

acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor,

suppressed aldosterone production through inhibition of

intracellular calcium signaling activated by potassium chloride

(KCl)-stimulated depolarization in an in vitro study using H295R

human adrenocortical carcinoma cell line (77). They found that the

inhibition suppressed the expression of nuclear receptor related 1

(NURR1) and nerve growth factor-induced subfamily B (NGFIB),

important transcription factors that regulate CYP11B2 transcription.

Thus, small molecules that indirectly affect the CYP11B2 expression

and activity may also offer potential benefits for managing PA.

Another study had also reported the inhibition of CYP11B2

expression stimulated by KCl depolarization using the calcineurin

inhibitor, tacrolimus (78). In both in vitro and ex vivo studies using

mouse and human adrenal tissues, tacrolimus blocked calcineurin, a

subunit for the calcium ion sensor calmodulin, leading to

dephosphorylation of nuclear factor of activated T cell, cytoplasmic

4 (NFATc4). Inactivation of NFATc4 led to downstream effects

including the direct suppression of CYP11B2 transcription as well

as indirect suppression through inhibition of NURR1 expression.
6 The effect of CYP11B2 inhibitors on
adrenal cortex homeostasis

Pre-clinical studies and clinical trials have demonstrated a

promising clinical effectiveness of CYP11B2 inhibitors. However,

there is still a gap in literature regarding the impact of these

inhibitors on the homeostasis of adrenocortical cells. It is well-

established that the maintenance of adrenal cortex is intricately tied

to the physiological requirements of the body. Therefore, the

question arises – how do CYP11B2 inhibitors influence the

overall maintenance or remodeling of adrenal cortex zonation

and function or how does adrenal cortex homeostasis adapt to

such changes particularly in regard to the cellular turnover of
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adrenalocortical cells as proposed by the centripetal migration

model of adrenal cortex?

A study involving mice with deleted CYP11B2 demonstrated that

when aldosterone was absent, there was an increase in cellular turnover

of ZG cells (79). The increased cellular turnover was characterized by

the thickening of the ZG layer and the increase in cells that migrated

and underwent apoptosis at the boundary layer between the cortex and

medulla. Similar cellular turnover effect was demonstrated in the

adrenal tissues from monkeys treated with the CYP11B2 inhibitor,

baxdrostat (70). Through immunohistochemistry analysis, baxdrostat

treatment on monkeys demonstrated increased apoptosis in a dose-

dependent manner. Along with the observed increase in apoptosis, the

proliferation rate of ZG cells was also increased, associated with the

thickening of the ZG. However, this thickening of ZG coincided with

an increase in CYP11B2 expression. To note, the cellular turnover of

ZG cells continued during the treatment-free period despite the

observed reversibility of CYP11B2 expression.

In adult human adrenal glands, a typical finding is of seemingly

discontinuous ZG due to a reduction in ZG cell number and the ZG

reaching out to the capsule. This appearance is also seen adjacent to

many APAs and might be due to the negative feedback of aldosterone

from the APA on adjacent ZG cells. By contrast, the ZG adjacent to

APAs with either a KCNJ5 mutation, or with double mutation of

CTNNB1 and either GNA11 or GNAQ, shows prominent ZG

hyperplasia, without expression of CYP11B2 (59, 80). It may be

that there are two types of maladaptive response to salt-induced

suppression of CYP11B2: one which leads to involution of ZG and

selection of APM-forming CACNA1D-mutant cells that are protected

from apoptosis; the other which leads to ZG hyperplasia (as in the

CYP11B2-/- mouse) and selection for mutations that confer a

proliferative advantage over adjacent cells. The question whether

the gain-of-function mutations driving CYP11B2 autonomy are the

same as cause the adenomas has not been settled, and there may

indeed be a fine balance between cell growth and death depending on

the mutation and/or expression level of the mutated channel (81, 82).

Double-mutant APAs may prove the rule, with the only unusual

feature being the obligatory pairing of CTNNB1 with GNA11/Q

mutations. Or they may prove exceptional, with two mutations

required to confer a growth advantage over the gross ZG hyperplasia.

Although our recent preliminary in vitro findings revealed that

transient silencing of CYP11B2 expression in the HAC15 human

adrenocortical carcinoma cell line did not significantly induce

cellular apoptosis (83), we observed that CYP11B2 silencing

activated stress response mechanisms, including autophagy and

mitophagy, potentially facilitating cellular adaptation to CYP11B2

modulation through cellular recycling or initiating cellular death

response (84). However, further functional studies are required to

confirm whether transient silencing of CYP11B2 activates cellular

recycling to promote cell survival, initiates subsequent apoptosis, or

triggers necrosis.
7 Concluding remarks

In conclusion, exploring CYP11B2 inhibitors presents a

promising avenue for managing PA and hypertension. However,
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comprehending their effects on adrenal cortex homeostasis is crucial

for ensuring their safety and efficacy. Current research suggests that

these inhibitors can induce changes in cellular turnover within the

adrenal cortex, impacting adrenocortical zonation and function.

Further investigations are necessary to elucidate the mechanisms

underlying these changes and to optimize therapeutic strategies for

better outcomes in patients with endocrine-related hypertension.
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