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Type 1 Diabetes (T1D) is a chronic metabolic disease resulting from insulin

deficiency due to autoimmune loss of pancreatic b cells. In addition to b cell

destruction, it is now accepted that b cell stress and dysfunction, such as

senescence, plays a crucial role in the development of the disease.

Accumulation of senescent b cells occurs during development of T1D in

humans and contributes to the progression of T1D in the nonobese diabetic

(NOD) mouse model. Senescent b cells are thought to exacerbate the

inflammatory response within the islets by production and secretion of

senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs)

from b cells have been shown to carry protein and microRNAs (miRNAs),

influencing cellular signaling and may contribute to the development of T1D

but it remains to be addressed how senescence impacts b cell EV cargo. In this

minireview, we discuss emerging evidence that EV cargo proteins and miRNAs

associated with senescence could contribute to the development of T1D and

could suggest potential biomarkers and therapeutic targets for the regulation of

SASP and elimination of senescent b cells in T1D. Future investigation exploring

the intricate relationship between b cell senescence, EVs andmiRNAs could pave

the way for the development of novel diagnostic techniques and

therapeutic interventions.
KEYWORDS

type 1 diabetes, cellular senescence, extracellular vesicles, microRNAs, SASP (senescence-
associated secretory phenotype)
1 Introduction

Type 1 diabetes (T1D) is a chronic metabolic disease resulting from severe destruction

of b cells by an autoimmune T-cell-mediated response, manifested by insulin deficiency (1).

T1D is a complex disease driven by genetic susceptibility, environmental factors, and

epigenetic changes (2) that progresses through three stages. At the first stage, the onset of

autoimmunity is accompanied by seropositivity against two or more specific proteins, such
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as glutamate decarboxylase 65 (GAD65), insulin, insulinoma

antigen-2 (IA-2) and zinc transporter 8 (ZnT8) (3). A clinical

manifestation of T1D typically occurs months or years before two

or more of these autoantibodies are detected (4). Stage 2 is

characterized by glucose intolerance, but the patient is otherwise

asymptomatic. The third and final stage is marked by the emergence

of diabetes symptoms, accompanied by a sustained decline in b cell

function for several years (5). Although significant progress has

been made in understanding T1D pathogenesis and the clinical

implementation of the first FDA-approved therapy for use prior to

symptoms onset, Teplizumab (6), a bona fide cure has remained

elusive and major questions remain about how the disease develops,

hindering advancement of therapies for the disease (7, 8).

A growing body of evidence has now shown that b cell

dysfunction contributes to T1D. b cell dysfunction in T1D

involves various stressed states, including the Unfolded Protein

Response (UPR), type I interferon (IFN) response and senescence

(9, 10). While investigations into the therapeutic potential of

modulating b cell UPR and IFN response have progressed into

phase II clinical trials with encouraging results (11–14), preclinical

investigations into b cell senescence are still required to pave the

way for clinical translation. The interactions between b cells and

immune cells during T1D remains a puzzle (15), but exciting efforts

have also suggested roles for small secreted extracellular vesicles

(EVs) as important conveyors of signaling between b cells and

immune cells during the pathogenesis of T1D (16). EVs are a

heterogeneous group of nanoparticle-sized membrane-bound cargo

carriers secreted from most cell types, containing DNA, RNA,

proteins, and metabolites from their host cell. EVs consist of

exosomes (30-150 nm) in addition to larger particles termed

microvesicles (200-1000 nm) and apoptotic bodies (>1000 nm)

(17). Remarkably, cellular senescence has been shown to

dramatically increase small EV biogenesis and alter EV RNA and

protein cargoes as a component of the senescence-associated

secretory phenotype (SASP) (18–20). However, it remains

unclear how senescence alters EV biogenesis and cargo in the

b cell and what role, if any, senescent b cell EVs may play in

T1D development.

In this minireview, we discuss the potential for senescent b cell

EVs to contribute to the pathogenesis of T1D. We propose a novel

approach to therapy, wherein the utilization of miRNA packaged

into therapeutic EVs could target senescent b cells to mitigate their

inflammatory effects.
2 Relationships between b cell EVs,
senescence and miRNAs: implications
for development of T1D and
novel therapies

2.1 b cell EVs and development of T1D

Early evidence of EVs secretion by pancreatic b cells was

reported by Sheng H. and colleagues in 2011, which showed EVs

released from the mouse b cell line MIN6 (21). As with many other
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cell types, b cells produce and secrete mainly the small exosome-

sized EVs rather than microvesicles (MVs) as demonstrated by

culture studies using ultracentrifugation-based approaches for EV

isolation (22) on rodent b cell lines or isolated islets from rodents

and humans (23–26). While highly proliferative rodent b cell lines

such as MIN6 and the rat b cell line INS-1, showed robust EV

secretion, isolated rodent, and human primary islets, which

generally do not proliferate, secreted few EVs in comparison,

suggesting that EV release may be associated with b cell

proliferation. Proteomic analysis of b cell EVs from mouse and

human sources showed that they contain canonical exosomal

markers, including endosomal sorting complex required for

transport (ESCRT) machinery (Alix, Flotillin-1, Tsg101),

tetraspanins (CD9, CD81, CD63), as well as housekeeping

proteins (GAPDH, Actin) (Figure 1). Interestingly, primary

mouse and human islet b cell EVs also contained putative

autoantigens, including GAD65, proinsulin and ZnT8, which

were shown to be released in a caspase-independent manner and

at higher rates during proinflammatory cytokine exposure (23, 24)

(Figure 1). Notably in regards to tetraspannin markers, a recent

study showed that CD63 levels discriminate between two different b
cell subsets in mice and humans, where CD63High b cells had higher

metabolic and functional capacity compared with CD63Low (27),

suggesting possible differences in EV markers or biogenesis

associated with b cell function. However, further studies to test

this hypothesis are clearly warranted.

The observation that b cell EVs contain autoantigens has raised

the intriguing possibility that b cell EVs convey autoantigens

directly to the immune system to activate and drive

autoimmunity. Indeed, one study found that human islet EVs are

internalized by monocytes and B cells, provoking T cell activation

and memory responses in peripheral blood mononuclear cells

(PBMCs) from T1D donors (28). EVs containing GAD65

triggered the production of anti-GAD antibodies from B cells (28)

providing an explanation as to how b cell autoantigens are being

sampled and provoke immune responses during T1D progression.

In other work, it was demonstrated that the proinflammatory

chemokine CXCL10 is enriched on the surface of stressed b cell

EVs, promoting b cell dysfunction via paracrine effects in addition

to immune cell chemotaxis (26). Inhibition of small EV release

rescued defects in proinflammatory cytokine-stressed primary islet

function and reduced macrophage and CD8+ T cell infiltration (26),

suggesting a role for stressed b EVs in promoting islet dysfunction

and immune recruitment.

Despite these advances and the insights learned from tissue

culture studies, the question of how and whether b cell EV release

actually contributes to autoimmunity in vivo during the

development of T1D has not been addressed. In particular, it

remains a major challenge in the field to specifically determine

the cell type of origin for isolated EV populations from blood or

even islets in culture, since EV populations are a heterogeneous

mixture produced by multiple cell types and cell-type specific

surface markers on EVs for b cells have not yet been identified.

To tackle this challenge, recently developed conditional reporter

mouse models could be used to examine the impact of senescence

on b cell EVs Specifically, a tissue-specific EV reporter mouse model
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(e.g., lox-STOP-lox-CD9-GFP) could be employed, where the

conditional activation occurs in b cells (e.g., by crossing with an

Ins1-Cre driver line).These allow for tissue-specific fluorescent

protein tagging of EVs, such as the Transgenic inducible GFP

extracellular vesicle reporter (TIGER) mouse which uses a CD9-

GFP (29), a truncated CD9-GFP EV conditional reporter that

allows for affinity isolation (30), or the CD63-GFP conditional

reporter mouse models (31, 32). Senescent beta cells could then be

ablated by treating the animals with senolytics (compounds the

trigger apoptosis preferentially in senescent cells (33), and

comparing beta cell EV cargo from control and senolytic-treated

animal islets. Given that b cell EVs naturally express these

tetraspanin markers, these mouse models could provide key tools

for addressing how b cells release EVs in vivo, elucidating the

trafficking of these EVs and the impact of stress on b cell EV release

during the development of T1D.
2.2 The role of senescent b cells and the
potential role of senescence-derived EVs
in T1D

Cellular senescence is a stress response leading to various

hallmark phenotypes including an irreversible cell cycle arrest,

resistance to apoptosis, metabolic adaptation and acquisition of a

SASP (34). Although senescence is beneficial in certain contexts

such as during embryogenesis and wound healing, when senescent

cells are not efficiently removed by the immune system, their

accumulation leads to chronic inflammation and tissue
Frontiers in Endocrinology 03
dysfunction (35). Senescent b cells that accumulate during T1D

development in the NOD autoimmune diabetes mouse model and

human donor pancreas tissue exhibit the major hallmarks of

senescence in other cell types. These include a DNA damage

response (DDR), apoptosis resistance, the lysosomal senescence-

associated b-galactosidase (SA-bgal) and a SASP (Cha et al., 2023)

although the precise triggers responsible for the induction of

senescence in b cells during T1D are still unknown. Senescent b
cells in NOD mice upregulate the prosurvival protein Bcl-2,

rendering them sensitive to Bcl-2 inhibitor senolytics, which can

selectively trigger apoptosis in this subset of b cells (36).

Senescent cells activate the release of a proinflammatory

secretome known as SASP, which in b cells comprises cytokines

and chemokines (e.g., IL-6, Cxcl10, Ccl2, Ccl4, Cxcl1, Cxcl8),

matrix metalloproteinases and inhibitors (MMP-2, MMP-3,

MMP-12, Serpine1), and growth factors (Gdf15/GDF15, Igfbp3,

Igfbp4/IGFBP4) (15) (Figure 1). The various biological activities

elicited by the SASP are intimately connected to the

microenvironment in which senescent cells reside. In b cells,

SASP can also exert detrimental paracrine effects on adjacent

non-senescent healthy b cells, such as triggering senescence (36–

38). Additionally, the induction of SASP in cultured human islets

causes changes in glucagon secretion from a cells, implying that the

SASP originating from b cells can have an impact on the normal

functioning of a cells (39). Suppression of SASP from senescent b
cells in NOD mice protects against diabetes (40), supporting a

deleterious role for SASP in T1D development.

In addition to the secretion of soluble immunogenic proteins,

recent studies have also shown that SASP involves increased
FIGURE 1

b cell EVs and potential effects of senescence on EV release and cargo. Healthy primary islet b cells release a low quantity of exosomes under typical
culture conditions. b cell EVs contain typical EV proteins (Alix, Tsg101, Flotillin-1, CD9, CD81, CD63, Actin, GAPDH), along with autoantigens (GAD65,
Proinsulin, ZnT8), and miRNAs (miR-7, miR-21, miR-29, miR-146, miR-155 let-7a, miR-217, miR-223). In contrast, senescent b cells that accumulate
during T1D develop a SASP, which we propose involves not only classical SASP factors (SASP soluble factors) but also increased release of EVs (SASP
EV release). Senescence may also alter b cell EV cargo, such as increasing the release of autoantigens and changing the miRNA profile. Together
these changes in b cell EVs during senescence could facilitate immune signaling and activation events that accelerate the development of T1D.
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secretion of EVs and altered cargo compared to the EVs released

from non-senescent cells (19, 20). Notably, senescent cells are more

sensitive to inhibition of EV release compared with non-senescent

cells (41), and loss of EV release machinery proteins can accelerate

senescence onset, leading to speculation that EV release may

provide an adaptive mechanism for removal of unwanted cargo

in senescent cells (42). Senescence also alters EV miRNA cargo (43,

44). However, it remains to be determined how senescence alters b
cell EV release and cargo (Figure 1). Although proteomic studies

have been carried out to identify b cell SASP factors, EVs were not

specifically isolated in those studies (45). Similarly, while it was

recently shown that miRNAs have coding motifs that direct their

sorting into exosomes (46), the extent to which this mechanism

operates to direct miRNA sorting in b cell EVs in the context of

senescence remains an open question. We postulate that, aside from

its effects through the direct release of soluble paracrine factors, b
cell SASP could also cause detrimental impacts on neighboring or

distant cells through increased release of EVs with modified protein

and/or miRNA cargo (Figure 1). For instance, senescence may

increase autoantigen cargo or lead to the export of immune-

activating miRNAs. The broader scope of SASP influence is

facilitated by the transmission of EVs, allowing it to potentially

affect cells that are distant from islets.
2.3 b cell EV miRNAs and impact of
senescence on EV miRNA

In addition to protein cargo, miRNAs are also enriched in b cell

EVs. miRNAs are non-coding RNAs 21-23 nucleotides long,

regulate gene expression post-transcriptionally. They inhibit

mRNA translation or reduce mRNA stability, playing key roles in

genetic regulation and various biological processes (47). Cataloging

more than 2500 miRNAs in humans has revealed their significant

role in regulating around 60% of protein-coding genes within the

genome. While miRNAs are predominantly generated and function

within cells, recent studies have shed light on their ability to be

secreted outside the cell in micro-vesicles or exosomes. This

intriguing finding has expanded our understanding of miRNAs,

revealing their capacity to transmit their regulatory functions to

other cell types. b cell EVs contain: miR-7, miR-21, miR-29, miR-

146a, miR-223, let-7a, miR-217 and miR-155 (25, 48–52) (Figure 1).

Interestingly, some of the targets for these miRNAs include genes

involved in senescence/SASP, including Bcl2 CXCR2, MMP2,

MMP9, Cdkn2a (encoding p16Ink4a), TP53, TNF, and IL6. For

example, miR-21 increases in abundance during proinflammatory

cytokine exposure in the MIN6 b cell line and primary isolated

mouse and human islets (25). miR-21 increases b cell susceptibility

to apoptosis by downregulating Bcl2 mRNA levels (53), and

overexpression of miR-21 precursor pre-miRNA in b cells leads

to defects in glucose-stimulated insulin secretion (54), suggesting a

novel link between proinflammatory conditions and impairment of

b cell function via miRNA expression.

Upon entering senescence, the expression patterns of miRNAs

undergo notable alteration (55). This alteration in miRNA

expression is also manifested in the composition of EVs (55).
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Alibhai et al. revealed that in aging mice, the levels of miR-146a,

miR-21, miR-223, and let-7a in circulating EVs in plasma increased,

indicating a correlation with modifications in immune function

(56). Another study observed that EVs released by replicative

senescent human umbilical vein endothelial cells, enriched with

elevated levels of miR-21-5p and miR-217, were observed to reduce

proliferation and promote senescence in neighboring endothelial

cells (57). Salama et al. have observed that miR-29 in b cell-derived

exosomes induced TNFa, and IL-6 in splenocytes of NOD mice

(49). Up-regulation of miR-29 correlated with DNA damage

response, increased levels of the DNA damage marker g-H2A.X,

and accumulation of SA-bGal (58). miR-29 was also upregulated in

aged mice (59). Moreover, EVs containing miR-29 were considered

controls for aging and the induction of an inflammatory

environment in white adipose tissue (60). Davis et al. utilized a

miRNA array to showcase a variation in miRNA expression within

EVs obtained from the bones of aged and youthful mice. The

EVs originating from the bones of older mice exhibited a

distinct elevation in the levels of miR-183-5p. Moreover, the

overexpression of a miR-183-5p mimic exhibited the ability to

stimulate senescence and hinder the proliferation and

differentiation of Bone Marrow Mesenchymal Stromal Cells

(BMSCs) (61). Thus, it is apparent that in pathological situations,

the isolated EVs can have cell type specific effects in the

microenvironment. Although the impact of senescence has not

been studied on islet EVs, a recent preprint reported that isolated

EVs from human islets treated with inflammatory cytokines led to

the upregulation of miR-155-5p (52). These findings were in line

with the analysis of EVs plasma derived from children with recent

T1D and autoantibody-positivity (52) suggesting inflammatory

stress could provoke b cell miR-155 EV release into circulation.

In summary, despite the considerable number of studies

conducted on senescent cell EVs and their miRNA cargo and

impacts of inflammatory stress on b cell EVs, there remains a gap

in understanding senescent b cells and identifying EVs produced by

senescent b cells. To address this question, genetic tools to disrupt

the b cell senescence program in vivo or ablate p21-expressing

senescent cells, such as in the p21-Cre mouse (62) or the p21

promoter-driven suicide gene mouse model (p21-ATTAC) (63)

could be utilized. These models would allow for ablation of

senescent beta cells, thereby also eliminating their potentially

altered EVs. In addition, now that reliable approaches for

inducing senescence in mouse and human b cells in vitro have

been established by us (64) and others (45), they provide suitable

culture models to investigate the impact of senescence on b cell EV

release and cargo. These strategies will enable the isolation of EVs

from control versus senescent b cells for transcriptomic analyses to

gain a deeper comprehension of how senescent b cell EV miRNAs

could promote the progression of autoimmune b cell loss in the

islet microenvironment.

The heterogeneity in EVs complicates the task of isolating and

identifying specific EV subtypes (e.g., islets-derived EVs) amid

other non-target EVs circulating in the body. Therefore, the

exploration of novel biomarkers on the surface of EVs is of great

interest. The application of flow cytometry has been used to address

the heterogeneity of senescent cell EVs, both in vitro and in vivo.
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Meng et al. (65) identified the proteins present on extracellular

vesicles associated with senescence (S-EVs) across various

senescence models. Their findings revealed that the proteins

DPP4, ANXA1, ANXA6, S10AB, AT1A1, and EPHB2 were

predominantly present on the surface of EVs from senescent cells.

DPP4 is distinguished by its unique capability to impede EV uptake

by proliferating cells. Furthermore, it was noted that there was a

marked increase in DPP4-rich EVs in the blood of women with

gestational diabetes mellitus (GDM) (66). DDP4-rich EVs were also

reported in the urine of patients with diabetic kidney disease (67).

This raises the question of whether DPP-4-bearing EVs could be

used as a unique biomarker for applying flow cytometry to identify

senescent b cell-derived EVs in vivo. Future efforts in this area could

use a screening approach for plasma membrane proteins that are

selectively expressed on the surface of EVs from senescent b cells.

By performing proteomics analysis to identify new potential

markers of b cell senescence found on the surface of EVs, the

effectiveness of drugs targeting senescent b cells could be more

effectively evaluated.
2.4 Therapeutic EVs to improve targeting
of senescent b cells in T1D

Pharmacological elimination of senescent cells predominantly

hinges on two specific types of compounds known as senolytics and
Frontiers in Endocrinology 05
senomorphics (68). Senolytic compounds are designed to

specifically target and eliminate senescent cells while minimizing

any impact on the proliferating and healthy cells, while

senomorphics act to modify senescent cell phenotypes in a

beneficial manner (68, 69). While there are not yet available tools

to specifically manipulate the EV release from senescent cells (while

not impacting EV release generally from other cell types) both

senolytics and senomorphics could mitigate senescent b cell EV

release, since senolytics would eliminate senescent b cells

themselves along with their EVs and senomorphics could

suppress SASP which also involves altered EV release. Most

efforts have focused on use of senolytic compounds which have

been extensively tested both in vitro and in vivo, including

inhibitors targeting the BCL-2 family such as ABT-263 and ABT-

737 (68). Recently clinical trials suggest the senolytic cocktail

dasatinib and quercetin (D+Q) is safe and promising for treating

senescence-associated diseases in humans (70–72). While senolytics

have not reached the clinic for treating T1D, preclinical studies

support the positive influence of senolytic compounds ABT-199

and ABT-737 in depleting senescent b cells in NOD mice, which

protected against T1D (36). However, senolytic compounds are

administered systemically and can have off-target effects. Senolytics

also display significant variability in efficacy across various cell lines

and tissues, making it problematic to identify a single senolytic as

a commonly implemented method for eliminating senescent

cells in vivo (69).
FIGURE 2

Therapeutic EV delivery of senotherapeutic miRNAs for improved targeting of SASP in b cells during T1D. The use of specially designed EVs with
surface molecules to target b cells (such as GLP1R agonists) and harboring miRNAs to suppress SASP (such as miR-107, miR-183, miR-204, miR-223)
could be a powerful approach for improved targeting of SASP+ b cells and sparing healthy b cells in vivo during the development of T1D. This
approach could downregulate SASP preferentially in b cells, thereby reducing off-target effects of other senotherapeutics and protecting
against T1D.
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Another approach to targeting senescence is using

senomorphics to directly target and inhibit the SASP process.

Suppression of b cell SASP using Bromodomain Extra-Terminal

domain (BET) protein inhibitor iBET-762 protects against T1D in

NOD mice (40). However, BET proteins are ubiquitously expressed

and employed in a variety of inflammatory and housekeeping

processes unrelated to SASP, making it highly problematic to

adapt this senomorphic approach to T1D in humans. On the

other hand, miRNAs may provide an under-appreciated

mechanism to regulate and modify the SASP. Numerous studies

have highlighted the role of miRNAs in the regulation of senescence

signaling pathways, and specifically in controlling SASP (47, 73).

For example, Qi et al. indicated that miR-204 suppresses IL-6, IL-

18, and TNF-a by upregulation of Bcl-2 and SIRT1 in rats with

diabetic retinopathy (74). Studies have demonstrated that miR-107

triggers apoptosis and downregulates the expression of CXCR2,

MMP-2, and MMP-9, leading to a decrease in SASP secretion (75).

Furthermore, miRNAs are involved in the modulation of

senescence through the key cell cycle arrest regulators p16Ink4a

and p53 (73). Indeed, miR-24 effectively hinders replicative

senescence by repressing Cdkn2a expression through binding to

the 3′UTR of its mRNA (76). EVs have been proposed as next

generation treatment alternatives and designer nanoparticles to

transport medications (77). For example, EV-delivered miRNAs

have reached clinical trials for cancer therapy (78). Therefore, EVs

may present a natural, cell/tissue-derived avenue for efficient

transport of senolytic or senomorphic miRNAs to improve

targeting efficiency of senescent b cells in T1D, acknowledging

that other cargo of b cell EVs may play roles in T1D as well

(Figure 2). EVs may have lower immunogenicity as compared with

other delivery reagents, as shown in recent studies where no toxic

effects were observed in mice after three weeks of treatment with

EVs from the human embryonic kidney cell line HEK293T (77).

EVs also may provide a suitable barrier to prevent the degradation

of therapeutic miRNAs. Surface proteins on EVs may act like

distinct barcodes, helping delivered EVs to reach their intended

targets in vivo. In this regard, in previous studies, engineered EVs

with surface localization of a b cell protein p88 fused to EV protein

lactoadherin showed increased uptake to the pancreas upon

intravenous administration in mice (79). In the future, it will be

crucial to identify and characterize miRNAs that suppress SASP in

b cells. The use of targeted EV surface proteins (such as p88 or

ligands for GLP1R that is enriched on b cells) along with loading of

miRNA cargo to inhibit SASP could provide precision suppression

of senescent b cell SASP in vivo, while reducing the impacts of off-

target effects associated with systemic senomorphic use (Figure 2).
3 Conclusion

In conclusion, current evidence suggests that b cell EVs could

play a critical role in T1D progression. However, the specific models

have been lacking to definitively address this question in vivo. The

advent of conditional EV reporter mouse models has furnished the

islet biology field with tools that will undoubtedly provide insights
Frontiers in Endocrinology 06
into how b cell EVs contribute to T1D pathogenesis. We propose

that b cell senescence alters EV production along with the protein

and miRNA cargo in a manner that accelerates T1D (Figure 1). As

methods to engineer EVs continue to improve, we also anticipate

that EV technology will enable the use of surface ligands with high b
cell/islet specificity and these tools could be deployed to improve

upon systemically administered therapeutics for targeting senescent

b cells (Figure 2). As EVs have already been used to effectively

package and deliver miRNA cargo in clinical trials, we suggest that a

similar approach applied to miRNAs that regulate SASP, could

prove highly effective for limiting the deleterious impact of

accumulated senescent b cells in diabetes.
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