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Transcriptome combined with
Mendelian randomization to
screen key genes associated with
mitochondrial and programmed
cell death causally associated
with diabetic retinopathy
Shule Jiang and Xuemei Han*

Department of Ophthalmology, The First Affiliated Hospital of Zhejiang Chinese Medical University
(Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
Background: Mitochondrial dysfunction in the retina can induce apoptosis of

retinal capillary cells, leading to diabetic retinopathy (DR). This study aimed to

explore key genes related to programmed cell death (PCD) and mitochondria in

DR via bioinformatic analysis.

Methods: A differential analysis was performed to identify differentially expressed

genes (DEGs) between DR and control samples using the GSE94019 dataset from

the Gene Expression Omnibus (GEO) database. Pearson correlation analysis was

then utilized to select genes linked to mitochondrial function and PCD (M-PCD).

Candidate genes were identified by overlapping DR-DEGs and M-PCD genes,

followed by functional annotation. Mendelian randomization (MR) analysis was

employed to identify genes with causal relationships to DR. Key genes were

identified through protein-protein interaction (PPI) analysis using six algorithms

(DEgree, DMNC, EPC, MCC, Genes are BottleNeck, and MNC) within Cytoscape

software. The expression patterns of these genes were validated using GSE94019

and GSE60436 datasets, as well as RT-qPCR. Enrichment analysis provided

insights into the function and pathways of these key genes in DR. Differential

immune cell profiles were determined via immune infiltration analysis, followed

by exploring the relationships between immune cells, cytokines, and the

identified genes. Correlations between key genes and apoptosis genes were

also examined. In vivo experiments using RT-PCR, immunohistochemistry (IHC),

and western blot analysis confirmed that MYC and SLC7A11 expression was

significantly elevated in DR rat retinal tissues.

Results: From 658 candidate genes, 12 showed significant causal associations

with DR. MYC and SLC7A11 were particularly notable, showing upregulated

expression in DR samples and involvement in apoptosis and diabetes-related

pathways. These genes were significantly associated with apoptotic genes and

correlated positively with altered immune cell types and cytokines, suggesting a

link between immune response and DR pathogenesis. In vivo findings confirmed

that MYC and SLC7A11 expression was elevated in DR rat retinal tissues.
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Conclusion: Key genes (MYC and SLC7A11) associated with mitochondrial

function and PCD in DR were identified, offering insights into DR’s pathological

mechanisms and potential targets for diagnostic and therapeutic strategies.
KEYWORDS

diabetic retinopathy, immune infiltration, Mendelian randomization, programmed cell
death, mitochondria
1 Introduction

Diabetic retinopathy (DR) is a leading cause of vision

impairment and blindness worldwide, affecting both working-age

adults and the elderly (1, 2). It is estimated that by 2030, the number

of individuals affected by DR will rise to 191 million (2). DR

represents a major manifestation of diabetic microvascular

complications, characterized by alterations in retinal endothelial

vascular structure and breakdown of the blood-retinal barrier (3). In

its early stages, DR manifests through endothelial cell and pericyte

apoptosis, vascular leakage, and leukostasis, potentially progressing

to microaneurysms, retinal vein occlusion, diabetic macular edema,

and proliferative DR, all of which pose serious threats to vision (4).

Research indicates that various interconnected biochemical

pathways drive DR symptom development, especially under

hyperglycemic conditions. Mitochondrial dysfunction in the

retina increases superoxide levels, accelerating cytochrome C

release, capillary cell apoptosis, and DNA damage (5) The NOD-

like receptor family pyrin domain-containing 3 (NLRP3)

inflammasome has been identified as a pathogenic factor in

retinal cells (6). In the diabetic environment, the NLRP3

inflammasome is activated through pathways such as reactive

oxygen species (ROS) and ATP, leading to the secretion of pro-

inflammatory cytokines interleukin-1b (IL-1b) and interleukin-18

(IL-18), subsequently inducing apoptosis (7).

A core theory in DR pathogenesis is that enhanced oxidative stress

under diabetic conditions damages the retinal microvasculature,

triggering microvascular complications (8). Mitochondrial-derived

oxidative stress disrupts the homeostasis of various retinal cell types,

exacerbating retinal damage. This cascade of events illustrates how

diabetes, through oxidative stress, progressively destabilizes

retinal homeostasis, ultimately leading to DR development and

progression (9).

Despite extensive clinical research on DR, its pathogenic

mechanisms are not fully elucidated. Hence, exploring the

pathogenesis of DR and its molecular key genes for diagnosis and

treatment is crucial for improving patient outcomes.

Mitochondria, key organelles coordinating the biosynthesis of

lipids, amino acids, and nucleotides and essential for energy

metabolism processes such as the tricarboxylic acid cycle, electron

transport system, and b-oxidation of fatty acids, play a significant

role in DR (10). Mitochondrial biogenesis is the process of
02
increasing mitochondrial quantity, which relies on the

coordinated action of cellular signaling molecules, molecular

chaperones, and transcription factors, and is regulated upstream

by oxidative stress (5). Mitochondrial dysfunction in DR is

evidenced by disrupted mitochondrial dynamics, mitochondrial

DNA damage, and increased oxidative stress, leading to aberrant

cellular energy metabolism and activation of apoptotic pathways

(11). Moreover, these mitochondrial alterations not only affect the

survival of retinal cells but may also promote inflammatory

responses and neovascularization, exacerbating the progression

of DR.

Programmed cell death (PCD), a process where cells actively

proceed toward death through a series of ordered molecular events,

includes types such as apoptosis, necrosis, and autophagy (12, 13).

The intrinsic pathway of PCD is initiated by increased permeability

of the mitochondrial outer membrane and activation of apoptotic

signaling, while oxidative stress is an early event in the pathogenesis

of DR, with PCD typically occurring as a later and secondary event

(14). In the onset of DR, apoptosis, in particular, has a pivotal role

in damaging retinal neurons and vascular cells. Excessive activation

of apoptosis leads to the over-death of retinal cells, thereby

disrupting retinal structure and function (15, 16). Additionally,

PCD is associated with inflammatory responses and vascular

abnormalities in DR, contributing to the exacerbation of the

condition (16). Although the significance of mitochondrial

dysfunction and PCD in DR is well recognized, the precise

mechanisms by which they regulate the pathogenesis of DR and

their interplay remain to be clarified. Therefore, a deeper

exploration of these molecular mechanisms will not only uncover

additional pathological processes underlying DR but also offer a

theoretical framework for identifying new therapeutic targets.

Mendelian Randomization (MR) is an approach that employs

genetic variants as instrumental variables in order to evaluate the

causal relationship between exposures and outcomes (17). In

disease research, the MR approach effectively addresses

confounding factors and reverse causation issues common in

traditional observational studies (18). This study utilized MR to

identify key genes related to mitochondrial function and PCD that

were causally associated with DR, offering a novel perspective in

unveiling the molecular mechanisms of DR.

In this investigation, transcriptomic data from the Gene

Expression Omnibus (GEO) database related to DR were
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rigorously analyzed using bioinformatics methods. Through

differential expression analysis, functional enrichment analysis,

MR analysis, and PPI network construction, this study

successfully identified a series of key genes related to DR.

Furthermore, through gene set enrichment analysis (GSEA) and

regulatory network analysis, this study elucidated the potential

mechanisms of these key genes in DR and proposed several

potential therapeutic targets. These findings offer new insights

and methods for the diagnosis and treatment of DR, with the

potential to improve treatment outcomes and quality of life for the

afflicted individuals.
2 Materials and methods

2.1 Data source

The GEO database (https://www.ncbi.nlm.nih.gov/) was

searched to acquire the transcriptome expression profile of the

GSE94019 (GPL11154) and GSE60436 (GPL24120) datasets. The

training set GSE94019 contained the retinal tissues of 13 DR

patients and four normal people. The GSE60436 dataset

comprised six DR retina samples and three control retina

samples, serving as a validation set. The mitochondrial-related

genes (MRGs) and PCD-related genes (PCDRGs) were acquired

by assessing the pertinent literature (19). Furthermore, the outcome

dataset of DR (ukb-b-12141) and the exposure factors datasets were

obtained from the Integrative Epidemiology Unit (IEU) Open

genome-wide association study (GWAS) database (https://

gwas.mrcieu.ac.uk/). The ukb-b-12141 comprised 216,666 samples

and 16,380,459 single nucleotide polymorphisms (SNPs). Finally,

680 apoptosis-related genes were obtained through literature

search (20).
2.2 Differential expression analysis and
functional annotation analysis

In the GSE94019 dataset, the limma package (v 3.52.4) (21) was

utilized to identify the differentially expressed genes (DEGs)

associated with DR. This was achieved via differential expression

analysis between DR samples and control samples (|Log2FC| > 0.5,

p < 0.05). Employing the ggplot2 package (v 3.3.6) (22) and the

pheatmap package (v 0.4.9) (23), the volcano map and the heat map

were constructed, respectively. Based on the GSE94019 dataset,

Pearson correlation analysis was utilized to analyze the correlation

between MRGs and PCDRGs. Genes with an absolute value of

correlation greater than or equal to 0.8 and a P value lower than 0.05

were selected as both mitochondrial and PCD-related genes (M-

PCD) for subsequent analysis. Then, utilizing the ggVennDiagram

package (v 1.2.3) (24) in R, candidate genes were identified by

overlapping DR-DEGs and M-PCD.

To delve deeper into the common function and enrichment

pathways of candidate genes, functional annotation analysis was

conducted using R package clusterProfile (v 4.4.4) (25) to explore
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the Gene Ontology (GO) functions, as well as Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways (p.adj <0.05).
2.3 MR analysis

In MR studies, the following three presumptions need to be met:

(a) instrumental variables (IVs) and exposure factors should be

significantly correlated, (b) IVs should not be impacted by

confounding variables connected to exposure factors or outcome,

and (c) the impact of IVs on the outcome should be solely mediated

by exposure factors. The candidate genes were utilized as exposure

factors, while DR served as the outcome for two-sample MR

analysis. Firstly, the unification of effect alleles and effect sizes was

conducted by utilizing the harmonized data function in the

TwoSampleMR R package (v 0.5.6) (26). Secondly, the extract

instruments function was employed to select SNPs that displayed

significant relationships with candidate genes (p < 5×10-8), which

were then used as IVs. Meanwhile, the parameter clump was set as

TRUE to eliminate the IVs with linkage disequilibrium (LD) (R2 =

0.001; kb=10000). Any IVs found to be significantly associated with

the outcome were removed. Subsequently, the two-sample MR

analysis was executed employing five methods [Weighted median

(27), MR Egger (18), Inverse variance weighted (IVW) (28), Simple

median (29), and Weighted mode (29)], with the primary method

being IVW (p < 0.05).

The purpose of creating the scatter plot was to analyze the

relationship between exposure factors and outcome. Meanwhile, the

forest plot was utilized to evaluate how effective exposure factors

were in predicting or diagnosing the outcome. Furthermore, the

funnel plot was employed to investigate if IVs followed Mendel’s

second law of random assortment.

The reliability of MR analysis was evaluated through sensitivity

analysis. Firstly, Cochran’s Q test was utilized to assess

heterogeneity. Genes with a P value of less than 0.05 indicated the

presence of heterogeneity, suggesting that they should be excluded

in subsequent analyses. Secondly, we conducted a horizontal

pleiotropy test using the MR-Egger method. A P-value higher

than 0.05 suggested that the influence of SNPs on outcomes was

solely mediated by exposure factors. Lastly, the mr_leaveoneout

function in TwoSampleMR was utilized to conduct a Leave-One-

Out (LOO) analysis, aiming to investigate the potential impact of a

single SNP on the overall effect. SNPs that, when removed, did not

notably affect the outcomes were considered reliable. The candidate

genes with a P-value from the IVW method less than 0.05 and

validated by sensitivity analysis were identified as candidate

key genes.
2.4 Establishment of PPI network and
expression verification of key genes

The STRING database (https://string-db.org/) was utilized to

predict the interactions among proteins corresponding to candidate

key genes, with a confidence score threshold of 0.4. Cytoscape
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(v3.8.2) (30) was utilized for visualizing the PPI network.

Subsequently, node genes in the PPI network were selected for

further analysis. By employing six algorithms (DEgree, DMNC,

EPC, MCC, Genes are BottleNeck and MNC) within Cytoscape

software (v 3.8.2), which evaluate and rank nodes genes based on

their level of interaction, the common genes of the top 10 genes

identified in these six algorithms were considered key genes. The

expression of these key genes was analyzed in the GSE94019 dataset

and the external validation dataset GSE60436.
2.5 Construction of gene-gene interactions
network and GSEA analysis

In order to understand the interactions between key genes and

other genes, as well as their associated biological functions, the

GeneMANIA database (http://www.genemania.org/) was

employed. This platform facilitated the prediction and

construction of a GGI network. For a more thorough

understanding of the functions and pathways involved in key

genes, based on org.Hs.eg.db gene set, single gene GSEA analysis

was conducted using clusterProfiler package (v 4.4.4) (25) in

GSE94019 dataset (|NES| > 1, q < 0.25, p.adj < 0.05).
2.6 Immune infiltration analysis

The ssGSEA algorithm was employed to analyze the immune

infiltration of the samples in the training set by determining the

distribution proportion of 28 distinct types of immune cells within

these samples. The difference in immune cell infiltration between

DR and control groups was comparatively assessed by rank sum test

(P < 0.05). The Spearman correlation analysis was employed to

calculate the correlation between key genes and differential immune

cells, and the R package ggcorrplot (v 0.1.4.1) (31) was utilized for

visualizing the correlation.
2.7 The relationship between inflammatory
cytokines and key genes

To elucidate the association between inflammatory cytokines

and DR, this study investigated the correlation between

inflammatory cytokines and key genes. Initially, a rank sum test

based on the GSE94019 dataset was employed to assess the

differential expression of inflammatory cytokines in control and

DR groups (P < 0.01). The correlation between key genes and

differential inflammatory cytokines was then examined. In addition,

in the GSE94019 dataset, differences in the expression of apoptosis-

related genes between DR samples and normal samples were

examined using the Wilcoxon rank-sum test (P<0.05). The genes

obtained were named the retinal vascular endothelial cell apoptosis-

related genes, then the correlation between the key genes and genes

related to differential apoptosis in retinal vascular endothelial cells

was analyzed by spearman method. Among them, when the

correlation value were all greater than 0.3, indicated correlation.
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2.8 Construction of regulatory networks

The ChEA3 database (https://amp.pharm.mssm.edu/ChEA3)

was utilized to search transcription factors (TFs) of the key genes,

and the top 30 ranked TFs were selected for the construction of the

TF-mRNA network.

The miRNAs that interact with key genes were predicted using

the miRWalk (http://mirwalk.uni-hd.de/) and miRDB (http://

mirdb.org) database. The miRNAs shared by the two databases

were selected as key miRNAs. The starbase database (http://

starbase.sysu.edu.cn/) was utilized for predicting the lncRNAs

interacting with key miRNAs, and lncRNAs with clipExpNum

greater than or equal to 20 were screened. The TF-mRNA

networks and lncRNA-miRNA-mRNA networks were constructed

using the Cytoscape software (v 3.8.2).

The target drugs of key genes were predicted in the Drug-Gene

Interaction Database (DGIdb, http://www.dgidb.org) to establish a

drug-gene network.
2.9 Animals model and
experimental grouping

A total of 12 Sprague Dawley (SD) rats (six-week-old, 180 ± 20 g)

were procured from Vital River Laboratory Animal Technology Co.,

Ltd (Grade SPF, SCXK (Zhejiang): SYXK2023-0003). These rats were

housed in a controlled environment with specific pathogen-free

conditions, maintaining a room temperature of around 23 ± 2°C,

humidity levels at approximately 50 ± 10%, and a light/dark cycle of

12 hours each. The care of the animals was in accordance with

institutional guidelines. The Laboratory Animal Management and

Ethics Committee, Dongdian (Hangzhou) Medical Technology Co.,

LTD approved all animal-related protocols (EPI2023056), which

adhered to the Regulations for the Administration of Affairs

Concerning Experimental Animals sanctioned by the State Council

of the People’s Republic of China. Random allocation led to the

division of the rats equally into two groups: a control group and a DR

group with five rats in each group.

Rats in the DR group were administered 30mg/kg of streptozotocin

(STZ) via intraperitoneal injection and fed high-fat chow for 14

consecutive weeks. After 72 hours of STZ injection, blood was

collected from the tail vein of the rats to assess their fasting blood

glucose concentration. If the concentration in the DR Group was

≥16.7mmol/L or significantly different from that of the normal group,

it indicated the successful establishment of the DR model.
2.10 Validation of key genes by RT-qPCR

To validate the key genes identified through the analysis of the

public database, five pairs of eyeball tissue samples were acquired

from SD rats, comprising DR cases and controls. RNA isolation and

RT-qPCR were performed on these ten tissue samples. The TRIzol

method (Ambion, Austin, USA) was employed for the extraction of

the total RNA following the provided instructions. Subsequently,

the first-strand-cDNA-synthesis-kit (Servicebio, Wuhan, China)
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was employed for reverse transcription of total RNA into cDNA as

per the provided protocol. qPCR analysis was then conducted using

the 2xUniversal Blue SYBR Green qPCR Master Mix (Servicebio,

Wuhan, China), following the provided protocol. The primers

employed for PCR are listed in Supplementary Table S1. Gene

expression levels were normalized to GAPDH, serving as an

internal reference, and calculated using the 2−DDCq method (32).
2.11 Immunohistochemistry validation of
key genes

To further validate the key genes identified, immunohistochemistry

was performed on retinal tissues from SD rats. Tissue sections were

deparaffinized in xylene I and II for 5 minutes each, followed by

rehydration in absolute ethanol, 95% ethanol, and 85% ethanol for 1

minute each. After washing with water, antigen retrieval was conducted

using sodium citrate buffer (pH 6.0) heated in a microwave for 15

minutes. Sections were cooled and washed with water. Endogenous

peroxidase was blocked by incubating the sections with 3% H2O2 at

room temperature for 15 minutes, followed by three PBS washes.

Sections were then blocked with goat serum at 37°C for 30 minutes.

Primary antibodies against XCT and MYC were applied, and sections

were incubated at 37°C for 1 hour. After washing, HRP-conjugated goat

anti-rabbit IgG was applied as the secondary antibody and incubated at

37°C for 30 minutes. DAB chromogen was used for visualization, with

sections incubated for 5 minutes at room temperature in the dark. The

reaction was stopped with water, and the sections were observed under

a microscope. Antibody information is provided in Supplementary

Table S2.
2.12 Western blot validation of key genes

Western blotting was performed to assess the protein expression of

key genes in retinal tissues from SD rats. Tissues were washed 1-2 times

with pre-chilled PBS, cut into small pieces, and lysed using a

homogenizer with 10 volumes of lysis buffer. The lysates were

incubated on ice or at 4°C for 30 minutes, followed by centrifugation

at 12,000 rpm for 10 minutes at 4°C. The supernatant was collected for

total protein analysis. Protein concentration was determined using the

BCA protein assay kit according to the manufacturer’s instructions. For

denaturation, protein samples were mixed with 5x reducing sample

buffer at a 4:1 ratio and heated at 95°C for 10 minutes. Proteins were

separated by SDS-PAGE at 200V for 30 minutes and transferred to

PVDF membranes, activated in ethanol for 2 minutes, and transferred

at 300mA for 30minutes. Membranes were blocked with 5% skimmilk

at room temperature for 30 minutes, followed by overnight incubation

with diluted XCT and MYC primary antibodies at 4°C. After washing,

membranes were incubated with secondary antibodies at room

temperature for 30 minutes, followed by three washes. Protein bands

were detected using ECL chemiluminescence, and images were saved as

TIFF files. Grayscale analysis was performed using AIWBwellTM

software. Antibody information is listed in Supplementary Table S3.
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2.13 Statistical analysis

The R software (v 4.2.1) was utilized to process and analyze the

data. The P-value < 0.05 was deemed statistically significant.
3 Results

3.1 Acquisition of 658 candidate genes

A total of 4,165 DR-DEGs were determined in DR samples

relative to control samples, comprising 3,346 upregulated and 819

downregulated DR-DEGs. The volcano map displayed these DR-

DEGs and labeled the top five upregulated and downregulated DR-

DEGs sequenced by log2FC (Figure 1A). Additionally, the heat map

showed the expression of some DR-DEGs between DR group and

control group (Figure 1B). The correlation analysis between MRGs

and PCDRGs displayed that there were 2,265 M-PCD with absolute

correlations values greater than or equal to 0.8 and P values less

than 0.05. The intersection of DR-DEGs andM-PCD was utilized to

obtain 658 candidate genes (Figure 1C).

The 658 candidate genes were enriched in 2,272 GO functions,

encompassing intrinsic apoptotic signaling pathway, regulation of

apoptotic signaling pathway, mitochondrial inner membrane,

ubiquitin-like protein ligase binding, etc. (Figure 1D). A total of

151 KEGG pathways exhibited significant enrichment, including

pathways such as lysosome, non-alcoholic fatty liver disease,

pathways of neurodegeneration - multiple diseases, autophagy -

animal and apoptosis (Figure 1E).
3.2 Identification and validation of
key genes

Forty-three candidate key genes demonstrated causal

relationships with DR (P<0.05 in IVW). Among the 43 candidate

key genes, 13 did not interact with other genes. The remaining 30

candidate key genes were used to construct the PPI network and

served as node genes for subsequent analysis (Figure 2A). The top ten

genes were selected for intersection based on their rankings in the

DEgree, DMNC, EPC, MCC, BottleNeck, and MNC algorithms

(Figure 2B, Supplementary Figure S1). Consequently, two key genes

(MYC and SLC7A11) were identified. Expression analysis results also

confirmed the consistent expression trend of the two key genes in

both the GSE94019 and GSE60436 datasets, revealing a significant

increase in the DR group compared to control group (Figures 2C, D).

The results of the correlation analysis of the key genes (MYC and

SLC7A11) with 168 retinal vascular endothelial cell apoptosis-related

genes showed that the correlation values of MYC and SLC7A11 with

the retinal vascular endothelial cell apoptosis-related genes were all

greater than 0.4, which indicated that MYC and SLC7A11 were

significantly correlated with retinal vascular endothelial cell

apoptosis-related genes (Supplementary Table S4).
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3.3 MR analysis of MYC and SLC7A11

The odd ratios (OR) of MYC and SLC7A11 in IVW method were

greater than 1, suggesting that these two genes were risk factors for DR

(Table 1). This finding was further supported by the scatter plot, which

revealed an overall positive correlation between the effect of SNPs of

these two genes and DR (Figures 3A, B). Moreover, the forest map
Frontiers in Endocrinology 06
illustrated thatMYC and SLC7A11 were risk factors, with theMR effect

size exceeding 0 (Figures 3C, D). The funnel plot showed that MR

analysis of candidate key genes and DR was consistent with Mendel’s

second random law (Figures 3E, F).

The heterogeneity test revealed no evidence of heterogeneity for

MYC and SLC7A11 ( P > 0.5) (Table 2). Additionally, the P-values

obtained from the horizontal pleiotropy test for MYC and SLC7A11 all
FIGURE 1

Acquisition and functional enrichment analysis of candidate genes (A) Volcano map of DR-DEGs (B) Heat map of DR-DEGs (C) Venn map of
candidate genes (D) GO functions enriched by candidate genes (E) KEGG pathways enriched by candidate genes.
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exceeded 0.05, indicating an absence of horizontal pleiotropy. (Table 3).

The LOO analysis showed that removing each SNP did not

significantly change the impact of the remaining SNP on the

outcome. The findings of sensitivity analysis provided evidence for

the reliability of our MR analysis results (Figures 3G, H).
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3.4 Enrichment of the key genes in
diabetes and cancer-related pathways

In theGeneMINIAnetwork, 20 genes were found to interact with key

genes, such as SLC3A2, MAX, RB1, SLC7A5, and TFRC. The biological
FIGURE 2

Identification and validation of key genes (A) PPI network of candidate genes (B) Venn map of key genes (MYC and SLC7A11) (C, D) The expression
levels of MYC and SLC7A11 in GSE94019 and GSE60436 datasets. *: p < 0.05; **: p < 0.01; ***: p < 0.001.
TABLE 1 MR analysis results.

outcome exposure Method Pvalue OR OR_lci95 OR_uci95

DR

MYC

MR Egger 0.533 1.692 0.539 5.304

Inverse variance weighted (multiplicative
random effects)

0.027 1.138 1.015 1.276

Weighted median 0.081 1.195 0.978 1.459

Weighted mode 0.287 1.201 0.936 1.54

Simple median 0.186 1.19 0.919 1.539

SLC7A11

MR Egger 0.379 1.139 0.907 1.429

Inverse variance weighted (multiplicative
random effects)

0.005 1.077 1.023 1.135

Weighted median 0.273 1.077 0.943 1.23

Weighted mode 0.333 1.081 0.947 1.233

Simple median 0.407 1.069 0.913 1.252
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functions related to SLC7A11 included L-amino acid transmembrane

transporter activity, amino acid transmembrane transporter activity,

neutral amino acid transmembrane transporter activity, organic acid

transmembrane transport, carboxylic acid transmembrane transport,

and amino acid transport. The cell cycle G1/S phase transition was
Frontiers in Endocrinology 08
associated with MYC (Figure 4A). MYC significantly enriched 91

pathways, with SLC7A11 being enriched in 80 KEGG pathways

(Figures 4B, C). The pathways in which both genes were enriched

encompassed the neurotrophin signaling pathway, pathways in cancer,

focal adhesion, ribosome, ubiquitin-mediated proteolysis, etc.
FIGURE 3

MR analysis of key genes (A, B) Scatter plots of MYC and SLC7A11 (C, D) Forest maps of MYC and SLC7A11 (E, F) Funnel plots of MYC and SLC7A11
(G, H) Forest maps of MYC and SLC7A11 in LOO analysis.
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3.5 Differential immune infiltration in the
DR group compared to the control group

The heat map showed the proportion of 28 types of immune cell

infiltration in the DR group and the control group (Figure 5A). The
Frontiers in Endocrinology 09
groups exhibited significant differences in seven immune cell abundance

scores, comprising activated CD8+ T cells, CD56dim natural killer (NK)

cells, centralmemoryCD4+Tcells, immaturedendritic cells,monocytes,

plasmacytoid dendritic cells, and type 1 helper T cells (Figure 5B). The

expression of SLC7A11 exhibited a notably positive correlation with the

abundance of plasmacytoid dendritic cells (R= 0.59) and type 1Thelper

cells (R = 0.7). The activated CD8+ T cells (R = 0.56), central memory

CD4+ T cells (R = 0.65), monocytes (R = 0.57), plasmacytoid dendritic

cells (R = 0.72), and type 1 T helper cells (R = 0.78) showed a markedly

positive correlation with the expression of MYC (Figure 5C).
3.6 Significant positive correlation between
key genes and most
inflammatory cytokines

There were 25 inflammatory cytokines, such as ABI1, ATP2B1,

CCL20, and CCR7, with significant differences in expression between

the DR group and the control group (Figure 6A). Correlation analysis
FIGURE 4

Functional enrichment analysis of key genes (A) GeneMINIA network of MYC and SLC7A11 (B, C) GSEA analysis of MYC and SLC7A11.
TABLE 2 The result of heterogeneity test.

outcome exposure Q Q_df Q_pval

DR
MYC 0.783 2 0.676

SLC7A11 0.56 3 0.905
TABLE 3 The result of horizontal pleiotropy test.

outcome exposure egger_intercept se pval

DR
MYC -0.037 0.054 0.616

SLC7A11 -0.009 0.017 0.631
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showed that MYC and SLC7A11 exhibited positive correlation with

most of the differential immune cytokines (Figure 6B). Specifically,

MYC exhibited the highest positive correlation with F3 (R = 0.88), while

SLC7A11 demonstrated the strongest association with MYC (R = 0.92).
3.7 Potential roles of hsa-miR-206, hsa-
miR-26a-5p, and hsa-miR-3129-5p in DR

The TFs-mRNA network consisted of 23 nodes and 39 edges

(Figure 7A). Within this network, 18 TFs were simultaneously

predicted by both MYC and SLC7A11, including GCM1, FOSL2,

DLX3, EGR3, CREB5, etc.

The MYC was predicted to be associated with seven key

miRNAs, while SLC7A11 was associated with 190 key miRNAs

(Figures 7B, C). Ultimately, the lncRNA-miRNA-mRNA network

was established, consisting of two key genes, 27 lncRNAs and 45

miRNAs (Figure 7D). Four lncRNAs (RMRP, MALAT1,

LINC00641, AL162431.2) and SLC7A11 competitively interacted

with hsa-miR-206. SLC7A11, NORAD, HCG11, ARHGAP27P1-
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BPTFP1-KPNA2P3, MALAT1 were associated with hsa-miR-26a-

5p. On the other hand, SLC7A11, AC010542.4, MALAT1, SNHG1,

and NORAD were linked with hsa-miR-3129-5p. These three

miRNAs exhibited the highest number of TFs and genes linked,

suggesting their potential significance in DR.

In the DGIdb databases, a total of 40 target drugs, such as

glutamine, AN-9, protoporphyrin, hypoxanthine, and addozoline,

were predicted by MYC. Riluzole was identified as the target drug

for SLC7A11 (Figure 7E).
3.8 In vivo validation of MYC and SLC7A11

To assess and validate the expression of MYC and SLC7A11 in

DR, retinal tissues were collected from both control and DR groups.

Figure 8A shows the fundus images of rats in both groups. We

compared the expression of MYC and SLC7A11 in the retinal

tissues of control and DR rats. RT-PCR analysis indicated that while

MYC expression was higher in the DR group compared to the

control group, the difference was not statistically significant.
FIGURE 5

Immune infiltration analysis (A) Heat map of the distributions of the 28 immune cells (B) Differences in the abundance of immune cells in DR and
Control groups (C) Differential immune cell and key genes correlation heat map (the number represents the correlation coefficient). *: p < 0.05; **: p
< 0.01; ns, not significant.
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However, SLC7A11 expression was significantly elevated in the DR

group (Figure 8B). IHC analysis showed that both MYC and

SLC7A11 were significantly upregulated in the DR group

compared to the control group, with statistical significance

between the groups (Figure 8C). Similarly, Western blot (WB)

analysis demonstrated that the expression levels of MYC and

SLC7A11 were significantly higher in the DR group compared to

the control group (Figure 8D). Overall, these findings indicate that

MYC and SLC7A11 are significantly upregulated in DR rat models.
4 Discussion

DR is a severe ocular complication of diabetes. Primarily, it

manifests as a set of characteristic pathological alterations arising

from diabetes-induced damage to retinal microvasculature,

potentially resulting in blindness in severe instances. Despite

advancements in elucidating the pathogenesis of DR, its

treatment remains a primary focus of current ophthalmic disease

research. Mounting evidence suggests that inflammation, oxidative

stress, apoptosis, and autophagy within the Müller cells of the retina

are intricately associated with DR (33). DR is one of the five major

pathways of the most serious microvascular complications caused

by hyperglycemia. These pathways include polyols, hexosamine,

protein kinase C, angiotensin II pathways, and the accumulation of

advanced glycation end products. The heightened production of

reactive oxygen species (ROS) caused by hyperglycemia leads to

local inflammation, mitochondrial dysfunction, microvascular

dysfunction, and cell apoptosis. The accumulation of ROS, local

inflammation, and cell death are closely related and significantly
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affect various stages of DR pathogenesis. Mitochondrial autophagy,

a conserved multi-step pathway, plays a pivotal role in selectively

degrading and restoring damaged mitochondria. In addition,

microvascular dysfunction can cause ischemia and local

inflammation, culminating in neovascularization, macular edema,

and neurological dysfunction, ultimately resulting in long-term

blindness (34). The link between TRX/TXNIP and redox

signaling pathways encompasses the activation of Nod-like

receptor thermal protein domain protein 3 (NLRP3)

inflammasomes, cell apoptosis, autophagy/mitochondrial

autophagy, and epigenetic modifications in redox-dependent

pathways (35). DR promotes the formation of ER mitochondrial

coupling and accelerates Ca2+-dependent cell apoptosis through the

IP3R1-GRP75-VDAC1 axis (36). Research has highlighted that

circulating mitochondrial DNA (mtDNA) levels are linked to DR,

and alterations in mtDNA induced by hyperglycemia in early

diabetes may be critically involved in the inflammation and

progression of DR (37). In conclusion, mitochondria and

apoptosis play pivotal roles in the occurrence of DR. To further

comprehend their mechanisms in DR, two key genes (SLC7A11 and

MYC) were identified through bioinformatics analysis in this study.

Studies have shown that SLC7A11 expression is suppressed

under hyperglycemic conditions, leading to decreased glutathione

(GSH) synthesis and reduced GPX4 activity, which ultimately

results in increased lipid peroxidation and damage to membrane

integrity (34). Thus, SLC7A11 may serve as an important biomarker

for DR. P53 induces ferroptosis by inhibiting SLC7A11 or

enhancing SAT1 expression, and SLC7A11 is enriched in the P53

signaling pathway, suggesting its potential role in DR pathogenesis

through this pathway (35).
FIGURE 6

Inflammatory cytokines analysis (A) Differences in expression of inflammatory cytokines in DR and Control groups (B) Correlation heat map of
differential immune cytokines and key genes (the number represents the correlation coefficient).
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c-MYC, a pivotal member of the MYC gene family, is closely

linked to angiogenesis and serves as a key driver of DR progression.

c-Myc not only promotes endothelial cell angiogenesis but also

enhances the proliferation of rat retinal pigment epithelial cells.

Studies indicate that c-myc knockout reduces the release of pro-

inflammatory factors from Müller cells, thereby slowing DR

progression (36). Furthermore, the compound 221S-1a inhibits

the G1/S phase transition by blocking the ERK1/2-c-Myc

pathway, thereby reducing angiogenesis in both tumors and

oxygen-induced retinopathy (37). c-Myc regulates endothelial cell

proliferation and migration by selectively splicing MKNK2, a

downstream molecule of the ERK signaling pathway; inhibition of

MKNK2 enhances the migration of human umbilical vein

endothelial cells (38). MYC also influences DUSP5 transcription

via the ERK signaling pathway (39). Additionally, studies have

found that ERBB3 modulates MYC activation by regulating AKT2
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phosphorylation, thereby affecting the proliferation and migration

of high-glucose-injured HUVECs (40).

Our study found that MYC expression is significantly

upregulated in DR patients and is enriched in the MAPK/ERK

signaling pathway. Based on this, we hypothesize that reducing

MYC expression may alleviate DR progression by modulating the

MAPK/ERK pathway. Furthermore, MYC and SLC7A11 are

significantly enriched in pathways such as neurotrophin

signaling, focal adhesion, and ubiquitin-mediated proteolysis,

which are closely associated with retinal pathology in DR

patients (42).

It has also been shown that inflammatory molecules in the

retina are produced not only by leukocytes but also by glial cells.

The retina’s inability to adapt to metabolic stress leads to glucose-

mediated microvascular damage and chronic inflammation,

ultimately resulting in retinal neurodegeneration and functional
FIGURE 7

Construction of regulatory networks (A) TFs-mRNA network (Blue represents TF, and red represents key genes) (B) Venn map of seven key miRNAs
associated with MYC (C) Venn map of 190 key miRNAs associated with SLC7A11 (D) LncRNA-miRNA-mRNA network (Blue represents miRNAs,
orange represents lncRNAs, and red represents key genes) (E) Drug-mRNA network (Blue represents drugs, and red represents key genes).
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impairment. As a key amino acid transporter, SLC7A11’s reduced

activity is closely associated with decreased glutathione (GSH)

levels, leading to increased oxidative stress in retinal cells and

accelerating retinal degeneration (38). As a transcription factor,

MYC regulates the cell cycle, metabolism, and apoptosis, disrupting

retinal structure and function and indirectly affecting photoreceptor

response and neural signal transmission, further promoting retinal

degeneration (39–41).

Our research also indicates that SLC7A11 and MYC are

significantly associated with genes involved in retinal vascular

endothelial cell apoptosis, suggesting that MYC may influence

endothelial cell survival by regulating the expression of these
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genes. In the context of diabetic retinopathy, MYC upregulation

has been associated with increased expression of apoptotic genes

and accelerated endothelial cell apoptosis (42). SLC7A11 is similarly

associated with increased oxidative stress and accelerated apoptosis

(38). Therefore, SLC7A11 and MYC may directly or indirectly

promote retinal degeneration by affecting metabolism, antioxidant

defense, cell proliferation, and apoptosis.

Additionally, MiR-195 enhances EMT and cell permeability in

high glucose-stimulated ARPE-19 cells by upregulating VEGFA/

Snail1 and inhibiting Smurf2-mediated YY1 ubiquitination (43).

Anti-VEGF therapy treats retinal degeneration by inhibiting

neovascularization and controlling related pathological processes.
FIGURE 8

Expression of MYC and SLC7A11 in Control and DR Rats Models (A) Fundus images of control and DR rats. (B) Comparison of RT-PCR levels
between control and DR rats (n = 3). (C) RT-PCR levels of MYC and SLC7A11 in control and DR rats (n = 3). (D) RT-PCR levels of MYC and SLC7A11
in control and DR rats (n = 3). Data are presented as mean ± SD (*p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant, p > 0.05).
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Changes in the microenvironment during treatment may indirectly

affect the expression or activity of MYC and SLC7A11. Although

evidence suggests that metabolic conditions may indirectly

influence MYC expression or function (5), its direct role has not

been fully confirmed and requires further investigation. SLC7A11

may reduce vascular leakage and permeability, thereby lowering

oxidative stress in retinal cells and reducing the demand for cystine

uptake mediated by SLC7A11 (44). Furthermore, the natural

diterpenoid EKO alleviates DR by maintaining vascular

endothelial integrity through the c-fos/focal adhesion axis and

activating the deubiquitinase ATXN3 (43).

Additionally, natural diterpenoid EKO activates deubiquitinase

ATXN3 to maintain vascular endothelial integrity and alleviate DR

via the c-fos/focal adhesion axis (45).

As a pro-inflammatory mediator, low-grade inflammation can

trigger various cellular abnormalities and tissue damage, ultimately

affecting the retina. This process involves increased levels of

adhesion molecules, chemokines, and growth factors, which

contribute extensively to the pathogenesis of DR. Inflammatory

cells within the retina also respond to injury and stress. Moreover,

inflammation exacerbates retinal neurodegeneration during the

early stages of DR. Chronic inflammation plays a pivotal role in

the progression of DR, particularly during its early stages (46).

Hyperglycemia exacerbates oxidative stress by elevating the

production and activation of advanced glycation endproduct

(AGE), protein kinase c(PKC), and the flux of the polyol and

hexosamine pathways. Enhanced oxidative stress, coupled with

reduced levels of GSH, leads to the production of inflammatory

intermediates Notably, arachidonic acid metabolites serve as

significant inflammatory intermediates. Consequently, this

cascade of events contributes to BRB rupture and heightened

vascular permeability in the retina (47). Research indicates that

individuals with prediabetes exhibit elevated levels of multiple

inflammatory markers, including resistin, interleukin-6 (IL-6),

TNF-a, interleukin-1b (IL-1b), and monocyte chemoattractant

protein-1 (MCP-1), in their serum along with high fasting blood

glucose levels. Furthermore, elevated levels of chemokines,

including MCP-1, CCL2, and CCL5, and pro-inflammatory

cytokines, such as TNF-a, IL-1b, and IL-6, have been reported

(48). Chronic inflammation is characterized by the accumulation of

macrophages, lymphocytes, and mature B cells within the affected

tissues. These white blood cells extravasate from the blood vessels

and gradually accumulate in the tissues due to the long-term release

of inflammatory factors (49). The pathophysiology of DR is

intricate. Elevated intracellular glucose levels in diabetic patients

trigger the polyol pathway, resulting in the metabolism of glucose

(49). This process results in AGE deposition, activation of PKC, and

upregulation of AGE receptors and hexokinase pathways (50).

Moreover, it triggers oxidative stress, leading to an increase in

intracellular ROS and irreparable cell damage. Summarizing the

above literature results, previous investigations have found that the

occurrence of DR is intricately linked to inflammation. Likewise, the

current study observed elevated expression of numerous

inflammatory factors in patients with DR. Moreover, MYC and
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SLC7A11 showed significant positive correlations with these

inflammatory markers. These findings suggest that MYC and

SLC7A11 may induce an inflammatory response by upregulating

the expression of inflammatory factors, thereby contributing to the

development of DR.

Research has shown that Steroid Receptor Coactivator 2 (SRC-2),

as a key mediator of steroid signaling, can stimulate the upregulation

of the c-Myc-mediated amino acid transporter Slc7a5, thereby

controlling the activation of CD4+ T cells (1). This mechanism

suggests that steroids can indirectly regulate c-Myc activity through

SRC coactivators, with c-Myc acting as a core transcription factor

playing a critical role in cell growth, metabolism, and apoptosis. SRC-2

has been shown to mediate the suppression of MYC. On the other

hand, studies have indicated that SRC-2 can coactivate anti-tumor

target genes, thereby inhibitingMYC-induced liver cancer progression

(51). This implies that in the steroid signaling pathway, SRC

coactivators may exert opposing regulatory effects on MYC

depending on the biological context. Although current research on

the effects of steroids on SLC7A11 is limited, considering the critical

role of SLC7A11 in redox balance and ferroptosis regulation, we

hypothesize that steroids might influence SLC7A11 expression or

function through their indirect regulation of MYC activity.

Xiaoli Xiang et al. observed a higher presence of CD4+ cells in

patients with DR (52). In this study, the infiltration proportion of

central memory CD4+ T cells in the DR group also exhibited a

significant increase. Additionally, MYC showed a significant positive

correlation with central memory CD4+ T cells. These findings suggest a

potential role for MYC in the occurrence of DR by regulating the

proportion of central memory CD4+ T cells in affected individuals.

In this study, we found that mitochondria and PCD-related

genes MYC and SLC7A11 play important roles in DR. And previous

studies have shown that regulating the activities of MYC and

SLC7A11 can enhance the resistance of retinal cells to oxidative

stress, reduce cell death, and ultimately protect vision (44). In view

of this, it is reasonable to hypothesize that MYC and SLC7A11 are

not only the key to understanding the pathological mechanisms of

DR, but are also expected to be potential targets for the diagnosis

and treatment of DR, which will bring a new diagnostic and

treatment strategy for DR patients.

We performed bioinformatic analysis using public database data,

which revealed the potential roles of MYC and SLC7A11 in diabetic

retinopathy (DR). Subsequently, in vivo experiments were conducted

to further validate the elevated expression of these two genes in DR.

Results from RT-qPCR, immunohistochemistry, and western blot

analyses consistently showed that the expression levels of MYC and

SLC7A11 were significantly higher in the retinal tissues of DR rats

compared to controls. These findings align with the bioinformatic

analysis, suggesting that MYC and SLC7A11 play crucial roles in DR

pathogenesis by regulating oxidative stress, apoptosis, and

mitochondrial dysfunction. Thus, modulating the expression of

MYC and SLC7A11 may present new therapeutic targets for DR.

Further studies are needed to explore the molecular mechanisms of

these genes and their potential as therapeutic targets. Despite these

important findings, the study has some limitations. For key
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regulatory genes like MYC and SLC7A11, changes in their expression

could significantly impact disease progression. However, due to

funding and experimental constraints, we were unable to conduct

further in vitro experiments, including gene overexpression or

silencing validation.

In future research, we plan to validate these findings using DR

patient samples. We will combine gene silencing or overexpression

experiments, utilizing siRNA or gene transfection techniques to

manipulate MYC and SLC7A11 expression in cell or animal

models. This approach will allow us to observe their effects on

mitochondrial function and cell apoptosis, providing a more

comprehensive understanding of the roles of MYC and SLC7A11

in diabetic retinopathy and offering scientific evidence for disease

prevention and treatment.
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